llvm-6502/lib/Target/X86/X86Subtarget.cpp
Rafael Espindola fc05f402ea Make ARM an X86 memcpy expansion more similar to each other.
Now both subtarget define getMaxInlineSizeThreshold and the expansion uses it.

This should not change generated code.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@43552 91177308-0d34-0410-b5e6-96231b3b80d8
2007-10-31 11:52:06 +00:00

298 lines
8.9 KiB
C++

//===-- X86Subtarget.cpp - X86 Subtarget Information ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Begeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtarget.
//
//===----------------------------------------------------------------------===//
#include "X86Subtarget.h"
#include "X86GenSubtarget.inc"
#include "llvm/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
cl::opt<X86Subtarget::AsmWriterFlavorTy>
AsmWriterFlavor("x86-asm-syntax", cl::init(X86Subtarget::Unset),
cl::desc("Choose style of code to emit from X86 backend:"),
cl::values(
clEnumValN(X86Subtarget::ATT, "att", " Emit AT&T-style assembly"),
clEnumValN(X86Subtarget::Intel, "intel", " Emit Intel-style assembly"),
clEnumValEnd));
/// True if accessing the GV requires an extra load. For Windows, dllimported
/// symbols are indirect, loading the value at address GV rather then the
/// value of GV itself. This means that the GlobalAddress must be in the base
/// or index register of the address, not the GV offset field.
bool X86Subtarget::GVRequiresExtraLoad(const GlobalValue* GV,
const TargetMachine& TM,
bool isDirectCall) const
{
// FIXME: PIC
if (TM.getRelocationModel() != Reloc::Static)
if (isTargetDarwin()) {
return (!isDirectCall &&
(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() ||
(GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode())));
} else if (TM.getRelocationModel() == Reloc::PIC_ && isPICStyleGOT()) {
// Extra load is needed for all non-statics.
return (!isDirectCall &&
(GV->isDeclaration() || !GV->hasInternalLinkage()));
} else if (isTargetCygMing() || isTargetWindows()) {
return (GV->hasDLLImportLinkage());
}
return false;
}
/// GetCpuIDAndInfo - Execute the specified cpuid and return the 4 values in the
/// specified arguments. If we can't run cpuid on the host, return true.
bool X86::GetCpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
unsigned *rECX, unsigned *rEDX) {
#if defined(__x86_64__)
// gcc doesn't know cpuid would clobber ebx/rbx. Preseve it manually.
asm ("movq\t%%rbx, %%rsi\n\t"
"cpuid\n\t"
"xchgq\t%%rbx, %%rsi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(i386) || defined(__i386__) || defined(__x86__) || defined(_M_IX86)
#if defined(__GNUC__)
asm ("movl\t%%ebx, %%esi\n\t"
"cpuid\n\t"
"xchgl\t%%ebx, %%esi\n\t"
: "=a" (*rEAX),
"=S" (*rEBX),
"=c" (*rECX),
"=d" (*rEDX)
: "a" (value));
return false;
#elif defined(_MSC_VER)
__asm {
mov eax,value
cpuid
mov esi,rEAX
mov dword ptr [esi],eax
mov esi,rEBX
mov dword ptr [esi],ebx
mov esi,rECX
mov dword ptr [esi],ecx
mov esi,rEDX
mov dword ptr [esi],edx
}
return false;
#endif
#endif
return true;
}
void X86Subtarget::AutoDetectSubtargetFeatures() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
union {
unsigned u[3];
char c[12];
} text;
if (X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1))
return;
X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
if ((EDX >> 23) & 0x1) X86SSELevel = MMX;
if ((EDX >> 25) & 0x1) X86SSELevel = SSE1;
if ((EDX >> 26) & 0x1) X86SSELevel = SSE2;
if (ECX & 0x1) X86SSELevel = SSE3;
if ((ECX >> 9) & 0x1) X86SSELevel = SSSE3;
if (memcmp(text.c, "GenuineIntel", 12) == 0 ||
memcmp(text.c, "AuthenticAMD", 12) == 0) {
X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
HasX86_64 = (EDX >> 29) & 0x1;
}
}
static const char *GetCurrentX86CPU() {
unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
if (X86::GetCpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX))
return "generic";
unsigned Family = (EAX >> 8) & 0xf; // Bits 8 - 11
unsigned Model = (EAX >> 4) & 0xf; // Bits 4 - 7
X86::GetCpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
bool Em64T = (EDX >> 29) & 0x1;
union {
unsigned u[3];
char c[12];
} text;
X86::GetCpuIDAndInfo(0, &EAX, text.u+0, text.u+2, text.u+1);
if (memcmp(text.c, "GenuineIntel", 12) == 0) {
switch (Family) {
case 3:
return "i386";
case 4:
return "i486";
case 5:
switch (Model) {
case 4: return "pentium-mmx";
default: return "pentium";
}
case 6:
switch (Model) {
case 1: return "pentiumpro";
case 3:
case 5:
case 6: return "pentium2";
case 7:
case 8:
case 10:
case 11: return "pentium3";
case 9:
case 13: return "pentium-m";
case 14: return "yonah";
case 15: return "core2";
default: return "i686";
}
case 15: {
switch (Model) {
case 3:
case 4:
return (Em64T) ? "nocona" : "prescott";
default:
return (Em64T) ? "x86-64" : "pentium4";
}
}
default:
return "generic";
}
} else if (memcmp(text.c, "AuthenticAMD", 12) == 0) {
// FIXME: this poorly matches the generated SubtargetFeatureKV table. There
// appears to be no way to generate the wide variety of AMD-specific targets
// from the information returned from CPUID.
switch (Family) {
case 4:
return "i486";
case 5:
switch (Model) {
case 6:
case 7: return "k6";
case 8: return "k6-2";
case 9:
case 13: return "k6-3";
default: return "pentium";
}
case 6:
switch (Model) {
case 4: return "athlon-tbird";
case 6:
case 7:
case 8: return "athlon-mp";
case 10: return "athlon-xp";
default: return "athlon";
}
case 15:
switch (Model) {
case 1: return "opteron";
case 5: return "athlon-fx"; // also opteron
default: return "athlon64";
}
default:
return "generic";
}
} else {
return "generic";
}
}
X86Subtarget::X86Subtarget(const Module &M, const std::string &FS, bool is64Bit)
: AsmFlavor(AsmWriterFlavor)
, PICStyle(PICStyle::None)
, X86SSELevel(NoMMXSSE)
, HasX86_64(false)
, stackAlignment(8)
// FIXME: this is a known good value for Yonah. How about others?
, MaxInlineSizeThreshold(128)
, Is64Bit(is64Bit)
, HasLow4GUserAddress(true)
, TargetType(isELF) { // Default to ELF unless otherwise specified.
// Determine default and user specified characteristics
if (!FS.empty()) {
// If feature string is not empty, parse features string.
std::string CPU = GetCurrentX86CPU();
ParseSubtargetFeatures(FS, CPU);
if (Is64Bit && !HasX86_64)
cerr << "Warning: Generation of 64-bit code for a 32-bit processor "
<< "requested.\n";
if (Is64Bit && X86SSELevel < SSE2)
cerr << "Warning: 64-bit processors all have at least SSE2.\n";
} else {
// Otherwise, use CPUID to auto-detect feature set.
AutoDetectSubtargetFeatures();
}
// If requesting codegen for X86-64, make sure that 64-bit and SSE2 features
// are enabled. These are available on all x86-64 CPUs.
if (Is64Bit) {
HasX86_64 = true;
if (X86SSELevel < SSE2)
X86SSELevel = SSE2;
}
// Set the boolean corresponding to the current target triple, or the default
// if one cannot be determined, to true.
const std::string& TT = M.getTargetTriple();
if (TT.length() > 5) {
if (TT.find("cygwin") != std::string::npos)
TargetType = isCygwin;
else if (TT.find("mingw") != std::string::npos)
TargetType = isMingw;
else if (TT.find("darwin") != std::string::npos)
TargetType = isDarwin;
else if (TT.find("win32") != std::string::npos)
TargetType = isWindows;
} else if (TT.empty()) {
#if defined(__CYGWIN__)
TargetType = isCygwin;
#elif defined(__MINGW32__)
TargetType = isMingw;
#elif defined(__APPLE__)
TargetType = isDarwin;
#elif defined(_WIN32)
TargetType = isWindows;
#endif
}
// If the asm syntax hasn't been overridden on the command line, use whatever
// the target wants.
if (AsmFlavor == X86Subtarget::Unset) {
if (TargetType == isWindows) {
AsmFlavor = X86Subtarget::Intel;
} else {
AsmFlavor = X86Subtarget::ATT;
}
}
if (TargetType == isDarwin && Is64Bit)
HasLow4GUserAddress = false;
if (TargetType == isDarwin ||
TargetType == isCygwin ||
TargetType == isMingw ||
(TargetType == isELF && Is64Bit))
stackAlignment = 16;
}