mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-24 22:32:47 +00:00
66981fe208
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229340 91177308-0d34-0410-b5e6-96231b3b80d8
769 lines
26 KiB
C++
769 lines
26 KiB
C++
//===- GenericDomTree.h - Generic dominator trees for graphs ----*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
///
|
|
/// This file defines a set of templates that efficiently compute a dominator
|
|
/// tree over a generic graph. This is used typically in LLVM for fast
|
|
/// dominance queries on the CFG, but is fully generic w.r.t. the underlying
|
|
/// graph types.
|
|
///
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_GENERICDOMTREE_H
|
|
#define LLVM_SUPPORT_GENERICDOMTREE_H
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/DepthFirstIterator.h"
|
|
#include "llvm/ADT/GraphTraits.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
|
|
namespace llvm {
|
|
|
|
/// \brief Base class that other, more interesting dominator analyses
|
|
/// inherit from.
|
|
template <class NodeT> class DominatorBase {
|
|
protected:
|
|
std::vector<NodeT *> Roots;
|
|
bool IsPostDominators;
|
|
explicit DominatorBase(bool isPostDom)
|
|
: Roots(), IsPostDominators(isPostDom) {}
|
|
DominatorBase(DominatorBase &&Arg)
|
|
: Roots(std::move(Arg.Roots)),
|
|
IsPostDominators(std::move(Arg.IsPostDominators)) {
|
|
Arg.Roots.clear();
|
|
}
|
|
DominatorBase &operator=(DominatorBase &&RHS) {
|
|
Roots = std::move(RHS.Roots);
|
|
IsPostDominators = std::move(RHS.IsPostDominators);
|
|
RHS.Roots.clear();
|
|
return *this;
|
|
}
|
|
|
|
public:
|
|
/// getRoots - Return the root blocks of the current CFG. This may include
|
|
/// multiple blocks if we are computing post dominators. For forward
|
|
/// dominators, this will always be a single block (the entry node).
|
|
///
|
|
const std::vector<NodeT *> &getRoots() const { return Roots; }
|
|
|
|
/// isPostDominator - Returns true if analysis based of postdoms
|
|
///
|
|
bool isPostDominator() const { return IsPostDominators; }
|
|
};
|
|
|
|
template <class NodeT> class DominatorTreeBase;
|
|
struct PostDominatorTree;
|
|
|
|
/// \brief Base class for the actual dominator tree node.
|
|
template <class NodeT> class DomTreeNodeBase {
|
|
NodeT *TheBB;
|
|
DomTreeNodeBase<NodeT> *IDom;
|
|
std::vector<DomTreeNodeBase<NodeT> *> Children;
|
|
mutable int DFSNumIn, DFSNumOut;
|
|
|
|
template <class N> friend class DominatorTreeBase;
|
|
friend struct PostDominatorTree;
|
|
|
|
public:
|
|
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator;
|
|
typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator
|
|
const_iterator;
|
|
|
|
iterator begin() { return Children.begin(); }
|
|
iterator end() { return Children.end(); }
|
|
const_iterator begin() const { return Children.begin(); }
|
|
const_iterator end() const { return Children.end(); }
|
|
|
|
NodeT *getBlock() const { return TheBB; }
|
|
DomTreeNodeBase<NodeT> *getIDom() const { return IDom; }
|
|
const std::vector<DomTreeNodeBase<NodeT> *> &getChildren() const {
|
|
return Children;
|
|
}
|
|
|
|
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom)
|
|
: TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) {}
|
|
|
|
std::unique_ptr<DomTreeNodeBase<NodeT>>
|
|
addChild(std::unique_ptr<DomTreeNodeBase<NodeT>> C) {
|
|
Children.push_back(C.get());
|
|
return C;
|
|
}
|
|
|
|
size_t getNumChildren() const { return Children.size(); }
|
|
|
|
void clearAllChildren() { Children.clear(); }
|
|
|
|
bool compare(const DomTreeNodeBase<NodeT> *Other) const {
|
|
if (getNumChildren() != Other->getNumChildren())
|
|
return true;
|
|
|
|
SmallPtrSet<const NodeT *, 4> OtherChildren;
|
|
for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) {
|
|
const NodeT *Nd = (*I)->getBlock();
|
|
OtherChildren.insert(Nd);
|
|
}
|
|
|
|
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
|
const NodeT *N = (*I)->getBlock();
|
|
if (OtherChildren.count(N) == 0)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setIDom(DomTreeNodeBase<NodeT> *NewIDom) {
|
|
assert(IDom && "No immediate dominator?");
|
|
if (IDom != NewIDom) {
|
|
typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), this);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
|
|
// Switch to new dominator
|
|
IDom = NewIDom;
|
|
IDom->Children.push_back(this);
|
|
}
|
|
}
|
|
|
|
/// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
|
|
/// not call them.
|
|
unsigned getDFSNumIn() const { return DFSNumIn; }
|
|
unsigned getDFSNumOut() const { return DFSNumOut; }
|
|
|
|
private:
|
|
// Return true if this node is dominated by other. Use this only if DFS info
|
|
// is valid.
|
|
bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const {
|
|
return this->DFSNumIn >= other->DFSNumIn &&
|
|
this->DFSNumOut <= other->DFSNumOut;
|
|
}
|
|
};
|
|
|
|
template <class NodeT>
|
|
raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) {
|
|
if (Node->getBlock())
|
|
Node->getBlock()->printAsOperand(o, false);
|
|
else
|
|
o << " <<exit node>>";
|
|
|
|
o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
|
|
|
|
return o << "\n";
|
|
}
|
|
|
|
template <class NodeT>
|
|
void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o,
|
|
unsigned Lev) {
|
|
o.indent(2 * Lev) << "[" << Lev << "] " << N;
|
|
for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(),
|
|
E = N->end();
|
|
I != E; ++I)
|
|
PrintDomTree<NodeT>(*I, o, Lev + 1);
|
|
}
|
|
|
|
// The calculate routine is provided in a separate header but referenced here.
|
|
template <class FuncT, class N>
|
|
void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT,
|
|
FuncT &F);
|
|
|
|
/// \brief Core dominator tree base class.
|
|
///
|
|
/// This class is a generic template over graph nodes. It is instantiated for
|
|
/// various graphs in the LLVM IR or in the code generator.
|
|
template <class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> {
|
|
DominatorTreeBase(const DominatorTreeBase &) = delete;
|
|
DominatorTreeBase &operator=(const DominatorTreeBase &) = delete;
|
|
|
|
bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
assert(A != B);
|
|
assert(isReachableFromEntry(B));
|
|
assert(isReachableFromEntry(A));
|
|
|
|
const DomTreeNodeBase<NodeT> *IDom;
|
|
while ((IDom = B->getIDom()) != nullptr && IDom != A && IDom != B)
|
|
B = IDom; // Walk up the tree
|
|
return IDom != nullptr;
|
|
}
|
|
|
|
/// \brief Wipe this tree's state without releasing any resources.
|
|
///
|
|
/// This is essentially a post-move helper only. It leaves the object in an
|
|
/// assignable and destroyable state, but otherwise invalid.
|
|
void wipe() {
|
|
DomTreeNodes.clear();
|
|
IDoms.clear();
|
|
Vertex.clear();
|
|
Info.clear();
|
|
RootNode = nullptr;
|
|
}
|
|
|
|
protected:
|
|
typedef DenseMap<NodeT *, std::unique_ptr<DomTreeNodeBase<NodeT>>>
|
|
DomTreeNodeMapType;
|
|
DomTreeNodeMapType DomTreeNodes;
|
|
DomTreeNodeBase<NodeT> *RootNode;
|
|
|
|
mutable bool DFSInfoValid;
|
|
mutable unsigned int SlowQueries;
|
|
// Information record used during immediate dominators computation.
|
|
struct InfoRec {
|
|
unsigned DFSNum;
|
|
unsigned Parent;
|
|
unsigned Semi;
|
|
NodeT *Label;
|
|
|
|
InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(nullptr) {}
|
|
};
|
|
|
|
DenseMap<NodeT *, NodeT *> IDoms;
|
|
|
|
// Vertex - Map the DFS number to the NodeT*
|
|
std::vector<NodeT *> Vertex;
|
|
|
|
// Info - Collection of information used during the computation of idoms.
|
|
DenseMap<NodeT *, InfoRec> Info;
|
|
|
|
void reset() {
|
|
DomTreeNodes.clear();
|
|
IDoms.clear();
|
|
this->Roots.clear();
|
|
Vertex.clear();
|
|
RootNode = nullptr;
|
|
}
|
|
|
|
// NewBB is split and now it has one successor. Update dominator tree to
|
|
// reflect this change.
|
|
template <class N, class GraphT>
|
|
void Split(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
|
typename GraphT::NodeType *NewBB) {
|
|
assert(std::distance(GraphT::child_begin(NewBB),
|
|
GraphT::child_end(NewBB)) == 1 &&
|
|
"NewBB should have a single successor!");
|
|
typename GraphT::NodeType *NewBBSucc = *GraphT::child_begin(NewBB);
|
|
|
|
std::vector<typename GraphT::NodeType *> PredBlocks;
|
|
typedef GraphTraits<Inverse<N>> InvTraits;
|
|
for (typename InvTraits::ChildIteratorType
|
|
PI = InvTraits::child_begin(NewBB),
|
|
PE = InvTraits::child_end(NewBB);
|
|
PI != PE; ++PI)
|
|
PredBlocks.push_back(*PI);
|
|
|
|
assert(!PredBlocks.empty() && "No predblocks?");
|
|
|
|
bool NewBBDominatesNewBBSucc = true;
|
|
for (typename InvTraits::ChildIteratorType
|
|
PI = InvTraits::child_begin(NewBBSucc),
|
|
E = InvTraits::child_end(NewBBSucc);
|
|
PI != E; ++PI) {
|
|
typename InvTraits::NodeType *ND = *PI;
|
|
if (ND != NewBB && !DT.dominates(NewBBSucc, ND) &&
|
|
DT.isReachableFromEntry(ND)) {
|
|
NewBBDominatesNewBBSucc = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Find NewBB's immediate dominator and create new dominator tree node for
|
|
// NewBB.
|
|
NodeT *NewBBIDom = nullptr;
|
|
unsigned i = 0;
|
|
for (i = 0; i < PredBlocks.size(); ++i)
|
|
if (DT.isReachableFromEntry(PredBlocks[i])) {
|
|
NewBBIDom = PredBlocks[i];
|
|
break;
|
|
}
|
|
|
|
// It's possible that none of the predecessors of NewBB are reachable;
|
|
// in that case, NewBB itself is unreachable, so nothing needs to be
|
|
// changed.
|
|
if (!NewBBIDom)
|
|
return;
|
|
|
|
for (i = i + 1; i < PredBlocks.size(); ++i) {
|
|
if (DT.isReachableFromEntry(PredBlocks[i]))
|
|
NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]);
|
|
}
|
|
|
|
// Create the new dominator tree node... and set the idom of NewBB.
|
|
DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
|
|
|
|
// If NewBB strictly dominates other blocks, then it is now the immediate
|
|
// dominator of NewBBSucc. Update the dominator tree as appropriate.
|
|
if (NewBBDominatesNewBBSucc) {
|
|
DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc);
|
|
DT.changeImmediateDominator(NewBBSuccNode, NewBBNode);
|
|
}
|
|
}
|
|
|
|
public:
|
|
explicit DominatorTreeBase(bool isPostDom)
|
|
: DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {}
|
|
|
|
DominatorTreeBase(DominatorTreeBase &&Arg)
|
|
: DominatorBase<NodeT>(
|
|
std::move(static_cast<DominatorBase<NodeT> &>(Arg))),
|
|
DomTreeNodes(std::move(Arg.DomTreeNodes)),
|
|
RootNode(std::move(Arg.RootNode)),
|
|
DFSInfoValid(std::move(Arg.DFSInfoValid)),
|
|
SlowQueries(std::move(Arg.SlowQueries)), IDoms(std::move(Arg.IDoms)),
|
|
Vertex(std::move(Arg.Vertex)), Info(std::move(Arg.Info)) {
|
|
Arg.wipe();
|
|
}
|
|
DominatorTreeBase &operator=(DominatorTreeBase &&RHS) {
|
|
DominatorBase<NodeT>::operator=(
|
|
std::move(static_cast<DominatorBase<NodeT> &>(RHS)));
|
|
DomTreeNodes = std::move(RHS.DomTreeNodes);
|
|
RootNode = std::move(RHS.RootNode);
|
|
DFSInfoValid = std::move(RHS.DFSInfoValid);
|
|
SlowQueries = std::move(RHS.SlowQueries);
|
|
IDoms = std::move(RHS.IDoms);
|
|
Vertex = std::move(RHS.Vertex);
|
|
Info = std::move(RHS.Info);
|
|
RHS.wipe();
|
|
return *this;
|
|
}
|
|
|
|
/// compare - Return false if the other dominator tree base matches this
|
|
/// dominator tree base. Otherwise return true.
|
|
bool compare(const DominatorTreeBase &Other) const {
|
|
|
|
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes;
|
|
if (DomTreeNodes.size() != OtherDomTreeNodes.size())
|
|
return true;
|
|
|
|
for (typename DomTreeNodeMapType::const_iterator
|
|
I = this->DomTreeNodes.begin(),
|
|
E = this->DomTreeNodes.end();
|
|
I != E; ++I) {
|
|
NodeT *BB = I->first;
|
|
typename DomTreeNodeMapType::const_iterator OI =
|
|
OtherDomTreeNodes.find(BB);
|
|
if (OI == OtherDomTreeNodes.end())
|
|
return true;
|
|
|
|
DomTreeNodeBase<NodeT> &MyNd = *I->second;
|
|
DomTreeNodeBase<NodeT> &OtherNd = *OI->second;
|
|
|
|
if (MyNd.compare(&OtherNd))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void releaseMemory() { reset(); }
|
|
|
|
/// getNode - return the (Post)DominatorTree node for the specified basic
|
|
/// block. This is the same as using operator[] on this class.
|
|
///
|
|
DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const {
|
|
auto I = DomTreeNodes.find(BB);
|
|
if (I != DomTreeNodes.end())
|
|
return I->second.get();
|
|
return nullptr;
|
|
}
|
|
|
|
DomTreeNodeBase<NodeT> *operator[](NodeT *BB) const { return getNode(BB); }
|
|
|
|
/// getRootNode - This returns the entry node for the CFG of the function. If
|
|
/// this tree represents the post-dominance relations for a function, however,
|
|
/// this root may be a node with the block == NULL. This is the case when
|
|
/// there are multiple exit nodes from a particular function. Consumers of
|
|
/// post-dominance information must be capable of dealing with this
|
|
/// possibility.
|
|
///
|
|
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; }
|
|
const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
|
|
|
|
/// Get all nodes dominated by R, including R itself.
|
|
void getDescendants(NodeT *R, SmallVectorImpl<NodeT *> &Result) const {
|
|
Result.clear();
|
|
const DomTreeNodeBase<NodeT> *RN = getNode(R);
|
|
if (!RN)
|
|
return; // If R is unreachable, it will not be present in the DOM tree.
|
|
SmallVector<const DomTreeNodeBase<NodeT> *, 8> WL;
|
|
WL.push_back(RN);
|
|
|
|
while (!WL.empty()) {
|
|
const DomTreeNodeBase<NodeT> *N = WL.pop_back_val();
|
|
Result.push_back(N->getBlock());
|
|
WL.append(N->begin(), N->end());
|
|
}
|
|
}
|
|
|
|
/// properlyDominates - Returns true iff A dominates B and A != B.
|
|
/// Note that this is not a constant time operation!
|
|
///
|
|
bool properlyDominates(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
if (!A || !B)
|
|
return false;
|
|
if (A == B)
|
|
return false;
|
|
return dominates(A, B);
|
|
}
|
|
|
|
bool properlyDominates(const NodeT *A, const NodeT *B) const;
|
|
|
|
/// isReachableFromEntry - Return true if A is dominated by the entry
|
|
/// block of the function containing it.
|
|
bool isReachableFromEntry(const NodeT *A) const {
|
|
assert(!this->isPostDominator() &&
|
|
"This is not implemented for post dominators");
|
|
return isReachableFromEntry(getNode(const_cast<NodeT *>(A)));
|
|
}
|
|
|
|
bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
|
|
|
|
/// dominates - Returns true iff A dominates B. Note that this is not a
|
|
/// constant time operation!
|
|
///
|
|
bool dominates(const DomTreeNodeBase<NodeT> *A,
|
|
const DomTreeNodeBase<NodeT> *B) const {
|
|
// A node trivially dominates itself.
|
|
if (B == A)
|
|
return true;
|
|
|
|
// An unreachable node is dominated by anything.
|
|
if (!isReachableFromEntry(B))
|
|
return true;
|
|
|
|
// And dominates nothing.
|
|
if (!isReachableFromEntry(A))
|
|
return false;
|
|
|
|
// Compare the result of the tree walk and the dfs numbers, if expensive
|
|
// checks are enabled.
|
|
#ifdef XDEBUG
|
|
assert((!DFSInfoValid ||
|
|
(dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) &&
|
|
"Tree walk disagrees with dfs numbers!");
|
|
#endif
|
|
|
|
if (DFSInfoValid)
|
|
return B->DominatedBy(A);
|
|
|
|
// If we end up with too many slow queries, just update the
|
|
// DFS numbers on the theory that we are going to keep querying.
|
|
SlowQueries++;
|
|
if (SlowQueries > 32) {
|
|
updateDFSNumbers();
|
|
return B->DominatedBy(A);
|
|
}
|
|
|
|
return dominatedBySlowTreeWalk(A, B);
|
|
}
|
|
|
|
bool dominates(const NodeT *A, const NodeT *B) const;
|
|
|
|
NodeT *getRoot() const {
|
|
assert(this->Roots.size() == 1 && "Should always have entry node!");
|
|
return this->Roots[0];
|
|
}
|
|
|
|
/// findNearestCommonDominator - Find nearest common dominator basic block
|
|
/// for basic block A and B. If there is no such block then return NULL.
|
|
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) {
|
|
assert(A->getParent() == B->getParent() &&
|
|
"Two blocks are not in same function");
|
|
|
|
// If either A or B is a entry block then it is nearest common dominator
|
|
// (for forward-dominators).
|
|
if (!this->isPostDominator()) {
|
|
NodeT &Entry = A->getParent()->front();
|
|
if (A == &Entry || B == &Entry)
|
|
return &Entry;
|
|
}
|
|
|
|
// If B dominates A then B is nearest common dominator.
|
|
if (dominates(B, A))
|
|
return B;
|
|
|
|
// If A dominates B then A is nearest common dominator.
|
|
if (dominates(A, B))
|
|
return A;
|
|
|
|
DomTreeNodeBase<NodeT> *NodeA = getNode(A);
|
|
DomTreeNodeBase<NodeT> *NodeB = getNode(B);
|
|
|
|
// If we have DFS info, then we can avoid all allocations by just querying
|
|
// it from each IDom. Note that because we call 'dominates' twice above, we
|
|
// expect to call through this code at most 16 times in a row without
|
|
// building valid DFS information. This is important as below is a *very*
|
|
// slow tree walk.
|
|
if (DFSInfoValid) {
|
|
DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
|
|
while (IDomA) {
|
|
if (NodeB->DominatedBy(IDomA))
|
|
return IDomA->getBlock();
|
|
IDomA = IDomA->getIDom();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Collect NodeA dominators set.
|
|
SmallPtrSet<DomTreeNodeBase<NodeT> *, 16> NodeADoms;
|
|
NodeADoms.insert(NodeA);
|
|
DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom();
|
|
while (IDomA) {
|
|
NodeADoms.insert(IDomA);
|
|
IDomA = IDomA->getIDom();
|
|
}
|
|
|
|
// Walk NodeB immediate dominators chain and find common dominator node.
|
|
DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom();
|
|
while (IDomB) {
|
|
if (NodeADoms.count(IDomB) != 0)
|
|
return IDomB->getBlock();
|
|
|
|
IDomB = IDomB->getIDom();
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) {
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// const is re-introduced on the return type.
|
|
return findNearestCommonDominator(const_cast<NodeT *>(A),
|
|
const_cast<NodeT *>(B));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// API to update (Post)DominatorTree information based on modifications to
|
|
// the CFG...
|
|
|
|
/// addNewBlock - Add a new node to the dominator tree information. This
|
|
/// creates a new node as a child of DomBB dominator node,linking it into
|
|
/// the children list of the immediate dominator.
|
|
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) {
|
|
assert(getNode(BB) == nullptr && "Block already in dominator tree!");
|
|
DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB);
|
|
assert(IDomNode && "Not immediate dominator specified for block!");
|
|
DFSInfoValid = false;
|
|
return (DomTreeNodes[BB] = IDomNode->addChild(
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
|
|
}
|
|
|
|
/// changeImmediateDominator - This method is used to update the dominator
|
|
/// tree information when a node's immediate dominator changes.
|
|
///
|
|
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N,
|
|
DomTreeNodeBase<NodeT> *NewIDom) {
|
|
assert(N && NewIDom && "Cannot change null node pointers!");
|
|
DFSInfoValid = false;
|
|
N->setIDom(NewIDom);
|
|
}
|
|
|
|
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) {
|
|
changeImmediateDominator(getNode(BB), getNode(NewBB));
|
|
}
|
|
|
|
/// eraseNode - Removes a node from the dominator tree. Block must not
|
|
/// dominate any other blocks. Removes node from its immediate dominator's
|
|
/// children list. Deletes dominator node associated with basic block BB.
|
|
void eraseNode(NodeT *BB) {
|
|
DomTreeNodeBase<NodeT> *Node = getNode(BB);
|
|
assert(Node && "Removing node that isn't in dominator tree.");
|
|
assert(Node->getChildren().empty() && "Node is not a leaf node.");
|
|
|
|
// Remove node from immediate dominator's children list.
|
|
DomTreeNodeBase<NodeT> *IDom = Node->getIDom();
|
|
if (IDom) {
|
|
typename std::vector<DomTreeNodeBase<NodeT> *>::iterator I =
|
|
std::find(IDom->Children.begin(), IDom->Children.end(), Node);
|
|
assert(I != IDom->Children.end() &&
|
|
"Not in immediate dominator children set!");
|
|
// I am no longer your child...
|
|
IDom->Children.erase(I);
|
|
}
|
|
|
|
DomTreeNodes.erase(BB);
|
|
}
|
|
|
|
/// splitBlock - BB is split and now it has one successor. Update dominator
|
|
/// tree to reflect this change.
|
|
void splitBlock(NodeT *NewBB) {
|
|
if (this->IsPostDominators)
|
|
this->Split<Inverse<NodeT *>, GraphTraits<Inverse<NodeT *>>>(*this,
|
|
NewBB);
|
|
else
|
|
this->Split<NodeT *, GraphTraits<NodeT *>>(*this, NewBB);
|
|
}
|
|
|
|
/// print - Convert to human readable form
|
|
///
|
|
void print(raw_ostream &o) const {
|
|
o << "=============================--------------------------------\n";
|
|
if (this->isPostDominator())
|
|
o << "Inorder PostDominator Tree: ";
|
|
else
|
|
o << "Inorder Dominator Tree: ";
|
|
if (!this->DFSInfoValid)
|
|
o << "DFSNumbers invalid: " << SlowQueries << " slow queries.";
|
|
o << "\n";
|
|
|
|
// The postdom tree can have a null root if there are no returns.
|
|
if (getRootNode())
|
|
PrintDomTree<NodeT>(getRootNode(), o, 1);
|
|
}
|
|
|
|
protected:
|
|
template <class GraphT>
|
|
friend typename GraphT::NodeType *
|
|
Eval(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
|
typename GraphT::NodeType *V, unsigned LastLinked);
|
|
|
|
template <class GraphT>
|
|
friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType> &DT,
|
|
typename GraphT::NodeType *V, unsigned N);
|
|
|
|
template <class FuncT, class N>
|
|
friend void
|
|
Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType> &DT, FuncT &F);
|
|
|
|
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
|
|
/// dominator tree in dfs order.
|
|
void updateDFSNumbers() const {
|
|
unsigned DFSNum = 0;
|
|
|
|
SmallVector<std::pair<const DomTreeNodeBase<NodeT> *,
|
|
typename DomTreeNodeBase<NodeT>::const_iterator>,
|
|
32> WorkStack;
|
|
|
|
const DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
|
|
|
|
if (!ThisRoot)
|
|
return;
|
|
|
|
// Even in the case of multiple exits that form the post dominator root
|
|
// nodes, do not iterate over all exits, but start from the virtual root
|
|
// node. Otherwise bbs, that are not post dominated by any exit but by the
|
|
// virtual root node, will never be assigned a DFS number.
|
|
WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin()));
|
|
ThisRoot->DFSNumIn = DFSNum++;
|
|
|
|
while (!WorkStack.empty()) {
|
|
const DomTreeNodeBase<NodeT> *Node = WorkStack.back().first;
|
|
typename DomTreeNodeBase<NodeT>::const_iterator ChildIt =
|
|
WorkStack.back().second;
|
|
|
|
// If we visited all of the children of this node, "recurse" back up the
|
|
// stack setting the DFOutNum.
|
|
if (ChildIt == Node->end()) {
|
|
Node->DFSNumOut = DFSNum++;
|
|
WorkStack.pop_back();
|
|
} else {
|
|
// Otherwise, recursively visit this child.
|
|
const DomTreeNodeBase<NodeT> *Child = *ChildIt;
|
|
++WorkStack.back().second;
|
|
|
|
WorkStack.push_back(std::make_pair(Child, Child->begin()));
|
|
Child->DFSNumIn = DFSNum++;
|
|
}
|
|
}
|
|
|
|
SlowQueries = 0;
|
|
DFSInfoValid = true;
|
|
}
|
|
|
|
DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) {
|
|
if (DomTreeNodeBase<NodeT> *Node = getNode(BB))
|
|
return Node;
|
|
|
|
// Haven't calculated this node yet? Get or calculate the node for the
|
|
// immediate dominator.
|
|
NodeT *IDom = getIDom(BB);
|
|
|
|
assert(IDom || this->DomTreeNodes[nullptr]);
|
|
DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
|
|
|
|
// Add a new tree node for this NodeT, and link it as a child of
|
|
// IDomNode
|
|
return (this->DomTreeNodes[BB] = IDomNode->addChild(
|
|
llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode))).get();
|
|
}
|
|
|
|
NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
|
|
|
|
void addRoot(NodeT *BB) { this->Roots.push_back(BB); }
|
|
|
|
public:
|
|
/// recalculate - compute a dominator tree for the given function
|
|
template <class FT> void recalculate(FT &F) {
|
|
typedef GraphTraits<FT *> TraitsTy;
|
|
reset();
|
|
this->Vertex.push_back(nullptr);
|
|
|
|
if (!this->IsPostDominators) {
|
|
// Initialize root
|
|
NodeT *entry = TraitsTy::getEntryNode(&F);
|
|
this->Roots.push_back(entry);
|
|
this->IDoms[entry] = nullptr;
|
|
this->DomTreeNodes[entry] = nullptr;
|
|
|
|
Calculate<FT, NodeT *>(*this, F);
|
|
} else {
|
|
// Initialize the roots list
|
|
for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F),
|
|
E = TraitsTy::nodes_end(&F);
|
|
I != E; ++I) {
|
|
if (TraitsTy::child_begin(I) == TraitsTy::child_end(I))
|
|
addRoot(I);
|
|
|
|
// Prepopulate maps so that we don't get iterator invalidation issues
|
|
// later.
|
|
this->IDoms[I] = nullptr;
|
|
this->DomTreeNodes[I] = nullptr;
|
|
}
|
|
|
|
Calculate<FT, Inverse<NodeT *>>(*this, F);
|
|
}
|
|
}
|
|
};
|
|
|
|
// These two functions are declared out of line as a workaround for building
|
|
// with old (< r147295) versions of clang because of pr11642.
|
|
template <class NodeT>
|
|
bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) const {
|
|
if (A == B)
|
|
return true;
|
|
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// this function doesn't actually return the values returned
|
|
// from getNode.
|
|
return dominates(getNode(const_cast<NodeT *>(A)),
|
|
getNode(const_cast<NodeT *>(B)));
|
|
}
|
|
template <class NodeT>
|
|
bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A,
|
|
const NodeT *B) const {
|
|
if (A == B)
|
|
return false;
|
|
|
|
// Cast away the const qualifiers here. This is ok since
|
|
// this function doesn't actually return the values returned
|
|
// from getNode.
|
|
return dominates(getNode(const_cast<NodeT *>(A)),
|
|
getNode(const_cast<NodeT *>(B)));
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|