llvm-6502/utils/TableGen/DAGISelEmitter.cpp
Lauro Ramos Venancio 195c6c298a bugfix: remember that ResNode was declared.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@36477 91177308-0d34-0410-b5e6-96231b3b80d8
2007-04-26 17:03:22 +00:00

3977 lines
156 KiB
C++

//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//
#include "DAGISelEmitter.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
#include <set>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Helpers for working with extended types.
/// FilterVTs - Filter a list of VT's according to a predicate.
///
template<typename T>
static std::vector<MVT::ValueType>
FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) {
std::vector<MVT::ValueType> Result;
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
if (Filter(InVTs[i]))
Result.push_back(InVTs[i]);
return Result;
}
template<typename T>
static std::vector<unsigned char>
FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) {
std::vector<unsigned char> Result;
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
if (Filter((MVT::ValueType)InVTs[i]))
Result.push_back(InVTs[i]);
return Result;
}
static std::vector<unsigned char>
ConvertVTs(const std::vector<MVT::ValueType> &InVTs) {
std::vector<unsigned char> Result;
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
Result.push_back(InVTs[i]);
return Result;
}
static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS,
const std::vector<unsigned char> &RHS) {
if (LHS.size() > RHS.size()) return false;
for (unsigned i = 0, e = LHS.size(); i != e; ++i)
if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end())
return false;
return true;
}
/// isExtIntegerVT - Return true if the specified extended value type vector
/// contains isInt or an integer value type.
static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) {
assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty());
}
/// isExtFloatingPointVT - Return true if the specified extended value type
/// vector contains isFP or a FP value type.
static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) {
assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!");
return EVTs[0] == MVT::isFP ||
!(FilterEVTs(EVTs, MVT::isFloatingPoint).empty());
}
//===----------------------------------------------------------------------===//
// SDTypeConstraint implementation
//
SDTypeConstraint::SDTypeConstraint(Record *R) {
OperandNo = R->getValueAsInt("OperandNum");
if (R->isSubClassOf("SDTCisVT")) {
ConstraintType = SDTCisVT;
x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
} else if (R->isSubClassOf("SDTCisPtrTy")) {
ConstraintType = SDTCisPtrTy;
} else if (R->isSubClassOf("SDTCisInt")) {
ConstraintType = SDTCisInt;
} else if (R->isSubClassOf("SDTCisFP")) {
ConstraintType = SDTCisFP;
} else if (R->isSubClassOf("SDTCisSameAs")) {
ConstraintType = SDTCisSameAs;
x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
ConstraintType = SDTCisVTSmallerThanOp;
x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
R->getValueAsInt("OtherOperandNum");
} else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
ConstraintType = SDTCisOpSmallerThanOp;
x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
R->getValueAsInt("BigOperandNum");
} else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) {
ConstraintType = SDTCisIntVectorOfSameSize;
x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum =
R->getValueAsInt("OtherOpNum");
} else {
cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n";
exit(1);
}
}
/// getOperandNum - Return the node corresponding to operand #OpNo in tree
/// N, which has NumResults results.
TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo,
TreePatternNode *N,
unsigned NumResults) const {
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
if (OpNo >= (NumResults + N->getNumChildren())) {
cerr << "Invalid operand number " << OpNo << " ";
N->dump();
cerr << '\n';
exit(1);
}
if (OpNo < NumResults)
return N; // FIXME: need value #
else
return N->getChild(OpNo-NumResults);
}
/// ApplyTypeConstraint - Given a node in a pattern, apply this type
/// constraint to the nodes operands. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
const SDNodeInfo &NodeInfo,
TreePattern &TP) const {
unsigned NumResults = NodeInfo.getNumResults();
assert(NumResults <= 1 &&
"We only work with nodes with zero or one result so far!");
// Check that the number of operands is sane. Negative operands -> varargs.
if (NodeInfo.getNumOperands() >= 0) {
if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands())
TP.error(N->getOperator()->getName() + " node requires exactly " +
itostr(NodeInfo.getNumOperands()) + " operands!");
}
const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo();
TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults);
switch (ConstraintType) {
default: assert(0 && "Unknown constraint type!");
case SDTCisVT:
// Operand must be a particular type.
return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP);
case SDTCisPtrTy: {
// Operand must be same as target pointer type.
return NodeToApply->UpdateNodeType(MVT::iPTR, TP);
}
case SDTCisInt: {
// If there is only one integer type supported, this must be it.
std::vector<MVT::ValueType> IntVTs =
FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger);
// If we found exactly one supported integer type, apply it.
if (IntVTs.size() == 1)
return NodeToApply->UpdateNodeType(IntVTs[0], TP);
return NodeToApply->UpdateNodeType(MVT::isInt, TP);
}
case SDTCisFP: {
// If there is only one FP type supported, this must be it.
std::vector<MVT::ValueType> FPVTs =
FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint);
// If we found exactly one supported FP type, apply it.
if (FPVTs.size() == 1)
return NodeToApply->UpdateNodeType(FPVTs[0], TP);
return NodeToApply->UpdateNodeType(MVT::isFP, TP);
}
case SDTCisSameAs: {
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults);
return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) |
OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP);
}
case SDTCisVTSmallerThanOp: {
// The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
// have an integer type that is smaller than the VT.
if (!NodeToApply->isLeaf() ||
!dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) ||
!static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
->isSubClassOf("ValueType"))
TP.error(N->getOperator()->getName() + " expects a VT operand!");
MVT::ValueType VT =
getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
if (!MVT::isInteger(VT))
TP.error(N->getOperator()->getName() + " VT operand must be integer!");
TreePatternNode *OtherNode =
getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults);
// It must be integer.
bool MadeChange = false;
MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP);
// This code only handles nodes that have one type set. Assert here so
// that we can change this if we ever need to deal with multiple value
// types at this point.
assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!");
if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT)
OtherNode->UpdateNodeType(MVT::Other, TP); // Throw an error.
return false;
}
case SDTCisOpSmallerThanOp: {
TreePatternNode *BigOperand =
getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults);
// Both operands must be integer or FP, but we don't care which.
bool MadeChange = false;
// This code does not currently handle nodes which have multiple types,
// where some types are integer, and some are fp. Assert that this is not
// the case.
assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) &&
isExtFloatingPointInVTs(NodeToApply->getExtTypes())) &&
!(isExtIntegerInVTs(BigOperand->getExtTypes()) &&
isExtFloatingPointInVTs(BigOperand->getExtTypes())) &&
"SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
if (isExtIntegerInVTs(NodeToApply->getExtTypes()))
MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP);
else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes()))
MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP);
if (isExtIntegerInVTs(BigOperand->getExtTypes()))
MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP);
else if (isExtFloatingPointInVTs(BigOperand->getExtTypes()))
MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP);
std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes();
if (isExtIntegerInVTs(NodeToApply->getExtTypes())) {
VTs = FilterVTs(VTs, MVT::isInteger);
} else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) {
VTs = FilterVTs(VTs, MVT::isFloatingPoint);
} else {
VTs.clear();
}
switch (VTs.size()) {
default: // Too many VT's to pick from.
case 0: break; // No info yet.
case 1:
// Only one VT of this flavor. Cannot ever satisify the constraints.
return NodeToApply->UpdateNodeType(MVT::Other, TP); // throw
case 2:
// If we have exactly two possible types, the little operand must be the
// small one, the big operand should be the big one. Common with
// float/double for example.
assert(VTs[0] < VTs[1] && "Should be sorted!");
MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP);
MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP);
break;
}
return MadeChange;
}
case SDTCisIntVectorOfSameSize: {
TreePatternNode *OtherOperand =
getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum,
N, NumResults);
if (OtherOperand->hasTypeSet()) {
if (!MVT::isVector(OtherOperand->getTypeNum(0)))
TP.error(N->getOperator()->getName() + " VT operand must be a vector!");
MVT::ValueType IVT = OtherOperand->getTypeNum(0);
IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT));
return NodeToApply->UpdateNodeType(IVT, TP);
}
return false;
}
}
return false;
}
//===----------------------------------------------------------------------===//
// SDNodeInfo implementation
//
SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
EnumName = R->getValueAsString("Opcode");
SDClassName = R->getValueAsString("SDClass");
Record *TypeProfile = R->getValueAsDef("TypeProfile");
NumResults = TypeProfile->getValueAsInt("NumResults");
NumOperands = TypeProfile->getValueAsInt("NumOperands");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i) {
if (PropList[i]->getName() == "SDNPCommutative") {
Properties |= 1 << SDNPCommutative;
} else if (PropList[i]->getName() == "SDNPAssociative") {
Properties |= 1 << SDNPAssociative;
} else if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOutFlag") {
Properties |= 1 << SDNPOutFlag;
} else if (PropList[i]->getName() == "SDNPInFlag") {
Properties |= 1 << SDNPInFlag;
} else if (PropList[i]->getName() == "SDNPOptInFlag") {
Properties |= 1 << SDNPOptInFlag;
} else {
cerr << "Unknown SD Node property '" << PropList[i]->getName()
<< "' on node '" << R->getName() << "'!\n";
exit(1);
}
}
// Parse the type constraints.
std::vector<Record*> ConstraintList =
TypeProfile->getValueAsListOfDefs("Constraints");
TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
}
//===----------------------------------------------------------------------===//
// TreePatternNode implementation
//
TreePatternNode::~TreePatternNode() {
#if 0 // FIXME: implement refcounted tree nodes!
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
delete getChild(i);
#endif
}
/// UpdateNodeType - Set the node type of N to VT if VT contains
/// information. If N already contains a conflicting type, then throw an
/// exception. This returns true if any information was updated.
///
bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs,
TreePattern &TP) {
assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!");
if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs))
return false;
if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) {
setTypes(ExtVTs);
return true;
}
if (getExtTypeNum(0) == MVT::iPTR) {
if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt)
return false;
if (isExtIntegerInVTs(ExtVTs)) {
std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger);
if (FVTs.size()) {
setTypes(ExtVTs);
return true;
}
}
}
if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) {
assert(hasTypeSet() && "should be handled above!");
std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
if (getExtTypes() == FVTs)
return false;
setTypes(FVTs);
return true;
}
if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) {
//assert(hasTypeSet() && "should be handled above!");
std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger);
if (getExtTypes() == FVTs)
return false;
if (FVTs.size()) {
setTypes(FVTs);
return true;
}
}
if (ExtVTs[0] == MVT::isFP && isExtFloatingPointInVTs(getExtTypes())) {
assert(hasTypeSet() && "should be handled above!");
std::vector<unsigned char> FVTs =
FilterEVTs(getExtTypes(), MVT::isFloatingPoint);
if (getExtTypes() == FVTs)
return false;
setTypes(FVTs);
return true;
}
// If we know this is an int or fp type, and we are told it is a specific one,
// take the advice.
//
// Similarly, we should probably set the type here to the intersection of
// {isInt|isFP} and ExtVTs
if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) ||
(getExtTypeNum(0) == MVT::isFP && isExtFloatingPointInVTs(ExtVTs))) {
setTypes(ExtVTs);
return true;
}
if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) {
setTypes(ExtVTs);
return true;
}
if (isLeaf()) {
dump();
cerr << " ";
TP.error("Type inference contradiction found in node!");
} else {
TP.error("Type inference contradiction found in node " +
getOperator()->getName() + "!");
}
return true; // unreachable
}
void TreePatternNode::print(std::ostream &OS) const {
if (isLeaf()) {
OS << *getLeafValue();
} else {
OS << "(" << getOperator()->getName();
}
// FIXME: At some point we should handle printing all the value types for
// nodes that are multiply typed.
switch (getExtTypeNum(0)) {
case MVT::Other: OS << ":Other"; break;
case MVT::isInt: OS << ":isInt"; break;
case MVT::isFP : OS << ":isFP"; break;
case MVT::isUnknown: ; /*OS << ":?";*/ break;
case MVT::iPTR: OS << ":iPTR"; break;
default: {
std::string VTName = llvm::getName(getTypeNum(0));
// Strip off MVT:: prefix if present.
if (VTName.substr(0,5) == "MVT::")
VTName = VTName.substr(5);
OS << ":" << VTName;
break;
}
}
if (!isLeaf()) {
if (getNumChildren() != 0) {
OS << " ";
getChild(0)->print(OS);
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
OS << ", ";
getChild(i)->print(OS);
}
}
OS << ")";
}
if (!PredicateFn.empty())
OS << "<<P:" << PredicateFn << ">>";
if (TransformFn)
OS << "<<X:" << TransformFn->getName() << ">>";
if (!getName().empty())
OS << ":$" << getName();
}
void TreePatternNode::dump() const {
print(*cerr.stream());
}
/// isIsomorphicTo - Return true if this node is recursively isomorphic to
/// the specified node. For this comparison, all of the state of the node
/// is considered, except for the assigned name. Nodes with differing names
/// that are otherwise identical are considered isomorphic.
bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const {
if (N == this) return true;
if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
getPredicateFn() != N->getPredicateFn() ||
getTransformFn() != N->getTransformFn())
return false;
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()))
if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue()))
return DI->getDef() == NDI->getDef();
return getLeafValue() == N->getLeafValue();
}
if (N->getOperator() != getOperator() ||
N->getNumChildren() != getNumChildren()) return false;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->isIsomorphicTo(N->getChild(i)))
return false;
return true;
}
/// clone - Make a copy of this tree and all of its children.
///
TreePatternNode *TreePatternNode::clone() const {
TreePatternNode *New;
if (isLeaf()) {
New = new TreePatternNode(getLeafValue());
} else {
std::vector<TreePatternNode*> CChildren;
CChildren.reserve(Children.size());
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
CChildren.push_back(getChild(i)->clone());
New = new TreePatternNode(getOperator(), CChildren);
}
New->setName(getName());
New->setTypes(getExtTypes());
New->setPredicateFn(getPredicateFn());
New->setTransformFn(getTransformFn());
return New;
}
/// SubstituteFormalArguments - Replace the formal arguments in this tree
/// with actual values specified by ArgMap.
void TreePatternNode::
SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
if (isLeaf()) return;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
TreePatternNode *Child = getChild(i);
if (Child->isLeaf()) {
Init *Val = Child->getLeafValue();
if (dynamic_cast<DefInit*>(Val) &&
static_cast<DefInit*>(Val)->getDef()->getName() == "node") {
// We found a use of a formal argument, replace it with its value.
Child = ArgMap[Child->getName()];
assert(Child && "Couldn't find formal argument!");
setChild(i, Child);
}
} else {
getChild(i)->SubstituteFormalArguments(ArgMap);
}
}
}
/// InlinePatternFragments - If this pattern refers to any pattern
/// fragments, inline them into place, giving us a pattern without any
/// PatFrag references.
TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
if (isLeaf()) return this; // nothing to do.
Record *Op = getOperator();
if (!Op->isSubClassOf("PatFrag")) {
// Just recursively inline children nodes.
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
setChild(i, getChild(i)->InlinePatternFragments(TP));
return this;
}
// Otherwise, we found a reference to a fragment. First, look up its
// TreePattern record.
TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op);
// Verify that we are passing the right number of operands.
if (Frag->getNumArgs() != Children.size())
TP.error("'" + Op->getName() + "' fragment requires " +
utostr(Frag->getNumArgs()) + " operands!");
TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
// Resolve formal arguments to their actual value.
if (Frag->getNumArgs()) {
// Compute the map of formal to actual arguments.
std::map<std::string, TreePatternNode*> ArgMap;
for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
FragTree->SubstituteFormalArguments(ArgMap);
}
FragTree->setName(getName());
FragTree->UpdateNodeType(getExtTypes(), TP);
// Get a new copy of this fragment to stitch into here.
//delete this; // FIXME: implement refcounting!
return FragTree;
}
/// getImplicitType - Check to see if the specified record has an implicit
/// type which should be applied to it. This infer the type of register
/// references from the register file information, for example.
///
static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters,
TreePattern &TP) {
// Some common return values
std::vector<unsigned char> Unknown(1, MVT::isUnknown);
std::vector<unsigned char> Other(1, MVT::Other);
// Check to see if this is a register or a register class...
if (R->isSubClassOf("RegisterClass")) {
if (NotRegisters)
return Unknown;
const CodeGenRegisterClass &RC =
TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R);
return ConvertVTs(RC.getValueTypes());
} else if (R->isSubClassOf("PatFrag")) {
// Pattern fragment types will be resolved when they are inlined.
return Unknown;
} else if (R->isSubClassOf("Register")) {
if (NotRegisters)
return Unknown;
const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo();
return T.getRegisterVTs(R);
} else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) {
// Using a VTSDNode or CondCodeSDNode.
return Other;
} else if (R->isSubClassOf("ComplexPattern")) {
if (NotRegisters)
return Unknown;
std::vector<unsigned char>
ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType());
return ComplexPat;
} else if (R->getName() == "ptr_rc") {
Other[0] = MVT::iPTR;
return Other;
} else if (R->getName() == "node" || R->getName() == "srcvalue") {
// Placeholder.
return Unknown;
}
TP.error("Unknown node flavor used in pattern: " + R->getName());
return Other;
}
/// ApplyTypeConstraints - Apply all of the type constraints relevent to
/// this node and its children in the tree. This returns true if it makes a
/// change, false otherwise. If a type contradiction is found, throw an
/// exception.
bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
DAGISelEmitter &ISE = TP.getDAGISelEmitter();
if (isLeaf()) {
if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) {
// If it's a regclass or something else known, include the type.
return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP);
} else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) {
// Int inits are always integers. :)
bool MadeChange = UpdateNodeType(MVT::isInt, TP);
if (hasTypeSet()) {
// At some point, it may make sense for this tree pattern to have
// multiple types. Assert here that it does not, so we revisit this
// code when appropriate.
assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!");
MVT::ValueType VT = getTypeNum(0);
for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i)
assert(getTypeNum(i) == VT && "TreePattern has too many types!");
VT = getTypeNum(0);
if (VT != MVT::iPTR) {
unsigned Size = MVT::getSizeInBits(VT);
// Make sure that the value is representable for this type.
if (Size < 32) {
int Val = (II->getValue() << (32-Size)) >> (32-Size);
if (Val != II->getValue())
TP.error("Sign-extended integer value '" + itostr(II->getValue())+
"' is out of range for type '" +
getEnumName(getTypeNum(0)) + "'!");
}
}
}
return MadeChange;
}
return false;
}
// special handling for set, which isn't really an SDNode.
if (getOperator()->getName() == "set") {
assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!");
bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters);
// Types of operands must match.
MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP);
MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP);
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
return MadeChange;
} else if (getOperator() == ISE.get_intrinsic_void_sdnode() ||
getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) {
unsigned IID =
dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue();
const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID);
bool MadeChange = false;
// Apply the result type to the node.
MadeChange = UpdateNodeType(Int.ArgVTs[0], TP);
if (getNumChildren() != Int.ArgVTs.size())
TP.error("Intrinsic '" + Int.Name + "' expects " +
utostr(Int.ArgVTs.size()-1) + " operands, not " +
utostr(getNumChildren()-1) + " operands!");
// Apply type info to the intrinsic ID.
MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP);
for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
MVT::ValueType OpVT = Int.ArgVTs[i];
MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP);
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
}
return MadeChange;
} else if (getOperator()->isSubClassOf("SDNode")) {
const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator());
bool MadeChange = NI.ApplyTypeConstraints(this, TP);
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
// Branch, etc. do not produce results and top-level forms in instr pattern
// must have void types.
if (NI.getNumResults() == 0)
MadeChange |= UpdateNodeType(MVT::isVoid, TP);
// If this is a vector_shuffle operation, apply types to the build_vector
// operation. The types of the integers don't matter, but this ensures they
// won't get checked.
if (getOperator()->getName() == "vector_shuffle" &&
getChild(2)->getOperator()->getName() == "build_vector") {
TreePatternNode *BV = getChild(2);
const std::vector<MVT::ValueType> &LegalVTs
= ISE.getTargetInfo().getLegalValueTypes();
MVT::ValueType LegalIntVT = MVT::Other;
for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i)
if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) {
LegalIntVT = LegalVTs[i];
break;
}
assert(LegalIntVT != MVT::Other && "No legal integer VT?");
for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i)
MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP);
}
return MadeChange;
} else if (getOperator()->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = ISE.getInstruction(getOperator());
bool MadeChange = false;
unsigned NumResults = Inst.getNumResults();
assert(NumResults <= 1 &&
"Only supports zero or one result instrs!");
CodeGenInstruction &InstInfo =
ISE.getTargetInfo().getInstruction(getOperator()->getName());
// Apply the result type to the node
if (NumResults == 0 || InstInfo.noResults) { // FIXME: temporary hack.
MadeChange = UpdateNodeType(MVT::isVoid, TP);
} else {
Record *ResultNode = Inst.getResult(0);
if (ResultNode->getName() == "ptr_rc") {
std::vector<unsigned char> VT;
VT.push_back(MVT::iPTR);
MadeChange = UpdateNodeType(VT, TP);
} else {
assert(ResultNode->isSubClassOf("RegisterClass") &&
"Operands should be register classes!");
const CodeGenRegisterClass &RC =
ISE.getTargetInfo().getRegisterClass(ResultNode);
MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
}
}
unsigned ChildNo = 0;
for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
Record *OperandNode = Inst.getOperand(i);
// If the instruction expects a predicate operand, we codegen this by
// setting the predicate to it's "execute always" value.
if (OperandNode->isSubClassOf("PredicateOperand"))
continue;
// Verify that we didn't run out of provided operands.
if (ChildNo >= getNumChildren())
TP.error("Instruction '" + getOperator()->getName() +
"' expects more operands than were provided.");
MVT::ValueType VT;
TreePatternNode *Child = getChild(ChildNo++);
if (OperandNode->isSubClassOf("RegisterClass")) {
const CodeGenRegisterClass &RC =
ISE.getTargetInfo().getRegisterClass(OperandNode);
MadeChange |= Child->UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP);
} else if (OperandNode->isSubClassOf("Operand")) {
VT = getValueType(OperandNode->getValueAsDef("Type"));
MadeChange |= Child->UpdateNodeType(VT, TP);
} else if (OperandNode->getName() == "ptr_rc") {
MadeChange |= Child->UpdateNodeType(MVT::iPTR, TP);
} else {
assert(0 && "Unknown operand type!");
abort();
}
MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
}
if (ChildNo != getNumChildren())
TP.error("Instruction '" + getOperator()->getName() +
"' was provided too many operands!");
return MadeChange;
} else {
assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
// Node transforms always take one operand.
if (getNumChildren() != 1)
TP.error("Node transform '" + getOperator()->getName() +
"' requires one operand!");
// If either the output or input of the xform does not have exact
// type info. We assume they must be the same. Otherwise, it is perfectly
// legal to transform from one type to a completely different type.
if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP);
MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP);
return MadeChange;
}
return false;
}
}
/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
/// RHS of a commutative operation, not the on LHS.
static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
if (!N->isLeaf() && N->getOperator()->getName() == "imm")
return true;
if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue()))
return true;
return false;
}
/// canPatternMatch - If it is impossible for this pattern to match on this
/// target, fill in Reason and return false. Otherwise, return true. This is
/// used as a santity check for .td files (to prevent people from writing stuff
/// that can never possibly work), and to prevent the pattern permuter from
/// generating stuff that is useless.
bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){
if (isLeaf()) return true;
for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
if (!getChild(i)->canPatternMatch(Reason, ISE))
return false;
// If this is an intrinsic, handle cases that would make it not match. For
// example, if an operand is required to be an immediate.
if (getOperator()->isSubClassOf("Intrinsic")) {
// TODO:
return true;
}
// If this node is a commutative operator, check that the LHS isn't an
// immediate.
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator());
if (NodeInfo.hasProperty(SDNPCommutative)) {
// Scan all of the operands of the node and make sure that only the last one
// is a constant node, unless the RHS also is.
if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i)
if (OnlyOnRHSOfCommutative(getChild(i))) {
Reason="Immediate value must be on the RHS of commutative operators!";
return false;
}
}
}
return true;
}
//===----------------------------------------------------------------------===//
// TreePattern implementation
//
TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
isInputPattern = isInput;
for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i)
Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i)));
}
TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
isInputPattern = isInput;
Trees.push_back(ParseTreePattern(Pat));
}
TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) {
isInputPattern = isInput;
Trees.push_back(Pat);
}
void TreePattern::error(const std::string &Msg) const {
dump();
throw "In " + TheRecord->getName() + ": " + Msg;
}
TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) {
DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator());
if (!OpDef) error("Pattern has unexpected operator type!");
Record *Operator = OpDef->getDef();
if (Operator->isSubClassOf("ValueType")) {
// If the operator is a ValueType, then this must be "type cast" of a leaf
// node.
if (Dag->getNumArgs() != 1)
error("Type cast only takes one operand!");
Init *Arg = Dag->getArg(0);
TreePatternNode *New;
if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) {
Record *R = DI->getDef();
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
Dag->setArg(0, new DagInit(DI,
std::vector<std::pair<Init*, std::string> >()));
return ParseTreePattern(Dag);
}
New = new TreePatternNode(DI);
} else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
New = ParseTreePattern(DI);
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
New = new TreePatternNode(II);
if (!Dag->getArgName(0).empty())
error("Constant int argument should not have a name!");
} else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
// Turn this into an IntInit.
Init *II = BI->convertInitializerTo(new IntRecTy());
if (II == 0 || !dynamic_cast<IntInit*>(II))
error("Bits value must be constants!");
New = new TreePatternNode(dynamic_cast<IntInit*>(II));
if (!Dag->getArgName(0).empty())
error("Constant int argument should not have a name!");
} else {
Arg->dump();
error("Unknown leaf value for tree pattern!");
return 0;
}
// Apply the type cast.
New->UpdateNodeType(getValueType(Operator), *this);
New->setName(Dag->getArgName(0));
return New;
}
// Verify that this is something that makes sense for an operator.
if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") &&
!Operator->isSubClassOf("Instruction") &&
!Operator->isSubClassOf("SDNodeXForm") &&
!Operator->isSubClassOf("Intrinsic") &&
Operator->getName() != "set")
error("Unrecognized node '" + Operator->getName() + "'!");
// Check to see if this is something that is illegal in an input pattern.
if (isInputPattern && (Operator->isSubClassOf("Instruction") ||
Operator->isSubClassOf("SDNodeXForm")))
error("Cannot use '" + Operator->getName() + "' in an input pattern!");
std::vector<TreePatternNode*> Children;
for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) {
Init *Arg = Dag->getArg(i);
if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) {
Children.push_back(ParseTreePattern(DI));
if (Children.back()->getName().empty())
Children.back()->setName(Dag->getArgName(i));
} else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) {
Record *R = DefI->getDef();
// Direct reference to a leaf DagNode or PatFrag? Turn it into a
// TreePatternNode if its own.
if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) {
Dag->setArg(i, new DagInit(DefI,
std::vector<std::pair<Init*, std::string> >()));
--i; // Revisit this node...
} else {
TreePatternNode *Node = new TreePatternNode(DefI);
Node->setName(Dag->getArgName(i));
Children.push_back(Node);
// Input argument?
if (R->getName() == "node") {
if (Dag->getArgName(i).empty())
error("'node' argument requires a name to match with operand list");
Args.push_back(Dag->getArgName(i));
}
}
} else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) {
TreePatternNode *Node = new TreePatternNode(II);
if (!Dag->getArgName(i).empty())
error("Constant int argument should not have a name!");
Children.push_back(Node);
} else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) {
// Turn this into an IntInit.
Init *II = BI->convertInitializerTo(new IntRecTy());
if (II == 0 || !dynamic_cast<IntInit*>(II))
error("Bits value must be constants!");
TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II));
if (!Dag->getArgName(i).empty())
error("Constant int argument should not have a name!");
Children.push_back(Node);
} else {
cerr << '"';
Arg->dump();
cerr << "\": ";
error("Unknown leaf value for tree pattern!");
}
}
// If the operator is an intrinsic, then this is just syntactic sugar for for
// (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
// convert the intrinsic name to a number.
if (Operator->isSubClassOf("Intrinsic")) {
const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator);
unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1;
// If this intrinsic returns void, it must have side-effects and thus a
// chain.
if (Int.ArgVTs[0] == MVT::isVoid) {
Operator = getDAGISelEmitter().get_intrinsic_void_sdnode();
} else if (Int.ModRef != CodeGenIntrinsic::NoMem) {
// Has side-effects, requires chain.
Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode();
} else {
// Otherwise, no chain.
Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode();
}
TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID));
Children.insert(Children.begin(), IIDNode);
}
return new TreePatternNode(Operator, Children);
}
/// InferAllTypes - Infer/propagate as many types throughout the expression
/// patterns as possible. Return true if all types are infered, false
/// otherwise. Throw an exception if a type contradiction is found.
bool TreePattern::InferAllTypes() {
bool MadeChange = true;
while (MadeChange) {
MadeChange = false;
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false);
}
bool HasUnresolvedTypes = false;
for (unsigned i = 0, e = Trees.size(); i != e; ++i)
HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType();
return !HasUnresolvedTypes;
}
void TreePattern::print(std::ostream &OS) const {
OS << getRecord()->getName();
if (!Args.empty()) {
OS << "(" << Args[0];
for (unsigned i = 1, e = Args.size(); i != e; ++i)
OS << ", " << Args[i];
OS << ")";
}
OS << ": ";
if (Trees.size() > 1)
OS << "[\n";
for (unsigned i = 0, e = Trees.size(); i != e; ++i) {
OS << "\t";
Trees[i]->print(OS);
OS << "\n";
}
if (Trees.size() > 1)
OS << "]\n";
}
void TreePattern::dump() const { print(*cerr.stream()); }
//===----------------------------------------------------------------------===//
// DAGISelEmitter implementation
//
// Parse all of the SDNode definitions for the target, populating SDNodes.
void DAGISelEmitter::ParseNodeInfo() {
std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
while (!Nodes.empty()) {
SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
Nodes.pop_back();
}
// Get the buildin intrinsic nodes.
intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
}
/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
/// map, and emit them to the file as functions.
void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) {
OS << "\n// Node transformations.\n";
std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
while (!Xforms.empty()) {
Record *XFormNode = Xforms.back();
Record *SDNode = XFormNode->getValueAsDef("Opcode");
std::string Code = XFormNode->getValueAsCode("XFormFunction");
SDNodeXForms.insert(std::make_pair(XFormNode,
std::make_pair(SDNode, Code)));
if (!Code.empty()) {
std::string ClassName = getSDNodeInfo(SDNode).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline SDOperand Transform_" << XFormNode->getName()
<< "(SDNode *" << C2 << ") {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
OS << Code << "\n}\n";
}
Xforms.pop_back();
}
}
void DAGISelEmitter::ParseComplexPatterns() {
std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
while (!AMs.empty()) {
ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
AMs.pop_back();
}
}
/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
/// file, building up the PatternFragments map. After we've collected them all,
/// inline fragments together as necessary, so that there are no references left
/// inside a pattern fragment to a pattern fragment.
///
/// This also emits all of the predicate functions to the output file.
///
void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) {
std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
// First step, parse all of the fragments and emit predicate functions.
OS << "\n// Predicate functions.\n";
for (unsigned i = 0, e = Fragments.size(); i != e; ++i) {
DagInit *Tree = Fragments[i]->getValueAsDag("Fragment");
TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this);
PatternFragments[Fragments[i]] = P;
// Validate the argument list, converting it to map, to discard duplicates.
std::vector<std::string> &Args = P->getArgList();
std::set<std::string> OperandsMap(Args.begin(), Args.end());
if (OperandsMap.count(""))
P->error("Cannot have unnamed 'node' values in pattern fragment!");
// Parse the operands list.
DagInit *OpsList = Fragments[i]->getValueAsDag("Operands");
DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator());
if (!OpsOp || OpsOp->getDef()->getName() != "ops")
P->error("Operands list should start with '(ops ... '!");
// Copy over the arguments.
Args.clear();
for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) ||
static_cast<DefInit*>(OpsList->getArg(j))->
getDef()->getName() != "node")
P->error("Operands list should all be 'node' values.");
if (OpsList->getArgName(j).empty())
P->error("Operands list should have names for each operand!");
if (!OperandsMap.count(OpsList->getArgName(j)))
P->error("'" + OpsList->getArgName(j) +
"' does not occur in pattern or was multiply specified!");
OperandsMap.erase(OpsList->getArgName(j));
Args.push_back(OpsList->getArgName(j));
}
if (!OperandsMap.empty())
P->error("Operands list does not contain an entry for operand '" +
*OperandsMap.begin() + "'!");
// If there is a code init for this fragment, emit the predicate code and
// keep track of the fact that this fragment uses it.
std::string Code = Fragments[i]->getValueAsCode("Predicate");
if (!Code.empty()) {
if (P->getOnlyTree()->isLeaf())
OS << "inline bool Predicate_" << Fragments[i]->getName()
<< "(SDNode *N) {\n";
else {
std::string ClassName =
getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline bool Predicate_" << Fragments[i]->getName()
<< "(SDNode *" << C2 << ") {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
}
OS << Code << "\n}\n";
P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName());
}
// If there is a node transformation corresponding to this, keep track of
// it.
Record *Transform = Fragments[i]->getValueAsDef("OperandTransform");
if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
P->getOnlyTree()->setTransformFn(Transform);
}
OS << "\n\n";
// Now that we've parsed all of the tree fragments, do a closure on them so
// that there are not references to PatFrags left inside of them.
for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
E = PatternFragments.end(); I != E; ++I) {
TreePattern *ThePat = I->second;
ThePat->InlinePatternFragments();
// Infer as many types as possible. Don't worry about it if we don't infer
// all of them, some may depend on the inputs of the pattern.
try {
ThePat->InferAllTypes();
} catch (...) {
// If this pattern fragment is not supported by this target (no types can
// satisfy its constraints), just ignore it. If the bogus pattern is
// actually used by instructions, the type consistency error will be
// reported there.
}
// If debugging, print out the pattern fragment result.
DEBUG(ThePat->dump());
}
}
void DAGISelEmitter::ParsePredicateOperands() {
std::vector<Record*> PredOps =
Records.getAllDerivedDefinitions("PredicateOperand");
// Find some SDNode.
assert(!SDNodes.empty() && "No SDNodes parsed?");
Init *SomeSDNode = new DefInit(SDNodes.begin()->first);
for (unsigned i = 0, e = PredOps.size(); i != e; ++i) {
DagInit *AlwaysInfo = PredOps[i]->getValueAsDag("ExecuteAlways");
// Clone the AlwaysInfo dag node, changing the operator from 'ops' to
// SomeSDnode so that we can parse this.
std::vector<std::pair<Init*, std::string> > Ops;
for (unsigned op = 0, e = AlwaysInfo->getNumArgs(); op != e; ++op)
Ops.push_back(std::make_pair(AlwaysInfo->getArg(op),
AlwaysInfo->getArgName(op)));
DagInit *DI = new DagInit(SomeSDNode, Ops);
// Create a TreePattern to parse this.
TreePattern P(PredOps[i], DI, false, *this);
assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
// Copy the operands over into a DAGPredicateOperand.
DAGPredicateOperand PredOpInfo;
TreePatternNode *T = P.getTree(0);
for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
TreePatternNode *TPN = T->getChild(op);
while (TPN->ApplyTypeConstraints(P, false))
/* Resolve all types */;
if (TPN->ContainsUnresolvedType())
throw "Value #" + utostr(i) + " of PredicateOperand '" +
PredOps[i]->getName() + "' doesn't have a concrete type!";
PredOpInfo.AlwaysOps.push_back(TPN);
}
// Insert it into the PredicateOperands map so we can find it later.
PredicateOperands[PredOps[i]] = PredOpInfo;
}
}
/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
/// instruction input. Return true if this is a real use.
static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs,
std::vector<Record*> &InstImpInputs) {
// No name -> not interesting.
if (Pat->getName().empty()) {
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (DI && DI->getDef()->isSubClassOf("RegisterClass"))
I->error("Input " + DI->getDef()->getName() + " must be named!");
else if (DI && DI->getDef()->isSubClassOf("Register"))
InstImpInputs.push_back(DI->getDef());
}
return false;
}
Record *Rec;
if (Pat->isLeaf()) {
DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue());
if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
Rec = DI->getDef();
} else {
assert(Pat->getNumChildren() == 0 && "can't be a use with children!");
Rec = Pat->getOperator();
}
// SRCVALUE nodes are ignored.
if (Rec->getName() == "srcvalue")
return false;
TreePatternNode *&Slot = InstInputs[Pat->getName()];
if (!Slot) {
Slot = Pat;
} else {
Record *SlotRec;
if (Slot->isLeaf()) {
SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef();
} else {
assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
SlotRec = Slot->getOperator();
}
// Ensure that the inputs agree if we've already seen this input.
if (Rec != SlotRec)
I->error("All $" + Pat->getName() + " inputs must agree with each other");
if (Slot->getExtTypes() != Pat->getExtTypes())
I->error("All $" + Pat->getName() + " inputs must agree with each other");
}
return true;
}
/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
/// part of "I", the instruction), computing the set of inputs and outputs of
/// the pattern. Report errors if we see anything naughty.
void DAGISelEmitter::
FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
std::map<std::string, TreePatternNode*> &InstInputs,
std::map<std::string, TreePatternNode*>&InstResults,
std::vector<Record*> &InstImpInputs,
std::vector<Record*> &InstImpResults) {
if (Pat->isLeaf()) {
bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
} else if (Pat->getOperator()->getName() != "set") {
// If this is not a set, verify that the children nodes are not void typed,
// and recurse.
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid)
I->error("Cannot have void nodes inside of patterns!");
FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
InstImpInputs, InstImpResults);
}
// If this is a non-leaf node with no children, treat it basically as if
// it were a leaf. This handles nodes like (imm).
bool isUse = false;
if (Pat->getNumChildren() == 0)
isUse = HandleUse(I, Pat, InstInputs, InstImpInputs);
if (!isUse && Pat->getTransformFn())
I->error("Cannot specify a transform function for a non-input value!");
return;
}
// Otherwise, this is a set, validate and collect instruction results.
if (Pat->getNumChildren() == 0)
I->error("set requires operands!");
else if (Pat->getNumChildren() & 1)
I->error("set requires an even number of operands");
if (Pat->getTransformFn())
I->error("Cannot specify a transform function on a set node!");
// Check the set destinations.
unsigned NumValues = Pat->getNumChildren()/2;
for (unsigned i = 0; i != NumValues; ++i) {
TreePatternNode *Dest = Pat->getChild(i);
if (!Dest->isLeaf())
I->error("set destination should be a register!");
DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue());
if (!Val)
I->error("set destination should be a register!");
if (Val->getDef()->isSubClassOf("RegisterClass") ||
Val->getDef()->getName() == "ptr_rc") {
if (Dest->getName().empty())
I->error("set destination must have a name!");
if (InstResults.count(Dest->getName()))
I->error("cannot set '" + Dest->getName() +"' multiple times");
InstResults[Dest->getName()] = Dest;
} else if (Val->getDef()->isSubClassOf("Register")) {
InstImpResults.push_back(Val->getDef());
} else {
I->error("set destination should be a register!");
}
// Verify and collect info from the computation.
FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues),
InstInputs, InstResults,
InstImpInputs, InstImpResults);
}
}
/// ParseInstructions - Parse all of the instructions, inlining and resolving
/// any fragments involved. This populates the Instructions list with fully
/// resolved instructions.
void DAGISelEmitter::ParseInstructions() {
std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
for (unsigned i = 0, e = Instrs.size(); i != e; ++i) {
ListInit *LI = 0;
if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern")))
LI = Instrs[i]->getValueAsListInit("Pattern");
// If there is no pattern, only collect minimal information about the
// instruction for its operand list. We have to assume that there is one
// result, as we have no detailed info.
if (!LI || LI->getSize() == 0) {
std::vector<Record*> Results;
std::vector<Record*> Operands;
CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName());
if (InstInfo.OperandList.size() != 0) {
// FIXME: temporary hack...
if (InstInfo.noResults) {
// These produce no results
for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j)
Operands.push_back(InstInfo.OperandList[j].Rec);
} else {
// Assume the first operand is the result.
Results.push_back(InstInfo.OperandList[0].Rec);
// The rest are inputs.
for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j)
Operands.push_back(InstInfo.OperandList[j].Rec);
}
}
// Create and insert the instruction.
std::vector<Record*> ImpResults;
std::vector<Record*> ImpOperands;
Instructions.insert(std::make_pair(Instrs[i],
DAGInstruction(0, Results, Operands, ImpResults,
ImpOperands)));
continue; // no pattern.
}
// Parse the instruction.
TreePattern *I = new TreePattern(Instrs[i], LI, true, *this);
// Inline pattern fragments into it.
I->InlinePatternFragments();
// Infer as many types as possible. If we cannot infer all of them, we can
// never do anything with this instruction pattern: report it to the user.
if (!I->InferAllTypes())
I->error("Could not infer all types in pattern!");
// InstInputs - Keep track of all of the inputs of the instruction, along
// with the record they are declared as.
std::map<std::string, TreePatternNode*> InstInputs;
// InstResults - Keep track of all the virtual registers that are 'set'
// in the instruction, including what reg class they are.
std::map<std::string, TreePatternNode*> InstResults;
std::vector<Record*> InstImpInputs;
std::vector<Record*> InstImpResults;
// Verify that the top-level forms in the instruction are of void type, and
// fill in the InstResults map.
for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
TreePatternNode *Pat = I->getTree(j);
if (Pat->getExtTypeNum(0) != MVT::isVoid)
I->error("Top-level forms in instruction pattern should have"
" void types");
// Find inputs and outputs, and verify the structure of the uses/defs.
FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
InstImpInputs, InstImpResults);
}
// Now that we have inputs and outputs of the pattern, inspect the operands
// list for the instruction. This determines the order that operands are
// added to the machine instruction the node corresponds to.
unsigned NumResults = InstResults.size();
// Parse the operands list from the (ops) list, validating it.
std::vector<std::string> &Args = I->getArgList();
assert(Args.empty() && "Args list should still be empty here!");
CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName());
// Check that all of the results occur first in the list.
std::vector<Record*> Results;
TreePatternNode *Res0Node = NULL;
for (unsigned i = 0; i != NumResults; ++i) {
if (i == CGI.OperandList.size())
I->error("'" + InstResults.begin()->first +
"' set but does not appear in operand list!");
const std::string &OpName = CGI.OperandList[i].Name;
// Check that it exists in InstResults.
TreePatternNode *RNode = InstResults[OpName];
if (RNode == 0)
I->error("Operand $" + OpName + " does not exist in operand list!");
if (i == 0)
Res0Node = RNode;
Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef();
if (R == 0)
I->error("Operand $" + OpName + " should be a set destination: all "
"outputs must occur before inputs in operand list!");
if (CGI.OperandList[i].Rec != R)
I->error("Operand $" + OpName + " class mismatch!");
// Remember the return type.
Results.push_back(CGI.OperandList[i].Rec);
// Okay, this one checks out.
InstResults.erase(OpName);
}
// Loop over the inputs next. Make a copy of InstInputs so we can destroy
// the copy while we're checking the inputs.
std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
std::vector<TreePatternNode*> ResultNodeOperands;
std::vector<Record*> Operands;
for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) {
CodeGenInstruction::OperandInfo &Op = CGI.OperandList[i];
const std::string &OpName = Op.Name;
if (OpName.empty())
I->error("Operand #" + utostr(i) + " in operands list has no name!");
if (!InstInputsCheck.count(OpName)) {
// If this is an predicate operand with an ExecuteAlways set filled in,
// we can ignore this. When we codegen it, we will do so as always
// executed.
if (Op.Rec->isSubClassOf("PredicateOperand")) {
// Does it have a non-empty ExecuteAlways field? If so, ignore this
// operand.
if (!getPredicateOperand(Op.Rec).AlwaysOps.empty())
continue;
}
I->error("Operand $" + OpName +
" does not appear in the instruction pattern");
}
TreePatternNode *InVal = InstInputsCheck[OpName];
InstInputsCheck.erase(OpName); // It occurred, remove from map.
if (InVal->isLeaf() &&
dynamic_cast<DefInit*>(InVal->getLeafValue())) {
Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern"))
I->error("Operand $" + OpName + "'s register class disagrees"
" between the operand and pattern");
}
Operands.push_back(Op.Rec);
// Construct the result for the dest-pattern operand list.
TreePatternNode *OpNode = InVal->clone();
// No predicate is useful on the result.
OpNode->setPredicateFn("");
// Promote the xform function to be an explicit node if set.
if (Record *Xform = OpNode->getTransformFn()) {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children);
}
ResultNodeOperands.push_back(OpNode);
}
if (!InstInputsCheck.empty())
I->error("Input operand $" + InstInputsCheck.begin()->first +
" occurs in pattern but not in operands list!");
TreePatternNode *ResultPattern =
new TreePatternNode(I->getRecord(), ResultNodeOperands);
// Copy fully inferred output node type to instruction result pattern.
if (NumResults > 0)
ResultPattern->setTypes(Res0Node->getExtTypes());
// Create and insert the instruction.
DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs);
Instructions.insert(std::make_pair(I->getRecord(), TheInst));
// Use a temporary tree pattern to infer all types and make sure that the
// constructed result is correct. This depends on the instruction already
// being inserted into the Instructions map.
TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
Temp.InferAllTypes();
DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second;
TheInsertedInst.setResultPattern(Temp.getOnlyTree());
DEBUG(I->dump());
}
// If we can, convert the instructions to be patterns that are matched!
for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(),
E = Instructions.end(); II != E; ++II) {
DAGInstruction &TheInst = II->second;
TreePattern *I = TheInst.getPattern();
if (I == 0) continue; // No pattern.
if (I->getNumTrees() != 1) {
cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!";
continue;
}
TreePatternNode *Pattern = I->getTree(0);
TreePatternNode *SrcPattern;
if (Pattern->getOperator()->getName() == "set") {
if (Pattern->getNumChildren() != 2)
continue; // Not a set of a single value (not handled so far)
SrcPattern = Pattern->getChild(1)->clone();
} else{
// Not a set (store or something?)
SrcPattern = Pattern;
}
std::string Reason;
if (!SrcPattern->canPatternMatch(Reason, *this))
I->error("Instruction can never match: " + Reason);
Record *Instr = II->first;
TreePatternNode *DstPattern = TheInst.getResultPattern();
PatternsToMatch.
push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"),
SrcPattern, DstPattern,
Instr->getValueAsInt("AddedComplexity")));
}
}
void DAGISelEmitter::ParsePatterns() {
std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch");
TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this);
// Inline pattern fragments into it.
Pattern->InlinePatternFragments();
ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs");
if (LI->getSize() == 0) continue; // no pattern.
// Parse the instruction.
TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this);
// Inline pattern fragments into it.
Result->InlinePatternFragments();
if (Result->getNumTrees() != 1)
Result->error("Cannot handle instructions producing instructions "
"with temporaries yet!");
bool IterateInference;
bool InferredAllPatternTypes, InferredAllResultTypes;
do {
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
InferredAllPatternTypes = Pattern->InferAllTypes();
// Infer as many types as possible. If we cannot infer all of them, we
// can never do anything with this pattern: report it to the user.
InferredAllResultTypes = Result->InferAllTypes();
// Apply the type of the result to the source pattern. This helps us
// resolve cases where the input type is known to be a pointer type (which
// is considered resolved), but the result knows it needs to be 32- or
// 64-bits. Infer the other way for good measure.
IterateInference = Pattern->getOnlyTree()->
UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result);
IterateInference |= Result->getOnlyTree()->
UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result);
} while (IterateInference);
// Verify that we inferred enough types that we can do something with the
// pattern and result. If these fire the user has to add type casts.
if (!InferredAllPatternTypes)
Pattern->error("Could not infer all types in pattern!");
if (!InferredAllResultTypes)
Result->error("Could not infer all types in pattern result!");
// Validate that the input pattern is correct.
{
std::map<std::string, TreePatternNode*> InstInputs;
std::map<std::string, TreePatternNode*> InstResults;
std::vector<Record*> InstImpInputs;
std::vector<Record*> InstImpResults;
FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(),
InstInputs, InstResults,
InstImpInputs, InstImpResults);
}
// Promote the xform function to be an explicit node if set.
std::vector<TreePatternNode*> ResultNodeOperands;
TreePatternNode *DstPattern = Result->getOnlyTree();
for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
TreePatternNode *OpNode = DstPattern->getChild(ii);
if (Record *Xform = OpNode->getTransformFn()) {
OpNode->setTransformFn(0);
std::vector<TreePatternNode*> Children;
Children.push_back(OpNode);
OpNode = new TreePatternNode(Xform, Children);
}
ResultNodeOperands.push_back(OpNode);
}
DstPattern = Result->getOnlyTree();
if (!DstPattern->isLeaf())
DstPattern = new TreePatternNode(DstPattern->getOperator(),
ResultNodeOperands);
DstPattern->setTypes(Result->getOnlyTree()->getExtTypes());
TreePattern Temp(Result->getRecord(), DstPattern, false, *this);
Temp.InferAllTypes();
std::string Reason;
if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this))
Pattern->error("Pattern can never match: " + Reason);
PatternsToMatch.
push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"),
Pattern->getOnlyTree(),
Temp.getOnlyTree(),
Patterns[i]->getValueAsInt("AddedComplexity")));
}
}
/// CombineChildVariants - Given a bunch of permutations of each child of the
/// 'operator' node, put them together in all possible ways.
static void CombineChildVariants(TreePatternNode *Orig,
const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
std::vector<TreePatternNode*> &OutVariants,
DAGISelEmitter &ISE) {
// Make sure that each operand has at least one variant to choose from.
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
if (ChildVariants[i].empty())
return;
// The end result is an all-pairs construction of the resultant pattern.
std::vector<unsigned> Idxs;
Idxs.resize(ChildVariants.size());
bool NotDone = true;
while (NotDone) {
// Create the variant and add it to the output list.
std::vector<TreePatternNode*> NewChildren;
for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
NewChildren.push_back(ChildVariants[i][Idxs[i]]);
TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren);
// Copy over properties.
R->setName(Orig->getName());
R->setPredicateFn(Orig->getPredicateFn());
R->setTransformFn(Orig->getTransformFn());
R->setTypes(Orig->getExtTypes());
// If this pattern cannot every match, do not include it as a variant.
std::string ErrString;
if (!R->canPatternMatch(ErrString, ISE)) {
delete R;
} else {
bool AlreadyExists = false;
// Scan to see if this pattern has already been emitted. We can get
// duplication due to things like commuting:
// (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
// which are the same pattern. Ignore the dups.
for (unsigned i = 0, e = OutVariants.size(); i != e; ++i)
if (R->isIsomorphicTo(OutVariants[i])) {
AlreadyExists = true;
break;
}
if (AlreadyExists)
delete R;
else
OutVariants.push_back(R);
}
// Increment indices to the next permutation.
NotDone = false;
// Look for something we can increment without causing a wrap-around.
for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) {
if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) {
NotDone = true; // Found something to increment.
break;
}
Idxs[IdxsIdx] = 0;
}
}
}
/// CombineChildVariants - A helper function for binary operators.
///
static void CombineChildVariants(TreePatternNode *Orig,
const std::vector<TreePatternNode*> &LHS,
const std::vector<TreePatternNode*> &RHS,
std::vector<TreePatternNode*> &OutVariants,
DAGISelEmitter &ISE) {
std::vector<std::vector<TreePatternNode*> > ChildVariants;
ChildVariants.push_back(LHS);
ChildVariants.push_back(RHS);
CombineChildVariants(Orig, ChildVariants, OutVariants, ISE);
}
static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
std::vector<TreePatternNode *> &Children) {
assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
Record *Operator = N->getOperator();
// Only permit raw nodes.
if (!N->getName().empty() || !N->getPredicateFn().empty() ||
N->getTransformFn()) {
Children.push_back(N);
return;
}
if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
Children.push_back(N->getChild(0));
else
GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
Children.push_back(N->getChild(1));
else
GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
}
/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
/// the (potentially recursive) pattern by using algebraic laws.
///
static void GenerateVariantsOf(TreePatternNode *N,
std::vector<TreePatternNode*> &OutVariants,
DAGISelEmitter &ISE) {
// We cannot permute leaves.
if (N->isLeaf()) {
OutVariants.push_back(N);
return;
}
// Look up interesting info about the node.
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator());
// If this node is associative, reassociate.
if (NodeInfo.hasProperty(SDNPAssociative)) {
// Reassociate by pulling together all of the linked operators
std::vector<TreePatternNode*> MaximalChildren;
GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
// Only handle child sizes of 3. Otherwise we'll end up trying too many
// permutations.
if (MaximalChildren.size() == 3) {
// Find the variants of all of our maximal children.
std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
GenerateVariantsOf(MaximalChildren[0], AVariants, ISE);
GenerateVariantsOf(MaximalChildren[1], BVariants, ISE);
GenerateVariantsOf(MaximalChildren[2], CVariants, ISE);
// There are only two ways we can permute the tree:
// (A op B) op C and A op (B op C)
// Within these forms, we can also permute A/B/C.
// Generate legal pair permutations of A/B/C.
std::vector<TreePatternNode*> ABVariants;
std::vector<TreePatternNode*> BAVariants;
std::vector<TreePatternNode*> ACVariants;
std::vector<TreePatternNode*> CAVariants;
std::vector<TreePatternNode*> BCVariants;
std::vector<TreePatternNode*> CBVariants;
CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE);
CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE);
CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE);
CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE);
CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE);
CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE);
// Combine those into the result: (x op x) op x
CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE);
CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE);
CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE);
CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE);
CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE);
CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE);
// Combine those into the result: x op (x op x)
CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE);
CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE);
CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE);
CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE);
CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE);
CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE);
return;
}
}
// Compute permutations of all children.
std::vector<std::vector<TreePatternNode*> > ChildVariants;
ChildVariants.resize(N->getNumChildren());
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE);
// Build all permutations based on how the children were formed.
CombineChildVariants(N, ChildVariants, OutVariants, ISE);
// If this node is commutative, consider the commuted order.
if (NodeInfo.hasProperty(SDNPCommutative)) {
assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!");
// Don't count children which are actually register references.
unsigned NC = 0;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (Child->isLeaf())
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
Record *RR = DI->getDef();
if (RR->isSubClassOf("Register"))
continue;
}
NC++;
}
// Consider the commuted order.
if (NC == 2)
CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
OutVariants, ISE);
}
}
// GenerateVariants - Generate variants. For example, commutative patterns can
// match multiple ways. Add them to PatternsToMatch as well.
void DAGISelEmitter::GenerateVariants() {
DOUT << "Generating instruction variants.\n";
// Loop over all of the patterns we've collected, checking to see if we can
// generate variants of the instruction, through the exploitation of
// identities. This permits the target to provide agressive matching without
// the .td file having to contain tons of variants of instructions.
//
// Note that this loop adds new patterns to the PatternsToMatch list, but we
// intentionally do not reconsider these. Any variants of added patterns have
// already been added.
//
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
std::vector<TreePatternNode*> Variants;
GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this);
assert(!Variants.empty() && "Must create at least original variant!");
Variants.erase(Variants.begin()); // Remove the original pattern.
if (Variants.empty()) // No variants for this pattern.
continue;
DOUT << "FOUND VARIANTS OF: ";
DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
DOUT << "\n";
for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
TreePatternNode *Variant = Variants[v];
DOUT << " VAR#" << v << ": ";
DEBUG(Variant->dump());
DOUT << "\n";
// Scan to see if an instruction or explicit pattern already matches this.
bool AlreadyExists = false;
for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
// Check to see if this variant already exists.
if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) {
DOUT << " *** ALREADY EXISTS, ignoring variant.\n";
AlreadyExists = true;
break;
}
}
// If we already have it, ignore the variant.
if (AlreadyExists) continue;
// Otherwise, add it to the list of patterns we have.
PatternsToMatch.
push_back(PatternToMatch(PatternsToMatch[i].getPredicates(),
Variant, PatternsToMatch[i].getDstPattern(),
PatternsToMatch[i].getAddedComplexity()));
}
DOUT << "\n";
}
}
// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
// ComplexPattern.
static bool NodeIsComplexPattern(TreePatternNode *N)
{
return (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern"));
}
// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
DAGISelEmitter &ISE)
{
if (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern")) {
return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
->getDef());
}
return NULL;
}
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
assert((isExtIntegerInVTs(P->getExtTypes()) ||
isExtFloatingPointInVTs(P->getExtTypes()) ||
P->getExtTypeNum(0) == MVT::isVoid ||
P->getExtTypeNum(0) == MVT::Flag ||
P->getExtTypeNum(0) == MVT::iPTR) &&
"Not a valid pattern node to size!");
unsigned Size = 3; // The node itself.
// If the root node is a ConstantSDNode, increases its size.
// e.g. (set R32:$dst, 0).
if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
Size += 2;
// FIXME: This is a hack to statically increase the priority of patterns
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
// Later we can allow complexity / cost for each pattern to be (optionally)
// specified. To get best possible pattern match we'll need to dynamically
// calculate the complexity of all patterns a dag can potentially map to.
const ComplexPattern *AM = NodeGetComplexPattern(P, ISE);
if (AM)
Size += AM->getNumOperands() * 3;
// If this node has some predicate function that must match, it adds to the
// complexity of this node.
if (!P->getPredicateFn().empty())
++Size;
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
Size += getPatternSize(Child, ISE);
else if (Child->isLeaf()) {
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
else if (NodeIsComplexPattern(Child))
Size += getPatternSize(Child, ISE);
else if (!Child->getPredicateFn().empty())
++Size;
}
}
return Size;
}
/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack. We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost++;
CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName());
if (II.usesCustomDAGSchedInserter)
Cost += 10;
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternCost(P->getChild(i), ISE);
return Cost;
}
/// getResultPatternCodeSize - Compute the code size of instructions for this
/// pattern.
static unsigned getResultPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost += Op->getValueAsInt("CodeSize");
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternSize(P->getChild(i), ISE);
return Cost;
}
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {};
DAGISelEmitter &ISE;
bool operator()(PatternToMatch *LHS,
PatternToMatch *RHS) {
unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE);
unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE);
LHSSize += LHS->getAddedComplexity();
RHSSize += RHS->getAddedComplexity();
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
if (LHSSize < RHSSize) return false;
// If the patterns have equal complexity, compare generated instruction cost
unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), ISE);
unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), ISE);
if (LHSCost < RHSCost) return true;
if (LHSCost > RHSCost) return false;
return getResultPatternSize(LHS->getDstPattern(), ISE) <
getResultPatternSize(RHS->getDstPattern(), ISE);
}
};
/// getRegisterValueType - Look up and return the first ValueType of specified
/// RegisterClass record
static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
return RC->getValueTypeNum(0);
return MVT::Other;
}
/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
/// type information from it.
static void RemoveAllTypes(TreePatternNode *N) {
N->removeTypes();
if (!N->isLeaf())
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
RemoveAllTypes(N->getChild(i));
}
Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const {
Record *N = Records.getDef(Name);
if (!N || !N->isSubClassOf("SDNode")) {
cerr << "Error getting SDNode '" << Name << "'!\n";
exit(1);
}
return N;
}
/// NodeHasProperty - return true if TreePatternNode has the specified
/// property.
static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
DAGISelEmitter &ISE)
{
if (N->isLeaf()) {
const ComplexPattern *CP = NodeGetComplexPattern(N, ISE);
if (CP)
return CP->hasProperty(Property);
return false;
}
Record *Operator = N->getOperator();
if (!Operator->isSubClassOf("SDNode")) return false;
const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator);
return NodeInfo.hasProperty(Property);
}
static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
DAGISelEmitter &ISE)
{
if (NodeHasProperty(N, Property, ISE))
return true;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (PatternHasProperty(Child, Property, ISE))
return true;
}
return false;
}
class PatternCodeEmitter {
private:
DAGISelEmitter &ISE;
// Predicates.
ListInit *Predicates;
// Pattern cost.
unsigned Cost;
// Instruction selector pattern.
TreePatternNode *Pattern;
// Matched instruction.
TreePatternNode *Instruction;
// Node to name mapping
std::map<std::string, std::string> VariableMap;
// Node to operator mapping
std::map<std::string, Record*> OperatorMap;
// Names of all the folded nodes which produce chains.
std::vector<std::pair<std::string, unsigned> > FoldedChains;
// Original input chain(s).
std::vector<std::pair<std::string, std::string> > OrigChains;
std::set<std::string> Duplicates;
/// GeneratedCode - This is the buffer that we emit code to. The first int
/// indicates whether this is an exit predicate (something that should be
/// tested, and if true, the match fails) [when 1], or normal code to emit
/// [when 0], or initialization code to emit [when 2].
std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
/// GeneratedDecl - This is the set of all SDOperand declarations needed for
/// the set of patterns for each top-level opcode.
std::set<std::string> &GeneratedDecl;
/// TargetOpcodes - The target specific opcodes used by the resulting
/// instructions.
std::vector<std::string> &TargetOpcodes;
std::vector<std::string> &TargetVTs;
std::string ChainName;
unsigned TmpNo;
unsigned OpcNo;
unsigned VTNo;
void emitCheck(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(1, S));
}
void emitCode(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(0, S));
}
void emitInit(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(2, S));
}
void emitDecl(const std::string &S) {
assert(!S.empty() && "Invalid declaration");
GeneratedDecl.insert(S);
}
void emitOpcode(const std::string &Opc) {
TargetOpcodes.push_back(Opc);
OpcNo++;
}
void emitVT(const std::string &VT) {
TargetVTs.push_back(VT);
VTNo++;
}
public:
PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds,
TreePatternNode *pattern, TreePatternNode *instr,
std::vector<std::pair<unsigned, std::string> > &gc,
std::set<std::string> &gd,
std::vector<std::string> &to,
std::vector<std::string> &tv)
: ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr),
GeneratedCode(gc), GeneratedDecl(gd),
TargetOpcodes(to), TargetVTs(tv),
TmpNo(0), OpcNo(0), VTNo(0) {}
/// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
/// if the match fails. At this point, we already know that the opcode for N
/// matches, and the SDNode for the result has the RootName specified name.
void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
const std::string &RootName, const std::string &ChainSuffix,
bool &FoundChain) {
bool isRoot = (P == NULL);
// Emit instruction predicates. Each predicate is just a string for now.
if (isRoot) {
std::string PredicateCheck;
for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
Record *Def = Pred->getDef();
if (!Def->isSubClassOf("Predicate")) {
#ifndef NDEBUG
Def->dump();
#endif
assert(0 && "Unknown predicate type!");
}
if (!PredicateCheck.empty())
PredicateCheck += " && ";
PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
}
}
emitCheck(PredicateCheck);
}
if (N->isLeaf()) {
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
emitCheck("cast<ConstantSDNode>(" + RootName +
")->getSignExtended() == " + itostr(II->getValue()));
return;
} else if (!NodeIsComplexPattern(N)) {
assert(0 && "Cannot match this as a leaf value!");
abort();
}
}
// If this node has a name associated with it, capture it in VariableMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!N->getName().empty()) {
std::string &VarMapEntry = VariableMap[N->getName()];
if (VarMapEntry.empty()) {
VarMapEntry = RootName;
} else {
// If we get here, this is a second reference to a specific name. Since
// we already have checked that the first reference is valid, we don't
// have to recursively match it, just check that it's the same as the
// previously named thing.
emitCheck(VarMapEntry + " == " + RootName);
return;
}
if (!N->isLeaf())
OperatorMap[N->getName()] = N->getOperator();
}
// Emit code to load the child nodes and match their contents recursively.
unsigned OpNo = 0;
bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, ISE);
bool HasChain = PatternHasProperty(N, SDNPHasChain, ISE);
bool EmittedUseCheck = false;
if (HasChain) {
if (NodeHasChain)
OpNo = 1;
if (!isRoot) {
// Multiple uses of actual result?
emitCheck(RootName + ".hasOneUse()");
EmittedUseCheck = true;
if (NodeHasChain) {
// If the immediate use can somehow reach this node through another
// path, then can't fold it either or it will create a cycle.
// e.g. In the following diagram, XX can reach ld through YY. If
// ld is folded into XX, then YY is both a predecessor and a successor
// of XX.
//
// [ld]
// ^ ^
// | |
// / \---
// / [YY]
// | ^
// [XX]-------|
bool NeedCheck = false;
if (P != Pattern)
NeedCheck = true;
else {
const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator());
NeedCheck =
P->getOperator() == ISE.get_intrinsic_void_sdnode() ||
P->getOperator() == ISE.get_intrinsic_w_chain_sdnode() ||
P->getOperator() == ISE.get_intrinsic_wo_chain_sdnode() ||
PInfo.getNumOperands() > 1 ||
PInfo.hasProperty(SDNPHasChain) ||
PInfo.hasProperty(SDNPInFlag) ||
PInfo.hasProperty(SDNPOptInFlag);
}
if (NeedCheck) {
std::string ParentName(RootName.begin(), RootName.end()-1);
emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
".Val, N.Val)");
}
}
}
if (NodeHasChain) {
if (FoundChain) {
emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
"IsChainCompatible(" + ChainName + ".Val, " +
RootName + ".Val))");
OrigChains.push_back(std::make_pair(ChainName, RootName));
} else
FoundChain = true;
ChainName = "Chain" + ChainSuffix;
emitInit("SDOperand " + ChainName + " = " + RootName +
".getOperand(0);");
}
}
// Don't fold any node which reads or writes a flag and has multiple uses.
// FIXME: We really need to separate the concepts of flag and "glue". Those
// real flag results, e.g. X86CMP output, can have multiple uses.
// FIXME: If the optional incoming flag does not exist. Then it is ok to
// fold it.
if (!isRoot &&
(PatternHasProperty(N, SDNPInFlag, ISE) ||
PatternHasProperty(N, SDNPOptInFlag, ISE) ||
PatternHasProperty(N, SDNPOutFlag, ISE))) {
if (!EmittedUseCheck) {
// Multiple uses of actual result?
emitCheck(RootName + ".hasOneUse()");
}
}
// If there is a node predicate for this, emit the call.
if (!N->getPredicateFn().empty())
emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
// If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
// a constant without a predicate fn that has more that one bit set, handle
// this as a special case. This is usually for targets that have special
// handling of certain large constants (e.g. alpha with it's 8/16/32-bit
// handling stuff). Using these instructions is often far more efficient
// than materializing the constant. Unfortunately, both the instcombiner
// and the dag combiner can often infer that bits are dead, and thus drop
// them from the mask in the dag. For example, it might turn 'AND X, 255'
// into 'AND X, 254' if it knows the low bit is set. Emit code that checks
// to handle this.
if (!N->isLeaf() &&
(N->getOperator()->getName() == "and" ||
N->getOperator()->getName() == "or") &&
N->getChild(1)->isLeaf() &&
N->getChild(1)->getPredicateFn().empty()) {
if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
emitInit("SDOperand " + RootName + "0" + " = " +
RootName + ".getOperand(" + utostr(0) + ");");
emitInit("SDOperand " + RootName + "1" + " = " +
RootName + ".getOperand(" + utostr(1) + ");");
emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
const char *MaskPredicate = N->getOperator()->getName() == "or"
? "CheckOrMask(" : "CheckAndMask(";
emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
RootName + "1), " + itostr(II->getValue()) + ")");
EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0),
ChainSuffix + utostr(0), FoundChain);
return;
}
}
}
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
RootName + ".getOperand(" +utostr(OpNo) + ");");
EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo),
ChainSuffix + utostr(OpNo), FoundChain);
}
// Handle cases when root is a complex pattern.
const ComplexPattern *CP;
if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
std::string Fn = CP->getSelectFunc();
unsigned NumOps = CP->getNumOperands();
for (unsigned i = 0; i < NumOps; ++i) {
emitDecl("CPTmp" + utostr(i));
emitCode("SDOperand CPTmp" + utostr(i) + ";");
}
if (CP->hasProperty(SDNPHasChain)) {
emitDecl("CPInChain");
emitDecl("Chain" + ChainSuffix);
emitCode("SDOperand CPInChain;");
emitCode("SDOperand Chain" + ChainSuffix + ";");
}
std::string Code = Fn + "(" + RootName + ", " + RootName;
for (unsigned i = 0; i < NumOps; i++)
Code += ", CPTmp" + utostr(i);
if (CP->hasProperty(SDNPHasChain)) {
ChainName = "Chain" + ChainSuffix;
Code += ", CPInChain, Chain" + ChainSuffix;
}
emitCheck(Code + ")");
}
}
void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
const std::string &RootName,
const std::string &ChainSuffix, bool &FoundChain) {
if (!Child->isLeaf()) {
// If it's not a leaf, recursively match.
const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator());
emitCheck(RootName + ".getOpcode() == " +
CInfo.getEnumName());
EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
if (NodeHasProperty(Child, SDNPHasChain, ISE))
FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
} else {
// If this child has a name associated with it, capture it in VarMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!Child->getName().empty()) {
std::string &VarMapEntry = VariableMap[Child->getName()];
if (VarMapEntry.empty()) {
VarMapEntry = RootName;
} else {
// If we get here, this is a second reference to a specific name.
// Since we already have checked that the first reference is valid,
// we don't have to recursively match it, just check that it's the
// same as the previously named thing.
emitCheck(VarMapEntry + " == " + RootName);
Duplicates.insert(RootName);
return;
}
}
// Handle leaves of various types.
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
Record *LeafRec = DI->getDef();
if (LeafRec->isSubClassOf("RegisterClass") ||
LeafRec->getName() == "ptr_rc") {
// Handle register references. Nothing to do here.
} else if (LeafRec->isSubClassOf("Register")) {
// Handle register references.
} else if (LeafRec->isSubClassOf("ComplexPattern")) {
// Handle complex pattern.
const ComplexPattern *CP = NodeGetComplexPattern(Child, ISE);
std::string Fn = CP->getSelectFunc();
unsigned NumOps = CP->getNumOperands();
for (unsigned i = 0; i < NumOps; ++i) {
emitDecl("CPTmp" + utostr(i));
emitCode("SDOperand CPTmp" + utostr(i) + ";");
}
if (CP->hasProperty(SDNPHasChain)) {
const SDNodeInfo &PInfo = ISE.getSDNodeInfo(Parent->getOperator());
FoldedChains.push_back(std::make_pair("CPInChain",
PInfo.getNumResults()));
ChainName = "Chain" + ChainSuffix;
emitDecl("CPInChain");
emitDecl(ChainName);
emitCode("SDOperand CPInChain;");
emitCode("SDOperand " + ChainName + ";");
}
std::string Code = Fn + "(N, ";
if (CP->hasProperty(SDNPHasChain)) {
std::string ParentName(RootName.begin(), RootName.end()-1);
Code += ParentName + ", ";
}
Code += RootName;
for (unsigned i = 0; i < NumOps; i++)
Code += ", CPTmp" + utostr(i);
if (CP->hasProperty(SDNPHasChain))
Code += ", CPInChain, Chain" + ChainSuffix;
emitCheck(Code + ")");
} else if (LeafRec->getName() == "srcvalue") {
// Place holder for SRCVALUE nodes. Nothing to do here.
} else if (LeafRec->isSubClassOf("ValueType")) {
// Make sure this is the specified value type.
emitCheck("cast<VTSDNode>(" + RootName +
")->getVT() == MVT::" + LeafRec->getName());
} else if (LeafRec->isSubClassOf("CondCode")) {
// Make sure this is the specified cond code.
emitCheck("cast<CondCodeSDNode>(" + RootName +
")->get() == ISD::" + LeafRec->getName());
} else {
#ifndef NDEBUG
Child->dump();
cerr << " ";
#endif
assert(0 && "Unknown leaf type!");
}
// If there is a node predicate for this, emit the call.
if (!Child->getPredicateFn().empty())
emitCheck(Child->getPredicateFn() + "(" + RootName +
".Val)");
} else if (IntInit *II =
dynamic_cast<IntInit*>(Child->getLeafValue())) {
emitCheck("isa<ConstantSDNode>(" + RootName + ")");
unsigned CTmp = TmpNo++;
emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
RootName + ")->getSignExtended();");
emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
} else {
#ifndef NDEBUG
Child->dump();
#endif
assert(0 && "Unknown leaf type!");
}
}
}
/// EmitResultCode - Emit the action for a pattern. Now that it has matched
/// we actually have to build a DAG!
std::vector<std::string>
EmitResultCode(TreePatternNode *N, bool RetSelected,
bool InFlagDecled, bool ResNodeDecled,
bool LikeLeaf = false, bool isRoot = false) {
// List of arguments of getTargetNode() or SelectNodeTo().
std::vector<std::string> NodeOps;
// This is something selected from the pattern we matched.
if (!N->getName().empty()) {
std::string &Val = VariableMap[N->getName()];
assert(!Val.empty() &&
"Variable referenced but not defined and not caught earlier!");
if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
// Already selected this operand, just return the tmpval.
NodeOps.push_back(Val);
return NodeOps;
}
const ComplexPattern *CP;
unsigned ResNo = TmpNo++;
if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
std::string CastType;
switch (N->getTypeNum(0)) {
default:
cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
<< " type as an immediate constant. Aborting\n";
abort();
case MVT::i1: CastType = "bool"; break;
case MVT::i8: CastType = "unsigned char"; break;
case MVT::i16: CastType = "unsigned short"; break;
case MVT::i32: CastType = "unsigned"; break;
case MVT::i64: CastType = "uint64_t"; break;
}
emitCode("SDOperand Tmp" + utostr(ResNo) +
" = CurDAG->getTargetConstant(((" + CastType +
") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
// value if used multiple times by this pattern result.
Val = "Tmp"+utostr(ResNo);
} else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
Record *Op = OperatorMap[N->getName()];
// Transform ExternalSymbol to TargetExternalSymbol
if (Op && Op->getName() == "externalsym") {
emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
"ExternalSymbol(cast<ExternalSymbolSDNode>(" +
Val + ")->getSymbol(), " +
getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select
// this value if used multiple times by this pattern result.
Val = "Tmp"+utostr(ResNo);
} else {
NodeOps.push_back(Val);
}
} else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
|| N->getOperator()->getName() == "tglobaltlsaddr")) {
Record *Op = OperatorMap[N->getName()];
// Transform GlobalAddress to TargetGlobalAddress
if (Op && (Op->getName() == "globaladdr" ||
Op->getName() == "globaltlsaddr")) {
emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getTarget"
"GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
");");
NodeOps.push_back("Tmp" + utostr(ResNo));
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select
// this value if used multiple times by this pattern result.
Val = "Tmp"+utostr(ResNo);
} else {
NodeOps.push_back(Val);
}
} else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
NodeOps.push_back(Val);
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
// value if used multiple times by this pattern result.
Val = "Tmp"+utostr(ResNo);
} else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") {
NodeOps.push_back(Val);
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
// value if used multiple times by this pattern result.
Val = "Tmp"+utostr(ResNo);
} else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) {
for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
NodeOps.push_back("CPTmp" + utostr(i));
}
} else {
// This node, probably wrapped in a SDNodeXForm, behaves like a leaf
// node even if it isn't one. Don't select it.
if (!LikeLeaf) {
emitCode("AddToISelQueue(" + Val + ");");
if (isRoot && N->isLeaf()) {
emitCode("ReplaceUses(N, " + Val + ");");
emitCode("return NULL;");
}
}
NodeOps.push_back(Val);
}
return NodeOps;
}
if (N->isLeaf()) {
// If this is an explicit register reference, handle it.
if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
unsigned ResNo = TmpNo++;
if (DI->getDef()->isSubClassOf("Register")) {
emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
ISE.getQualifiedName(DI->getDef()) + ", " +
getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
}
} else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
unsigned ResNo = TmpNo++;
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
emitCode("SDOperand Tmp" + utostr(ResNo) +
" = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
", " + getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
}
#ifndef NDEBUG
N->dump();
#endif
assert(0 && "Unknown leaf type!");
return NodeOps;
}
Record *Op = N->getOperator();
if (Op->isSubClassOf("Instruction")) {
const CodeGenTarget &CGT = ISE.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op->getName());
const DAGInstruction &Inst = ISE.getInstruction(Op);
TreePattern *InstPat = Inst.getPattern();
TreePatternNode *InstPatNode =
isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern)
: (InstPat ? InstPat->getOnlyTree() : NULL);
if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
InstPatNode = InstPatNode->getChild(1);
}
bool HasVarOps = isRoot && II.hasVariableNumberOfOperands;
bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
bool HasImpResults = isRoot && Inst.getNumImpResults() > 0;
bool NodeHasOptInFlag = isRoot &&
PatternHasProperty(Pattern, SDNPOptInFlag, ISE);
bool NodeHasInFlag = isRoot &&
PatternHasProperty(Pattern, SDNPInFlag, ISE);
bool NodeHasOutFlag = HasImpResults || (isRoot &&
PatternHasProperty(Pattern, SDNPOutFlag, ISE));
bool NodeHasChain = InstPatNode &&
PatternHasProperty(InstPatNode, SDNPHasChain, ISE);
bool InputHasChain = isRoot &&
NodeHasProperty(Pattern, SDNPHasChain, ISE);
unsigned NumResults = Inst.getNumResults();
if (NodeHasOptInFlag) {
emitCode("bool HasInFlag = "
"(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
}
if (HasVarOps)
emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
// How many results is this pattern expected to produce?
unsigned PatResults = 0;
for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
MVT::ValueType VT = Pattern->getTypeNum(i);
if (VT != MVT::isVoid && VT != MVT::Flag)
PatResults++;
}
if (OrigChains.size() > 0) {
// The original input chain is being ignored. If it is not just
// pointing to the op that's being folded, we should create a
// TokenFactor with it and the chain of the folded op as the new chain.
// We could potentially be doing multiple levels of folding, in that
// case, the TokenFactor can have more operands.
emitCode("SmallVector<SDOperand, 8> InChains;");
for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
emitCode("if (" + OrigChains[i].first + ".Val != " +
OrigChains[i].second + ".Val) {");
emitCode(" AddToISelQueue(" + OrigChains[i].first + ");");
emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
emitCode("}");
}
emitCode("AddToISelQueue(" + ChainName + ");");
emitCode("InChains.push_back(" + ChainName + ");");
emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
"&InChains[0], InChains.size());");
}
// Loop over all of the operands of the instruction pattern, emitting code
// to fill them all in. The node 'N' usually has number children equal to
// the number of input operands of the instruction. However, in cases
// where there are predicate operands for an instruction, we need to fill
// in the 'execute always' values. Match up the node operands to the
// instruction operands to do this.
std::vector<std::string> AllOps;
for (unsigned ChildNo = 0, InstOpNo = NumResults;
InstOpNo != II.OperandList.size(); ++InstOpNo) {
std::vector<std::string> Ops;
// If this is a normal operand, emit it.
if (!II.OperandList[InstOpNo].Rec->isSubClassOf("PredicateOperand")) {
Ops = EmitResultCode(N->getChild(ChildNo), RetSelected,
InFlagDecled, ResNodeDecled);
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
++ChildNo;
} else {
// Otherwise, this is a predicate operand, emit the 'execute always'
// operands.
const DAGPredicateOperand &Pred =
ISE.getPredicateOperand(II.OperandList[InstOpNo].Rec);
for (unsigned i = 0, e = Pred.AlwaysOps.size(); i != e; ++i) {
Ops = EmitResultCode(Pred.AlwaysOps[i], RetSelected,
InFlagDecled, ResNodeDecled);
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
}
}
}
// Emit all the chain and CopyToReg stuff.
bool ChainEmitted = NodeHasChain;
if (NodeHasChain)
emitCode("AddToISelQueue(" + ChainName + ");");
if (NodeHasInFlag || HasImpInputs)
EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
InFlagDecled, ResNodeDecled, true);
if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
if (!InFlagDecled) {
emitCode("SDOperand InFlag(0, 0);");
InFlagDecled = true;
}
if (NodeHasOptInFlag) {
emitCode("if (HasInFlag) {");
emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
emitCode(" AddToISelQueue(InFlag);");
emitCode("}");
}
}
unsigned ResNo = TmpNo++;
if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
NodeHasOptInFlag) {
std::string Code;
std::string Code2;
std::string NodeName;
if (!isRoot) {
NodeName = "Tmp" + utostr(ResNo);
Code2 = "SDOperand " + NodeName + " = SDOperand(";
} else {
NodeName = "ResNode";
if (!ResNodeDecled) {
Code2 = "SDNode *" + NodeName + " = ";
ResNodeDecled = true;
} else
Code2 = NodeName + " = ";
}
Code = "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
unsigned OpsNo = OpcNo;
emitOpcode(II.Namespace + "::" + II.TheDef->getName());
// Output order: results, chain, flags
// Result types.
if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
Code += ", VT" + utostr(VTNo);
emitVT(getEnumName(N->getTypeNum(0)));
}
if (NodeHasChain)
Code += ", MVT::Other";
if (NodeHasOutFlag)
Code += ", MVT::Flag";
// Figure out how many fixed inputs the node has. This is important to
// know which inputs are the variable ones if present.
unsigned NumInputs = AllOps.size();
NumInputs += NodeHasChain;
// Inputs.
if (HasVarOps) {
for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
AllOps.clear();
}
if (HasVarOps) {
// Figure out whether any operands at the end of the op list are not
// part of the variable section.
std::string EndAdjust;
if (NodeHasInFlag || HasImpInputs)
EndAdjust = "-1"; // Always has one flag.
else if (NodeHasOptInFlag)
EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
emitCode("for (unsigned i = " + utostr(NumInputs) +
", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
emitCode(" AddToISelQueue(N.getOperand(i));");
emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
emitCode("}");
}
if (NodeHasChain) {
if (HasVarOps)
emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
else
AllOps.push_back(ChainName);
}
if (HasVarOps) {
if (NodeHasInFlag || HasImpInputs)
emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
else if (NodeHasOptInFlag) {
emitCode("if (HasInFlag)");
emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
}
Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
".size()";
} else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
AllOps.push_back("InFlag");
unsigned NumOps = AllOps.size();
if (NumOps) {
if (!NodeHasOptInFlag && NumOps < 4) {
for (unsigned i = 0; i != NumOps; ++i)
Code += ", " + AllOps[i];
} else {
std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
for (unsigned i = 0; i != NumOps; ++i) {
OpsCode += AllOps[i];
if (i != NumOps-1)
OpsCode += ", ";
}
emitCode(OpsCode + " };");
Code += ", Ops" + utostr(OpsNo) + ", ";
if (NodeHasOptInFlag) {
Code += "HasInFlag ? ";
Code += utostr(NumOps) + " : " + utostr(NumOps-1);
} else
Code += utostr(NumOps);
}
}
if (!isRoot)
Code += "), 0";
emitCode(Code2 + Code + ");");
if (NodeHasChain)
// Remember which op produces the chain.
if (!isRoot)
emitCode(ChainName + " = SDOperand(" + NodeName +
".Val, " + utostr(PatResults) + ");");
else
emitCode(ChainName + " = SDOperand(" + NodeName +
", " + utostr(PatResults) + ");");
if (!isRoot) {
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
}
bool NeedReplace = false;
if (NodeHasOutFlag) {
if (!InFlagDecled) {
emitCode("SDOperand InFlag = SDOperand(ResNode, " +
utostr(NumResults + (unsigned)NodeHasChain) + ");");
InFlagDecled = true;
} else
emitCode("InFlag = SDOperand(ResNode, " +
utostr(NumResults + (unsigned)NodeHasChain) + ");");
}
if (HasImpResults && EmitCopyFromRegs(N, ResNodeDecled, ChainEmitted)) {
emitCode("ReplaceUses(SDOperand(N.Val, 0), SDOperand(ResNode, 0));");
NumResults = 1;
}
if (FoldedChains.size() > 0) {
std::string Code;
for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
emitCode("ReplaceUses(SDOperand(" +
FoldedChains[j].first + ".Val, " +
utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
utostr(NumResults) + "));");
NeedReplace = true;
}
if (NodeHasOutFlag) {
emitCode("ReplaceUses(SDOperand(N.Val, " +
utostr(PatResults + (unsigned)InputHasChain) +"), InFlag);");
NeedReplace = true;
}
if (NeedReplace) {
for (unsigned i = 0; i < NumResults; i++)
emitCode("ReplaceUses(SDOperand(N.Val, " +
utostr(i) + "), SDOperand(ResNode, " + utostr(i) + "));");
if (InputHasChain)
emitCode("ReplaceUses(SDOperand(N.Val, " +
utostr(PatResults) + "), SDOperand(" + ChainName + ".Val, "
+ ChainName + ".ResNo" + "));");
} else
RetSelected = true;
// User does not expect the instruction would produce a chain!
if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
;
} else if (InputHasChain && !NodeHasChain) {
// One of the inner node produces a chain.
if (NodeHasOutFlag)
emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults+1) +
"), SDOperand(ResNode, N.ResNo-1));");
for (unsigned i = 0; i < PatResults; ++i)
emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(i) +
"), SDOperand(ResNode, " + utostr(i) + "));");
emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(PatResults) +
"), " + ChainName + ");");
RetSelected = false;
}
if (RetSelected)
emitCode("return ResNode;");
else
emitCode("return NULL;");
} else {
std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
utostr(OpcNo);
if (N->getTypeNum(0) != MVT::isVoid)
Code += ", VT" + utostr(VTNo);
if (NodeHasOutFlag)
Code += ", MVT::Flag";
if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
AllOps.push_back("InFlag");
unsigned NumOps = AllOps.size();
if (NumOps) {
if (!NodeHasOptInFlag && NumOps < 4) {
for (unsigned i = 0; i != NumOps; ++i)
Code += ", " + AllOps[i];
} else {
std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
for (unsigned i = 0; i != NumOps; ++i) {
OpsCode += AllOps[i];
if (i != NumOps-1)
OpsCode += ", ";
}
emitCode(OpsCode + " };");
Code += ", Ops" + utostr(OpcNo) + ", ";
Code += utostr(NumOps);
}
}
emitCode(Code + ");");
emitOpcode(II.Namespace + "::" + II.TheDef->getName());
if (N->getTypeNum(0) != MVT::isVoid)
emitVT(getEnumName(N->getTypeNum(0)));
}
return NodeOps;
} else if (Op->isSubClassOf("SDNodeXForm")) {
assert(N->getNumChildren() == 1 && "node xform should have one child!");
// PatLeaf node - the operand may or may not be a leaf node. But it should
// behave like one.
std::vector<std::string> Ops =
EmitResultCode(N->getChild(0), RetSelected, InFlagDecled,
ResNodeDecled, true);
unsigned ResNo = TmpNo++;
emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
+ "(" + Ops.back() + ".Val);");
NodeOps.push_back("Tmp" + utostr(ResNo));
if (isRoot)
emitCode("return Tmp" + utostr(ResNo) + ".Val;");
return NodeOps;
} else {
N->dump();
cerr << "\n";
throw std::string("Unknown node in result pattern!");
}
}
/// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
/// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
/// 'Pat' may be missing types. If we find an unresolved type to add a check
/// for, this returns true otherwise false if Pat has all types.
bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
const std::string &Prefix, bool isRoot = false) {
// Did we find one?
if (Pat->getExtTypes() != Other->getExtTypes()) {
// Move a type over from 'other' to 'pat'.
Pat->setTypes(Other->getExtTypes());
// The top level node type is checked outside of the select function.
if (!isRoot)
emitCheck(Prefix + ".Val->getValueType(0) == " +
getName(Pat->getTypeNum(0)));
return true;
}
unsigned OpNo =
(unsigned) NodeHasProperty(Pat, SDNPHasChain, ISE);
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
Prefix + utostr(OpNo)))
return true;
return false;
}
private:
/// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
/// being built.
void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
bool &ChainEmitted, bool &InFlagDecled,
bool &ResNodeDecled, bool isRoot = false) {
const CodeGenTarget &T = ISE.getTargetInfo();
unsigned OpNo =
(unsigned) NodeHasProperty(N, SDNPHasChain, ISE);
bool HasInFlag = NodeHasProperty(N, SDNPInFlag, ISE);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
TreePatternNode *Child = N->getChild(i);
if (!Child->isLeaf()) {
EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
InFlagDecled, ResNodeDecled);
} else {
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
if (!Child->getName().empty()) {
std::string Name = RootName + utostr(OpNo);
if (Duplicates.find(Name) != Duplicates.end())
// A duplicate! Do not emit a copy for this node.
continue;
}
Record *RR = DI->getDef();
if (RR->isSubClassOf("Register")) {
MVT::ValueType RVT = getRegisterValueType(RR, T);
if (RVT == MVT::Flag) {
if (!InFlagDecled) {
emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
InFlagDecled = true;
} else
emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
emitCode("AddToISelQueue(InFlag);");
} else {
if (!ChainEmitted) {
emitCode("SDOperand Chain = CurDAG->getEntryNode();");
ChainName = "Chain";
ChainEmitted = true;
}
emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
if (!InFlagDecled) {
emitCode("SDOperand InFlag(0, 0);");
InFlagDecled = true;
}
std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
", " + ISE.getQualifiedName(RR) +
", " + RootName + utostr(OpNo) + ", InFlag).Val;");
ResNodeDecled = true;
emitCode(ChainName + " = SDOperand(ResNode, 0);");
emitCode("InFlag = SDOperand(ResNode, 1);");
}
}
}
}
}
if (HasInFlag) {
if (!InFlagDecled) {
emitCode("SDOperand InFlag = " + RootName +
".getOperand(" + utostr(OpNo) + ");");
InFlagDecled = true;
} else
emitCode("InFlag = " + RootName +
".getOperand(" + utostr(OpNo) + ");");
emitCode("AddToISelQueue(InFlag);");
}
}
/// EmitCopyFromRegs - Emit code to copy result to physical registers
/// as specified by the instruction. It returns true if any copy is
/// emitted.
bool EmitCopyFromRegs(TreePatternNode *N, bool &ResNodeDecled,
bool &ChainEmitted) {
bool RetVal = false;
Record *Op = N->getOperator();
if (Op->isSubClassOf("Instruction")) {
const DAGInstruction &Inst = ISE.getInstruction(Op);
const CodeGenTarget &CGT = ISE.getTargetInfo();
unsigned NumImpResults = Inst.getNumImpResults();
for (unsigned i = 0; i < NumImpResults; i++) {
Record *RR = Inst.getImpResult(i);
if (RR->isSubClassOf("Register")) {
MVT::ValueType RVT = getRegisterValueType(RR, CGT);
if (RVT != MVT::Flag) {
if (!ChainEmitted) {
emitCode("SDOperand Chain = CurDAG->getEntryNode();");
ChainEmitted = true;
ChainName = "Chain";
}
std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
emitCode(Decl + "ResNode = CurDAG->getCopyFromReg(" + ChainName +
", " + ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) +
", InFlag).Val;");
ResNodeDecled = true;
emitCode(ChainName + " = SDOperand(ResNode, 1);");
emitCode("InFlag = SDOperand(ResNode, 2);");
RetVal = true;
}
}
}
}
return RetVal;
}
};
/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
/// stream to match the pattern, and generate the code for the match if it
/// succeeds. Returns true if the pattern is not guaranteed to match.
void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern,
std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
std::set<std::string> &GeneratedDecl,
std::vector<std::string> &TargetOpcodes,
std::vector<std::string> &TargetVTs) {
PatternCodeEmitter Emitter(*this, Pattern.getPredicates(),
Pattern.getSrcPattern(), Pattern.getDstPattern(),
GeneratedCode, GeneratedDecl,
TargetOpcodes, TargetVTs);
// Emit the matcher, capturing named arguments in VariableMap.
bool FoundChain = false;
Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
// TP - Get *SOME* tree pattern, we don't care which.
TreePattern &TP = *PatternFragments.begin()->second;
// At this point, we know that we structurally match the pattern, but the
// types of the nodes may not match. Figure out the fewest number of type
// comparisons we need to emit. For example, if there is only one integer
// type supported by a target, there should be no type comparisons at all for
// integer patterns!
//
// To figure out the fewest number of type checks needed, clone the pattern,
// remove the types, then perform type inference on the pattern as a whole.
// If there are unresolved types, emit an explicit check for those types,
// apply the type to the tree, then rerun type inference. Iterate until all
// types are resolved.
//
TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
RemoveAllTypes(Pat);
do {
// Resolve/propagate as many types as possible.
try {
bool MadeChange = true;
while (MadeChange)
MadeChange = Pat->ApplyTypeConstraints(TP,
true/*Ignore reg constraints*/);
} catch (...) {
assert(0 && "Error: could not find consistent types for something we"
" already decided was ok!");
abort();
}
// Insert a check for an unresolved type and add it to the tree. If we find
// an unresolved type to add a check for, this returns true and we iterate,
// otherwise we are done.
} while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
Emitter.EmitResultCode(Pattern.getDstPattern(),
false, false, false, false, true);
delete Pat;
}
/// EraseCodeLine - Erase one code line from all of the patterns. If removing
/// a line causes any of them to be empty, remove them and return true when
/// done.
static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*,
std::vector<std::pair<unsigned, std::string> > > >
&Patterns) {
bool ErasedPatterns = false;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
Patterns[i].second.pop_back();
if (Patterns[i].second.empty()) {
Patterns.erase(Patterns.begin()+i);
--i; --e;
ErasedPatterns = true;
}
}
return ErasedPatterns;
}
/// EmitPatterns - Emit code for at least one pattern, but try to group common
/// code together between the patterns.
void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*,
std::vector<std::pair<unsigned, std::string> > > >
&Patterns, unsigned Indent,
std::ostream &OS) {
typedef std::pair<unsigned, std::string> CodeLine;
typedef std::vector<CodeLine> CodeList;
typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList;
if (Patterns.empty()) return;
// Figure out how many patterns share the next code line. Explicitly copy
// FirstCodeLine so that we don't invalidate a reference when changing
// Patterns.
const CodeLine FirstCodeLine = Patterns.back().second.back();
unsigned LastMatch = Patterns.size()-1;
while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
--LastMatch;
// If not all patterns share this line, split the list into two pieces. The
// first chunk will use this line, the second chunk won't.
if (LastMatch != 0) {
PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
// FIXME: Emit braces?
if (Shared.size() == 1) {
PatternToMatch &Pattern = *Shared.back().first;
OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
Pattern.getSrcPattern()->print(OS);
OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
Pattern.getDstPattern()->print(OS);
OS << "\n";
unsigned AddedComplexity = Pattern.getAddedComplexity();
OS << std::string(Indent, ' ') << "// Pattern complexity = "
<< getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
<< " cost = "
<< getResultPatternCost(Pattern.getDstPattern(), *this)
<< " size = "
<< getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
}
if (FirstCodeLine.first != 1) {
OS << std::string(Indent, ' ') << "{\n";
Indent += 2;
}
EmitPatterns(Shared, Indent, OS);
if (FirstCodeLine.first != 1) {
Indent -= 2;
OS << std::string(Indent, ' ') << "}\n";
}
if (Other.size() == 1) {
PatternToMatch &Pattern = *Other.back().first;
OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
Pattern.getSrcPattern()->print(OS);
OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
Pattern.getDstPattern()->print(OS);
OS << "\n";
unsigned AddedComplexity = Pattern.getAddedComplexity();
OS << std::string(Indent, ' ') << "// Pattern complexity = "
<< getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity
<< " cost = "
<< getResultPatternCost(Pattern.getDstPattern(), *this)
<< " size = "
<< getResultPatternSize(Pattern.getDstPattern(), *this) << "\n";
}
EmitPatterns(Other, Indent, OS);
return;
}
// Remove this code from all of the patterns that share it.
bool ErasedPatterns = EraseCodeLine(Patterns);
bool isPredicate = FirstCodeLine.first == 1;
// Otherwise, every pattern in the list has this line. Emit it.
if (!isPredicate) {
// Normal code.
OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
} else {
OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
// If the next code line is another predicate, and if all of the pattern
// in this group share the same next line, emit it inline now. Do this
// until we run out of common predicates.
while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
// Check that all of fhe patterns in Patterns end with the same predicate.
bool AllEndWithSamePredicate = true;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
if (Patterns[i].second.back() != Patterns.back().second.back()) {
AllEndWithSamePredicate = false;
break;
}
// If all of the predicates aren't the same, we can't share them.
if (!AllEndWithSamePredicate) break;
// Otherwise we can. Emit it shared now.
OS << " &&\n" << std::string(Indent+4, ' ')
<< Patterns.back().second.back().second;
ErasedPatterns = EraseCodeLine(Patterns);
}
OS << ") {\n";
Indent += 2;
}
EmitPatterns(Patterns, Indent, OS);
if (isPredicate)
OS << std::string(Indent-2, ' ') << "}\n";
}
static std::string getOpcodeName(Record *Op, DAGISelEmitter &ISE) {
const SDNodeInfo &OpcodeInfo = ISE.getSDNodeInfo(Op);
return OpcodeInfo.getEnumName();
}
static std::string getLegalCName(std::string OpName) {
std::string::size_type pos = OpName.find("::");
if (pos != std::string::npos)
OpName.replace(pos, 2, "_");
return OpName;
}
void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
// Get the namespace to insert instructions into. Make sure not to pick up
// "TargetInstrInfo" by accidentally getting the namespace off the PHI
// instruction or something.
std::string InstNS;
for (CodeGenTarget::inst_iterator i = Target.inst_begin(),
e = Target.inst_end(); i != e; ++i) {
InstNS = i->second.Namespace;
if (InstNS != "TargetInstrInfo")
break;
}
if (!InstNS.empty()) InstNS += "::";
// Group the patterns by their top-level opcodes.
std::map<std::string, std::vector<PatternToMatch*> > PatternsByOpcode;
// All unique target node emission functions.
std::map<std::string, unsigned> EmitFunctions;
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
TreePatternNode *Node = PatternsToMatch[i].getSrcPattern();
if (!Node->isLeaf()) {
PatternsByOpcode[getOpcodeName(Node->getOperator(), *this)].
push_back(&PatternsToMatch[i]);
} else {
const ComplexPattern *CP;
if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
PatternsByOpcode[getOpcodeName(getSDNodeNamed("imm"), *this)].
push_back(&PatternsToMatch[i]);
} else if ((CP = NodeGetComplexPattern(Node, *this))) {
std::vector<Record*> OpNodes = CP->getRootNodes();
for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
PatternsByOpcode[getOpcodeName(OpNodes[j], *this)]
.insert(PatternsByOpcode[getOpcodeName(OpNodes[j], *this)].begin(),
&PatternsToMatch[i]);
}
} else {
cerr << "Unrecognized opcode '";
Node->dump();
cerr << "' on tree pattern '";
cerr << PatternsToMatch[i].getDstPattern()->getOperator()->getName();
cerr << "'!\n";
exit(1);
}
}
}
// For each opcode, there might be multiple select functions, one per
// ValueType of the node (or its first operand if it doesn't produce a
// non-chain result.
std::map<std::string, std::vector<std::string> > OpcodeVTMap;
// Emit one Select_* method for each top-level opcode. We do this instead of
// emitting one giant switch statement to support compilers where this will
// result in the recursive functions taking less stack space.
for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
PBOI != E; ++PBOI) {
const std::string &OpName = PBOI->first;
std::vector<PatternToMatch*> &PatternsOfOp = PBOI->second;
assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
// We want to emit all of the matching code now. However, we want to emit
// the matches in order of minimal cost. Sort the patterns so the least
// cost one is at the start.
std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
PatternSortingPredicate(*this));
// Split them into groups by type.
std::map<MVT::ValueType, std::vector<PatternToMatch*> > PatternsByType;
for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
PatternToMatch *Pat = PatternsOfOp[i];
TreePatternNode *SrcPat = Pat->getSrcPattern();
MVT::ValueType VT = SrcPat->getTypeNum(0);
std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator TI =
PatternsByType.find(VT);
if (TI != PatternsByType.end())
TI->second.push_back(Pat);
else {
std::vector<PatternToMatch*> PVec;
PVec.push_back(Pat);
PatternsByType.insert(std::make_pair(VT, PVec));
}
}
for (std::map<MVT::ValueType, std::vector<PatternToMatch*> >::iterator
II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
++II) {
MVT::ValueType OpVT = II->first;
std::vector<PatternToMatch*> &Patterns = II->second;
typedef std::vector<std::pair<unsigned,std::string> > CodeList;
typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns;
std::vector<std::vector<std::string> > PatternOpcodes;
std::vector<std::vector<std::string> > PatternVTs;
std::vector<std::set<std::string> > PatternDecls;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
CodeList GeneratedCode;
std::set<std::string> GeneratedDecl;
std::vector<std::string> TargetOpcodes;
std::vector<std::string> TargetVTs;
GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
TargetOpcodes, TargetVTs);
CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
PatternDecls.push_back(GeneratedDecl);
PatternOpcodes.push_back(TargetOpcodes);
PatternVTs.push_back(TargetVTs);
}
// Scan the code to see if all of the patterns are reachable and if it is
// possible that the last one might not match.
bool mightNotMatch = true;
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
mightNotMatch = false;
for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
if (GeneratedCode[j].first == 1) { // predicate.
mightNotMatch = true;
break;
}
}
// If this pattern definitely matches, and if it isn't the last one, the
// patterns after it CANNOT ever match. Error out.
if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
cerr << "Pattern '";
CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
cerr << "' is impossible to select!\n";
exit(1);
}
}
// Factor target node emission code (emitted by EmitResultCode) into
// separate functions. Uniquing and share them among all instruction
// selection routines.
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
std::vector<std::string> &TargetVTs = PatternVTs[i];
std::set<std::string> Decls = PatternDecls[i];
std::vector<std::string> AddedInits;
int CodeSize = (int)GeneratedCode.size();
int LastPred = -1;
for (int j = CodeSize-1; j >= 0; --j) {
if (LastPred == -1 && GeneratedCode[j].first == 1)
LastPred = j;
else if (LastPred != -1 && GeneratedCode[j].first == 2)
AddedInits.push_back(GeneratedCode[j].second);
}
std::string CalleeCode = "(const SDOperand &N";
std::string CallerCode = "(N";
for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
CalleeCode += ", unsigned Opc" + utostr(j);
CallerCode += ", " + TargetOpcodes[j];
}
for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
CalleeCode += ", MVT::ValueType VT" + utostr(j);
CallerCode += ", " + TargetVTs[j];
}
for (std::set<std::string>::iterator
I = Decls.begin(), E = Decls.end(); I != E; ++I) {
std::string Name = *I;
CalleeCode += ", SDOperand &" + Name;
CallerCode += ", " + Name;
}
CallerCode += ");";
CalleeCode += ") ";
// Prevent emission routines from being inlined to reduce selection
// routines stack frame sizes.
CalleeCode += "DISABLE_INLINE ";
CalleeCode += "{\n";
for (std::vector<std::string>::const_reverse_iterator
I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
CalleeCode += " " + *I + "\n";
for (int j = LastPred+1; j < CodeSize; ++j)
CalleeCode += " " + GeneratedCode[j].second + "\n";
for (int j = LastPred+1; j < CodeSize; ++j)
GeneratedCode.pop_back();
CalleeCode += "}\n";
// Uniquing the emission routines.
unsigned EmitFuncNum;
std::map<std::string, unsigned>::iterator EFI =
EmitFunctions.find(CalleeCode);
if (EFI != EmitFunctions.end()) {
EmitFuncNum = EFI->second;
} else {
EmitFuncNum = EmitFunctions.size();
EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
}
// Replace the emission code within selection routines with calls to the
// emission functions.
CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
GeneratedCode.push_back(std::make_pair(false, CallerCode));
}
// Print function.
std::string OpVTStr;
if (OpVT == MVT::iPTR) {
OpVTStr = "_iPTR";
} else if (OpVT == MVT::isVoid) {
// Nodes with a void result actually have a first result type of either
// Other (a chain) or Flag. Since there is no one-to-one mapping from
// void to this case, we handle it specially here.
} else {
OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
}
std::map<std::string, std::vector<std::string> >::iterator OpVTI =
OpcodeVTMap.find(OpName);
if (OpVTI == OpcodeVTMap.end()) {
std::vector<std::string> VTSet;
VTSet.push_back(OpVTStr);
OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
} else
OpVTI->second.push_back(OpVTStr);
OS << "SDNode *Select_" << getLegalCName(OpName)
<< OpVTStr << "(const SDOperand &N) {\n";
// Loop through and reverse all of the CodeList vectors, as we will be
// accessing them from their logical front, but accessing the end of a
// vector is more efficient.
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
std::reverse(GeneratedCode.begin(), GeneratedCode.end());
}
// Next, reverse the list of patterns itself for the same reason.
std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
// Emit all of the patterns now, grouped together to share code.
EmitPatterns(CodeForPatterns, 2, OS);
// If the last pattern has predicates (which could fail) emit code to
// catch the case where nothing handles a pattern.
if (mightNotMatch) {
OS << " cerr << \"Cannot yet select: \";\n";
if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
OpName != "ISD::INTRINSIC_WO_CHAIN" &&
OpName != "ISD::INTRINSIC_VOID") {
OS << " N.Val->dump(CurDAG);\n";
} else {
OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
"N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
<< " cerr << \"intrinsic %\"<< "
"Intrinsic::getName((Intrinsic::ID)iid);\n";
}
OS << " cerr << '\\n';\n"
<< " abort();\n"
<< " return NULL;\n";
}
OS << "}\n\n";
}
}
// Emit boilerplate.
OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
<< " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
<< " AddToISelQueue(N.getOperand(0)); // Select the chain.\n\n"
<< " // Select the flag operand.\n"
<< " if (Ops.back().getValueType() == MVT::Flag)\n"
<< " AddToISelQueue(Ops.back());\n"
<< " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n"
<< " std::vector<MVT::ValueType> VTs;\n"
<< " VTs.push_back(MVT::Other);\n"
<< " VTs.push_back(MVT::Flag);\n"
<< " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
"Ops.size());\n"
<< " return New.Val;\n"
<< "}\n\n";
OS << "SDNode *Select_LABEL(const SDOperand &N) {\n"
<< " SDOperand Chain = N.getOperand(0);\n"
<< " SDOperand N1 = N.getOperand(1);\n"
<< " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
<< " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
<< " AddToISelQueue(Chain);\n"
<< " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n"
<< " MVT::Other, Tmp, Chain);\n"
<< "}\n\n";
OS << "// The main instruction selector code.\n"
<< "SDNode *SelectCode(SDOperand N) {\n"
<< " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
<< " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
<< "INSTRUCTION_LIST_END)) {\n"
<< " return NULL; // Already selected.\n"
<< " }\n\n"
<< " MVT::ValueType NVT = N.Val->getValueType(0);\n"
<< " switch (N.getOpcode()) {\n"
<< " default: break;\n"
<< " case ISD::EntryToken: // These leaves remain the same.\n"
<< " case ISD::BasicBlock:\n"
<< " case ISD::Register:\n"
<< " case ISD::HANDLENODE:\n"
<< " case ISD::TargetConstant:\n"
<< " case ISD::TargetConstantPool:\n"
<< " case ISD::TargetFrameIndex:\n"
<< " case ISD::TargetJumpTable:\n"
<< " case ISD::TargetGlobalTLSAddress:\n"
<< " case ISD::TargetGlobalAddress: {\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::AssertSext:\n"
<< " case ISD::AssertZext: {\n"
<< " AddToISelQueue(N.getOperand(0));\n"
<< " ReplaceUses(N, N.getOperand(0));\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::TokenFactor:\n"
<< " case ISD::CopyFromReg:\n"
<< " case ISD::CopyToReg: {\n"
<< " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
<< " AddToISelQueue(N.getOperand(i));\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
<< " case ISD::LABEL: return Select_LABEL(N);\n";
// Loop over all of the case statements, emiting a call to each method we
// emitted above.
for (std::map<std::string, std::vector<PatternToMatch*> >::iterator
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
PBOI != E; ++PBOI) {
const std::string &OpName = PBOI->first;
// Potentially multiple versions of select for this opcode. One for each
// ValueType of the node (or its first true operand if it doesn't produce a
// result.
std::map<std::string, std::vector<std::string> >::iterator OpVTI =
OpcodeVTMap.find(OpName);
std::vector<std::string> &OpVTs = OpVTI->second;
OS << " case " << OpName << ": {\n";
if (OpVTs.size() == 1) {
std::string &VTStr = OpVTs[0];
OS << " return Select_" << getLegalCName(OpName)
<< VTStr << "(N);\n";
} else {
// Keep track of whether we see a pattern that has an iPtr result.
bool HasPtrPattern = false;
bool HasDefaultPattern = false;
OS << " switch (NVT) {\n";
for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
std::string &VTStr = OpVTs[i];
if (VTStr.empty()) {
HasDefaultPattern = true;
continue;
}
// If this is a match on iPTR: don't emit it directly, we need special
// code.
if (VTStr == "_iPTR") {
HasPtrPattern = true;
continue;
}
OS << " case MVT::" << VTStr.substr(1) << ":\n"
<< " return Select_" << getLegalCName(OpName)
<< VTStr << "(N);\n";
}
OS << " default:\n";
// If there is an iPTR result version of this pattern, emit it here.
if (HasPtrPattern) {
OS << " if (NVT == TLI.getPointerTy())\n";
OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
}
if (HasDefaultPattern) {
OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
}
OS << " break;\n";
OS << " }\n";
OS << " break;\n";
}
OS << " }\n";
}
OS << " } // end of big switch.\n\n"
<< " cerr << \"Cannot yet select: \";\n"
<< " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
<< " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
<< " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
<< " N.Val->dump(CurDAG);\n"
<< " } else {\n"
<< " unsigned iid = cast<ConstantSDNode>(N.getOperand("
"N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
<< " cerr << \"intrinsic %\"<< "
"Intrinsic::getName((Intrinsic::ID)iid);\n"
<< " }\n"
<< " cerr << '\\n';\n"
<< " abort();\n"
<< " return NULL;\n"
<< "}\n";
}
void DAGISelEmitter::run(std::ostream &OS) {
EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() +
" target", OS);
OS << "// *** NOTE: This file is #included into the middle of the target\n"
<< "// *** instruction selector class. These functions are really "
<< "methods.\n\n";
OS << "#include \"llvm/Support/Compiler.h\"\n";
OS << "// Instruction selector priority queue:\n"
<< "std::vector<SDNode*> ISelQueue;\n";
OS << "/// Keep track of nodes which have already been added to queue.\n"
<< "unsigned char *ISelQueued;\n";
OS << "/// Keep track of nodes which have already been selected.\n"
<< "unsigned char *ISelSelected;\n";
OS << "/// Dummy parameter to ReplaceAllUsesOfValueWith().\n"
<< "std::vector<SDNode*> ISelKilled;\n\n";
OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n";
OS << "/// not reach Op.\n";
OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n";
OS << " if (Chain->getOpcode() == ISD::EntryToken)\n";
OS << " return true;\n";
OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n";
OS << " return false;\n";
OS << " else if (Chain->getNumOperands() > 0) {\n";
OS << " SDOperand C0 = Chain->getOperand(0);\n";
OS << " if (C0.getValueType() == MVT::Other)\n";
OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n";
OS << " }\n";
OS << " return true;\n";
OS << "}\n";
OS << "/// Sorting functions for the selection queue.\n"
<< "struct isel_sort : public std::binary_function"
<< "<SDNode*, SDNode*, bool> {\n"
<< " bool operator()(const SDNode* left, const SDNode* right) "
<< "const {\n"
<< " return (left->getNodeId() > right->getNodeId());\n"
<< " }\n"
<< "};\n\n";
OS << "inline void setQueued(int Id) {\n";
OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
OS << "}\n";
OS << "inline bool isQueued(int Id) {\n";
OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
OS << "}\n";
OS << "inline void setSelected(int Id) {\n";
OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
OS << "}\n";
OS << "inline bool isSelected(int Id) {\n";
OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
OS << "}\n\n";
OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
OS << " int Id = N.Val->getNodeId();\n";
OS << " if (Id != -1 && !isQueued(Id)) {\n";
OS << " ISelQueue.push_back(N.Val);\n";
OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
OS << " setQueued(Id);\n";
OS << " }\n";
OS << "}\n\n";
OS << "inline void RemoveKilled() {\n";
OS << " unsigned NumKilled = ISelKilled.size();\n";
OS << " if (NumKilled) {\n";
OS << " for (unsigned i = 0; i != NumKilled; ++i) {\n";
OS << " SDNode *Temp = ISelKilled[i];\n";
OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(), "
<< "Temp), ISelQueue.end());\n";
OS << " };\n";
OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
OS << " ISelKilled.clear();\n";
OS << " }\n";
OS << "}\n\n";
OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, ISelKilled);\n";
OS << " setSelected(F.Val->getNodeId());\n";
OS << " RemoveKilled();\n";
OS << "}\n";
OS << "inline void ReplaceUses(SDNode *F, SDNode *T) {\n";
OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISelKilled);\n";
OS << " setSelected(F->getNodeId());\n";
OS << " RemoveKilled();\n";
OS << "}\n\n";
OS << "// SelectRoot - Top level entry to DAG isel.\n";
OS << "SDOperand SelectRoot(SDOperand Root) {\n";
OS << " SelectRootInit();\n";
OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n";
OS << " ISelQueued = new unsigned char[NumBytes];\n";
OS << " ISelSelected = new unsigned char[NumBytes];\n";
OS << " memset(ISelQueued, 0, NumBytes);\n";
OS << " memset(ISelSelected, 0, NumBytes);\n";
OS << "\n";
OS << " // Create a dummy node (which is not added to allnodes), that adds\n"
<< " // a reference to the root node, preventing it from being deleted,\n"
<< " // and tracking any changes of the root.\n"
<< " HandleSDNode Dummy(CurDAG->getRoot());\n"
<< " ISelQueue.push_back(CurDAG->getRoot().Val);\n";
OS << " while (!ISelQueue.empty()) {\n";
OS << " SDNode *Node = ISelQueue.front();\n";
OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
OS << " ISelQueue.pop_back();\n";
OS << " if (!isSelected(Node->getNodeId())) {\n";
OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n";
OS << " if (ResNode != Node) {\n";
OS << " if (ResNode)\n";
OS << " ReplaceUses(Node, ResNode);\n";
OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n";
OS << " CurDAG->RemoveDeadNode(Node, ISelKilled);\n";
OS << " RemoveKilled();\n";
OS << " }\n";
OS << " }\n";
OS << " }\n";
OS << " }\n";
OS << "\n";
OS << " delete[] ISelQueued;\n";
OS << " ISelQueued = NULL;\n";
OS << " delete[] ISelSelected;\n";
OS << " ISelSelected = NULL;\n";
OS << " return Dummy.getValue();\n";
OS << "}\n";
Intrinsics = LoadIntrinsics(Records);
ParseNodeInfo();
ParseNodeTransforms(OS);
ParseComplexPatterns();
ParsePatternFragments(OS);
ParsePredicateOperands();
ParseInstructions();
ParsePatterns();
// Generate variants. For example, commutative patterns can match
// multiple ways. Add them to PatternsToMatch as well.
GenerateVariants();
DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
DOUT << "PATTERN: "; DEBUG(PatternsToMatch[i].getSrcPattern()->dump());
DOUT << "\nRESULT: "; DEBUG(PatternsToMatch[i].getDstPattern()->dump());
DOUT << "\n";
}
// At this point, we have full information about the 'Patterns' we need to
// parse, both implicitly from instructions as well as from explicit pattern
// definitions. Emit the resultant instruction selector.
EmitInstructionSelector(OS);
for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(),
E = PatternFragments.end(); I != E; ++I)
delete I->second;
PatternFragments.clear();
Instructions.clear();
}