mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 17:33:24 +00:00
8ae0263471
This is a work in progress. So far we have some basic loop analysis to help determine where it is useful to split a live range around a loop. The actual loop splitting code from Splitter.cpp is also going to move in here. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@108842 91177308-0d34-0410-b5e6-96231b3b80d8
437 lines
15 KiB
C++
437 lines
15 KiB
C++
//===-------- InlineSpiller.cpp - Insert spills and restores inline -------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// The inline spiller modifies the machine function directly instead of
|
|
// inserting spills and restores in VirtRegMap.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "spiller"
|
|
#include "Spiller.h"
|
|
#include "SplitKit.h"
|
|
#include "VirtRegMap.h"
|
|
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineLoopInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class InlineSpiller : public Spiller {
|
|
MachineFunction &mf_;
|
|
LiveIntervals &lis_;
|
|
MachineLoopInfo &loops_;
|
|
VirtRegMap &vrm_;
|
|
MachineFrameInfo &mfi_;
|
|
MachineRegisterInfo &mri_;
|
|
const TargetInstrInfo &tii_;
|
|
const TargetRegisterInfo &tri_;
|
|
const BitVector reserved_;
|
|
|
|
SplitAnalysis splitAnalysis_;
|
|
|
|
// Variables that are valid during spill(), but used by multiple methods.
|
|
LiveInterval *li_;
|
|
std::vector<LiveInterval*> *newIntervals_;
|
|
const TargetRegisterClass *rc_;
|
|
int stackSlot_;
|
|
const SmallVectorImpl<LiveInterval*> *spillIs_;
|
|
|
|
// Values of the current interval that can potentially remat.
|
|
SmallPtrSet<VNInfo*, 8> reMattable_;
|
|
|
|
// Values in reMattable_ that failed to remat at some point.
|
|
SmallPtrSet<VNInfo*, 8> usedValues_;
|
|
|
|
~InlineSpiller() {}
|
|
|
|
public:
|
|
InlineSpiller(MachineFunction *mf, LiveIntervals *lis, MachineLoopInfo *mli,
|
|
VirtRegMap *vrm)
|
|
: mf_(*mf), lis_(*lis), loops_(*mli), vrm_(*vrm),
|
|
mfi_(*mf->getFrameInfo()),
|
|
mri_(mf->getRegInfo()),
|
|
tii_(*mf->getTarget().getInstrInfo()),
|
|
tri_(*mf->getTarget().getRegisterInfo()),
|
|
reserved_(tri_.getReservedRegs(mf_)),
|
|
splitAnalysis_(mf, lis, mli) {}
|
|
|
|
void spill(LiveInterval *li,
|
|
std::vector<LiveInterval*> &newIntervals,
|
|
SmallVectorImpl<LiveInterval*> &spillIs,
|
|
SlotIndex *earliestIndex);
|
|
|
|
private:
|
|
bool split();
|
|
|
|
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx,
|
|
SlotIndex UseIdx);
|
|
bool reMaterializeFor(MachineBasicBlock::iterator MI);
|
|
void reMaterializeAll();
|
|
|
|
bool foldMemoryOperand(MachineBasicBlock::iterator MI,
|
|
const SmallVectorImpl<unsigned> &Ops);
|
|
void insertReload(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
|
|
void insertSpill(LiveInterval &NewLI, MachineBasicBlock::iterator MI);
|
|
};
|
|
}
|
|
|
|
namespace llvm {
|
|
Spiller *createInlineSpiller(MachineFunction *mf,
|
|
LiveIntervals *lis,
|
|
MachineLoopInfo *mli,
|
|
VirtRegMap *vrm) {
|
|
return new InlineSpiller(mf, lis, mli, vrm);
|
|
}
|
|
}
|
|
|
|
/// split - try splitting the current interval into pieces that may allocate
|
|
/// separately. Return true if successful.
|
|
bool InlineSpiller::split() {
|
|
// FIXME: Add intra-MBB splitting.
|
|
if (lis_.intervalIsInOneMBB(*li_))
|
|
return false;
|
|
|
|
splitAnalysis_.analyze(li_);
|
|
|
|
if (const MachineLoop *loop = splitAnalysis_.getBestSplitLoop()) {
|
|
if (splitAroundLoop(splitAnalysis_, loop))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
|
|
/// OrigIdx are also available with the same value at UseIdx.
|
|
bool InlineSpiller::allUsesAvailableAt(const MachineInstr *OrigMI,
|
|
SlotIndex OrigIdx,
|
|
SlotIndex UseIdx) {
|
|
OrigIdx = OrigIdx.getUseIndex();
|
|
UseIdx = UseIdx.getUseIndex();
|
|
for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &MO = OrigMI->getOperand(i);
|
|
if (!MO.isReg() || !MO.getReg() || MO.getReg() == li_->reg)
|
|
continue;
|
|
// Reserved registers are OK.
|
|
if (MO.isUndef() || !lis_.hasInterval(MO.getReg()))
|
|
continue;
|
|
// We don't want to move any defs.
|
|
if (MO.isDef())
|
|
return false;
|
|
// We cannot depend on virtual registers in spillIs_. They will be spilled.
|
|
for (unsigned si = 0, se = spillIs_->size(); si != se; ++si)
|
|
if ((*spillIs_)[si]->reg == MO.getReg())
|
|
return false;
|
|
|
|
LiveInterval &LI = lis_.getInterval(MO.getReg());
|
|
const VNInfo *OVNI = LI.getVNInfoAt(OrigIdx);
|
|
if (!OVNI)
|
|
continue;
|
|
if (OVNI != LI.getVNInfoAt(UseIdx))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// reMaterializeFor - Attempt to rematerialize li_->reg before MI instead of
|
|
/// reloading it.
|
|
bool InlineSpiller::reMaterializeFor(MachineBasicBlock::iterator MI) {
|
|
SlotIndex UseIdx = lis_.getInstructionIndex(MI).getUseIndex();
|
|
VNInfo *OrigVNI = li_->getVNInfoAt(UseIdx);
|
|
if (!OrigVNI) {
|
|
DEBUG(dbgs() << "\tadding <undef> flags: ");
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg)
|
|
MO.setIsUndef();
|
|
}
|
|
DEBUG(dbgs() << UseIdx << '\t' << *MI);
|
|
return true;
|
|
}
|
|
if (!reMattable_.count(OrigVNI)) {
|
|
DEBUG(dbgs() << "\tusing non-remat valno " << OrigVNI->id << ": "
|
|
<< UseIdx << '\t' << *MI);
|
|
return false;
|
|
}
|
|
MachineInstr *OrigMI = lis_.getInstructionFromIndex(OrigVNI->def);
|
|
if (!allUsesAvailableAt(OrigMI, OrigVNI->def, UseIdx)) {
|
|
usedValues_.insert(OrigVNI);
|
|
DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << *MI);
|
|
return false;
|
|
}
|
|
|
|
// If the instruction also writes li_->reg, it had better not require the same
|
|
// register for uses and defs.
|
|
bool Reads, Writes;
|
|
SmallVector<unsigned, 8> Ops;
|
|
tie(Reads, Writes) = MI->readsWritesVirtualRegister(li_->reg, &Ops);
|
|
if (Writes) {
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(Ops[i]);
|
|
if (MO.isUse() ? MI->isRegTiedToDefOperand(Ops[i]) : MO.getSubReg()) {
|
|
usedValues_.insert(OrigVNI);
|
|
DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << *MI);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Alocate a new register for the remat.
|
|
unsigned NewVReg = mri_.createVirtualRegister(rc_);
|
|
vrm_.grow();
|
|
LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg);
|
|
NewLI.markNotSpillable();
|
|
newIntervals_->push_back(&NewLI);
|
|
|
|
// Finally we can rematerialize OrigMI before MI.
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
tii_.reMaterialize(MBB, MI, NewLI.reg, 0, OrigMI, tri_);
|
|
MachineBasicBlock::iterator RematMI = MI;
|
|
SlotIndex DefIdx = lis_.InsertMachineInstrInMaps(--RematMI).getDefIndex();
|
|
DEBUG(dbgs() << "\tremat: " << DefIdx << '\t' << *RematMI);
|
|
|
|
// Replace operands
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(Ops[i]);
|
|
if (MO.isReg() && MO.isUse() && MO.getReg() == li_->reg) {
|
|
MO.setReg(NewVReg);
|
|
MO.setIsKill();
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "\t " << UseIdx << '\t' << *MI);
|
|
|
|
VNInfo *DefVNI = NewLI.getNextValue(DefIdx, 0, true,
|
|
lis_.getVNInfoAllocator());
|
|
NewLI.addRange(LiveRange(DefIdx, UseIdx.getDefIndex(), DefVNI));
|
|
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
|
|
return true;
|
|
}
|
|
|
|
/// reMaterializeAll - Try to rematerialize as many uses of li_ as possible,
|
|
/// and trim the live ranges after.
|
|
void InlineSpiller::reMaterializeAll() {
|
|
// Do a quick scan of the interval values to find if any are remattable.
|
|
reMattable_.clear();
|
|
usedValues_.clear();
|
|
for (LiveInterval::const_vni_iterator I = li_->vni_begin(),
|
|
E = li_->vni_end(); I != E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
if (VNI->isUnused() || !VNI->isDefAccurate())
|
|
continue;
|
|
MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def);
|
|
if (!DefMI || !tii_.isTriviallyReMaterializable(DefMI))
|
|
continue;
|
|
reMattable_.insert(VNI);
|
|
}
|
|
|
|
// Often, no defs are remattable.
|
|
if (reMattable_.empty())
|
|
return;
|
|
|
|
// Try to remat before all uses of li_->reg.
|
|
bool anyRemat = false;
|
|
for (MachineRegisterInfo::use_nodbg_iterator
|
|
RI = mri_.use_nodbg_begin(li_->reg);
|
|
MachineInstr *MI = RI.skipInstruction();)
|
|
anyRemat |= reMaterializeFor(MI);
|
|
|
|
if (!anyRemat)
|
|
return;
|
|
|
|
// Remove any values that were completely rematted.
|
|
bool anyRemoved = false;
|
|
for (SmallPtrSet<VNInfo*, 8>::iterator I = reMattable_.begin(),
|
|
E = reMattable_.end(); I != E; ++I) {
|
|
VNInfo *VNI = *I;
|
|
if (VNI->hasPHIKill() || usedValues_.count(VNI))
|
|
continue;
|
|
MachineInstr *DefMI = lis_.getInstructionFromIndex(VNI->def);
|
|
DEBUG(dbgs() << "\tremoving dead def: " << VNI->def << '\t' << *DefMI);
|
|
lis_.RemoveMachineInstrFromMaps(DefMI);
|
|
vrm_.RemoveMachineInstrFromMaps(DefMI);
|
|
DefMI->eraseFromParent();
|
|
li_->removeValNo(VNI);
|
|
anyRemoved = true;
|
|
}
|
|
|
|
if (!anyRemoved)
|
|
return;
|
|
|
|
// Removing values may cause debug uses where li_ is not live.
|
|
for (MachineRegisterInfo::use_iterator RI = mri_.use_begin(li_->reg);
|
|
MachineInstr *MI = RI.skipInstruction();) {
|
|
if (!MI->isDebugValue())
|
|
continue;
|
|
// Try to preserve the debug value if li_ is live immediately after it.
|
|
MachineBasicBlock::iterator NextMI = MI;
|
|
++NextMI;
|
|
if (NextMI != MI->getParent()->end() && !lis_.isNotInMIMap(NextMI)) {
|
|
SlotIndex NearIdx = lis_.getInstructionIndex(NextMI);
|
|
if (li_->liveAt(NearIdx))
|
|
continue;
|
|
}
|
|
DEBUG(dbgs() << "Removing debug info due to remat:" << "\t" << *MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// foldMemoryOperand - Try folding stack slot references in Ops into MI.
|
|
/// Return true on success, and MI will be erased.
|
|
bool InlineSpiller::foldMemoryOperand(MachineBasicBlock::iterator MI,
|
|
const SmallVectorImpl<unsigned> &Ops) {
|
|
// TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
|
|
// operands.
|
|
SmallVector<unsigned, 8> FoldOps;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
unsigned Idx = Ops[i];
|
|
MachineOperand &MO = MI->getOperand(Idx);
|
|
if (MO.isImplicit())
|
|
continue;
|
|
// FIXME: Teach targets to deal with subregs.
|
|
if (MO.getSubReg())
|
|
return false;
|
|
// Tied use operands should not be passed to foldMemoryOperand.
|
|
if (!MI->isRegTiedToDefOperand(Idx))
|
|
FoldOps.push_back(Idx);
|
|
}
|
|
|
|
MachineInstr *FoldMI = tii_.foldMemoryOperand(MI, FoldOps, stackSlot_);
|
|
if (!FoldMI)
|
|
return false;
|
|
lis_.ReplaceMachineInstrInMaps(MI, FoldMI);
|
|
vrm_.addSpillSlotUse(stackSlot_, FoldMI);
|
|
MI->eraseFromParent();
|
|
DEBUG(dbgs() << "\tfolded: " << *FoldMI);
|
|
return true;
|
|
}
|
|
|
|
/// insertReload - Insert a reload of NewLI.reg before MI.
|
|
void InlineSpiller::insertReload(LiveInterval &NewLI,
|
|
MachineBasicBlock::iterator MI) {
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
|
|
tii_.loadRegFromStackSlot(MBB, MI, NewLI.reg, stackSlot_, rc_, &tri_);
|
|
--MI; // Point to load instruction.
|
|
SlotIndex LoadIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
|
|
vrm_.addSpillSlotUse(stackSlot_, MI);
|
|
DEBUG(dbgs() << "\treload: " << LoadIdx << '\t' << *MI);
|
|
VNInfo *LoadVNI = NewLI.getNextValue(LoadIdx, 0, true,
|
|
lis_.getVNInfoAllocator());
|
|
NewLI.addRange(LiveRange(LoadIdx, Idx, LoadVNI));
|
|
}
|
|
|
|
/// insertSpill - Insert a spill of NewLI.reg after MI.
|
|
void InlineSpiller::insertSpill(LiveInterval &NewLI,
|
|
MachineBasicBlock::iterator MI) {
|
|
MachineBasicBlock &MBB = *MI->getParent();
|
|
SlotIndex Idx = lis_.getInstructionIndex(MI).getDefIndex();
|
|
tii_.storeRegToStackSlot(MBB, ++MI, NewLI.reg, true, stackSlot_, rc_, &tri_);
|
|
--MI; // Point to store instruction.
|
|
SlotIndex StoreIdx = lis_.InsertMachineInstrInMaps(MI).getDefIndex();
|
|
vrm_.addSpillSlotUse(stackSlot_, MI);
|
|
DEBUG(dbgs() << "\tspilled: " << StoreIdx << '\t' << *MI);
|
|
VNInfo *StoreVNI = NewLI.getNextValue(Idx, 0, true,
|
|
lis_.getVNInfoAllocator());
|
|
NewLI.addRange(LiveRange(Idx, StoreIdx, StoreVNI));
|
|
}
|
|
|
|
void InlineSpiller::spill(LiveInterval *li,
|
|
std::vector<LiveInterval*> &newIntervals,
|
|
SmallVectorImpl<LiveInterval*> &spillIs,
|
|
SlotIndex *earliestIndex) {
|
|
DEBUG(dbgs() << "Inline spilling " << *li << "\n");
|
|
assert(li->isSpillable() && "Attempting to spill already spilled value.");
|
|
assert(!li->isStackSlot() && "Trying to spill a stack slot.");
|
|
|
|
li_ = li;
|
|
newIntervals_ = &newIntervals;
|
|
rc_ = mri_.getRegClass(li->reg);
|
|
spillIs_ = &spillIs;
|
|
|
|
if (split())
|
|
return;
|
|
|
|
reMaterializeAll();
|
|
|
|
// Remat may handle everything.
|
|
if (li_->empty())
|
|
return;
|
|
|
|
stackSlot_ = vrm_.assignVirt2StackSlot(li->reg);
|
|
|
|
// Iterate over instructions using register.
|
|
for (MachineRegisterInfo::reg_iterator RI = mri_.reg_begin(li->reg);
|
|
MachineInstr *MI = RI.skipInstruction();) {
|
|
|
|
// Debug values are not allowed to affect codegen.
|
|
if (MI->isDebugValue()) {
|
|
// Modify DBG_VALUE now that the value is in a spill slot.
|
|
uint64_t Offset = MI->getOperand(1).getImm();
|
|
const MDNode *MDPtr = MI->getOperand(2).getMetadata();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
if (MachineInstr *NewDV = tii_.emitFrameIndexDebugValue(mf_, stackSlot_,
|
|
Offset, MDPtr, DL)) {
|
|
DEBUG(dbgs() << "Modifying debug info due to spill:" << "\t" << *MI);
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
MBB->insert(MBB->erase(MI), NewDV);
|
|
} else {
|
|
DEBUG(dbgs() << "Removing debug info due to spill:" << "\t" << *MI);
|
|
MI->eraseFromParent();
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// Analyze instruction.
|
|
bool Reads, Writes;
|
|
SmallVector<unsigned, 8> Ops;
|
|
tie(Reads, Writes) = MI->readsWritesVirtualRegister(li->reg, &Ops);
|
|
|
|
// Attempt to fold memory ops.
|
|
if (foldMemoryOperand(MI, Ops))
|
|
continue;
|
|
|
|
// Allocate interval around instruction.
|
|
// FIXME: Infer regclass from instruction alone.
|
|
unsigned NewVReg = mri_.createVirtualRegister(rc_);
|
|
vrm_.grow();
|
|
LiveInterval &NewLI = lis_.getOrCreateInterval(NewVReg);
|
|
NewLI.markNotSpillable();
|
|
|
|
if (Reads)
|
|
insertReload(NewLI, MI);
|
|
|
|
// Rewrite instruction operands.
|
|
bool hasLiveDef = false;
|
|
for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(Ops[i]);
|
|
MO.setReg(NewVReg);
|
|
if (MO.isUse()) {
|
|
if (!MI->isRegTiedToDefOperand(Ops[i]))
|
|
MO.setIsKill();
|
|
} else {
|
|
if (!MO.isDead())
|
|
hasLiveDef = true;
|
|
}
|
|
}
|
|
|
|
// FIXME: Use a second vreg if instruction has no tied ops.
|
|
if (Writes && hasLiveDef)
|
|
insertSpill(NewLI, MI);
|
|
|
|
DEBUG(dbgs() << "\tinterval: " << NewLI << '\n');
|
|
newIntervals.push_back(&NewLI);
|
|
}
|
|
}
|