llvm-6502/lib/Target/TargetSelectionDAG.td
2008-05-05 19:05:59 +00:00

937 lines
38 KiB
TableGen

//===- TargetSelectionDAG.td - Common code for DAG isels ---*- tablegen -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the target-independent interfaces used by SelectionDAG
// instruction selection generators.
//
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Selection DAG Type Constraint definitions.
//
// Note that the semantics of these constraints are hard coded into tblgen. To
// modify or add constraints, you have to hack tblgen.
//
class SDTypeConstraint<int opnum> {
int OperandNum = opnum;
}
// SDTCisVT - The specified operand has exactly this VT.
class SDTCisVT<int OpNum, ValueType vt> : SDTypeConstraint<OpNum> {
ValueType VT = vt;
}
class SDTCisPtrTy<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisInt - The specified operand is has integer type.
class SDTCisInt<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisFP - The specified operand is has floating point type.
class SDTCisFP<int OpNum> : SDTypeConstraint<OpNum>;
// SDTCisSameAs - The two specified operands have identical types.
class SDTCisSameAs<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
// SDTCisVTSmallerThanOp - The specified operand is a VT SDNode, and its type is
// smaller than the 'Other' operand.
class SDTCisVTSmallerThanOp<int OpNum, int OtherOp> : SDTypeConstraint<OpNum> {
int OtherOperandNum = OtherOp;
}
class SDTCisOpSmallerThanOp<int SmallOp, int BigOp> : SDTypeConstraint<SmallOp>{
int BigOperandNum = BigOp;
}
/// SDTCisIntVectorOfSameSize - This indicates that ThisOp and OtherOp are
/// vector types, and that ThisOp is the result of
/// MVT::getIntVectorWithNumElements with the number of elements that ThisOp
/// has.
class SDTCisIntVectorOfSameSize<int ThisOp, int OtherOp>
: SDTypeConstraint<ThisOp> {
int OtherOpNum = OtherOp;
}
/// SDTCisEltOfVec - This indicates that ThisOp is a scalar type of the same
/// type as the element type of OtherOp, which is a vector type.
class SDTCisEltOfVec<int ThisOp, int OtherOp>
: SDTypeConstraint<ThisOp> {
int OtherOpNum = OtherOp;
}
//===----------------------------------------------------------------------===//
// Selection DAG Type Profile definitions.
//
// These use the constraints defined above to describe the type requirements of
// the various nodes. These are not hard coded into tblgen, allowing targets to
// add their own if needed.
//
// SDTypeProfile - This profile describes the type requirements of a Selection
// DAG node.
class SDTypeProfile<int numresults, int numoperands,
list<SDTypeConstraint> constraints> {
int NumResults = numresults;
int NumOperands = numoperands;
list<SDTypeConstraint> Constraints = constraints;
}
// Builtin profiles.
def SDTIntLeaf: SDTypeProfile<1, 0, [SDTCisInt<0>]>; // for 'imm'.
def SDTFPLeaf : SDTypeProfile<1, 0, [SDTCisFP<0>]>; // for 'fpimm'.
def SDTPtrLeaf: SDTypeProfile<1, 0, [SDTCisPtrTy<0>]>; // for '&g'.
def SDTOther : SDTypeProfile<1, 0, [SDTCisVT<0, OtherVT>]>; // for 'vt'.
def SDTUNDEF : SDTypeProfile<1, 0, []>; // for 'undef'.
def SDTUnaryOp : SDTypeProfile<1, 1, []>; // bitconvert
def SDTIntBinOp : SDTypeProfile<1, 2, [ // add, and, or, xor, udiv, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisInt<0>
]>;
def SDTIntShiftOp : SDTypeProfile<1, 2, [ // shl, sra, srl
SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>
]>;
def SDTFPBinOp : SDTypeProfile<1, 2, [ // fadd, fmul, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisFP<0>
]>;
def SDTFPSignOp : SDTypeProfile<1, 2, [ // fcopysign.
SDTCisSameAs<0, 1>, SDTCisFP<0>, SDTCisFP<2>
]>;
def SDTFPTernaryOp : SDTypeProfile<1, 3, [ // fmadd, fnmsub, etc.
SDTCisSameAs<0, 1>, SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>, SDTCisFP<0>
]>;
def SDTIntUnaryOp : SDTypeProfile<1, 1, [ // ctlz
SDTCisSameAs<0, 1>, SDTCisInt<0>
]>;
def SDTIntExtendOp : SDTypeProfile<1, 1, [ // sext, zext, anyext
SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<1, 0>
]>;
def SDTIntTruncOp : SDTypeProfile<1, 1, [ // trunc
SDTCisInt<0>, SDTCisInt<1>, SDTCisOpSmallerThanOp<0, 1>
]>;
def SDTFPUnaryOp : SDTypeProfile<1, 1, [ // fneg, fsqrt, etc
SDTCisSameAs<0, 1>, SDTCisFP<0>
]>;
def SDTFPRoundOp : SDTypeProfile<1, 1, [ // fround
SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<0, 1>
]>;
def SDTFPExtendOp : SDTypeProfile<1, 1, [ // fextend
SDTCisFP<0>, SDTCisFP<1>, SDTCisOpSmallerThanOp<1, 0>
]>;
def SDTIntToFPOp : SDTypeProfile<1, 1, [ // [su]int_to_fp
SDTCisFP<0>, SDTCisInt<1>
]>;
def SDTFPToIntOp : SDTypeProfile<1, 1, [ // fp_to_[su]int
SDTCisInt<0>, SDTCisFP<1>
]>;
def SDTExtInreg : SDTypeProfile<1, 2, [ // sext_inreg
SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisVT<2, OtherVT>,
SDTCisVTSmallerThanOp<2, 1>
]>;
def SDTSetCC : SDTypeProfile<1, 3, [ // setcc
SDTCisInt<0>, SDTCisSameAs<1, 2>, SDTCisVT<3, OtherVT>
]>;
def SDTSelect : SDTypeProfile<1, 3, [ // select
SDTCisInt<1>, SDTCisSameAs<0, 2>, SDTCisSameAs<2, 3>
]>;
def SDTSelectCC : SDTypeProfile<1, 5, [ // select_cc
SDTCisSameAs<1, 2>, SDTCisSameAs<3, 4>, SDTCisSameAs<0, 3>,
SDTCisVT<5, OtherVT>
]>;
def SDTBr : SDTypeProfile<0, 1, [ // br
SDTCisVT<0, OtherVT>
]>;
def SDTBrcond : SDTypeProfile<0, 2, [ // brcond
SDTCisInt<0>, SDTCisVT<1, OtherVT>
]>;
def SDTBrind : SDTypeProfile<0, 1, [ // brind
SDTCisPtrTy<0>
]>;
def SDTNone : SDTypeProfile<0, 0, []>; // ret, trap
def SDTLoad : SDTypeProfile<1, 1, [ // load
SDTCisPtrTy<1>
]>;
def SDTStore : SDTypeProfile<0, 2, [ // store
SDTCisPtrTy<1>
]>;
def SDTIStore : SDTypeProfile<1, 3, [ // indexed store
SDTCisSameAs<0, 2>, SDTCisPtrTy<0>, SDTCisPtrTy<3>
]>;
def SDTVecShuffle : SDTypeProfile<1, 3, [
SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisIntVectorOfSameSize<3, 0>
]>;
def SDTVecExtract : SDTypeProfile<1, 2, [ // vector extract
SDTCisEltOfVec<0, 1>, SDTCisPtrTy<2>
]>;
def SDTVecInsert : SDTypeProfile<1, 3, [ // vector insert
SDTCisEltOfVec<2, 1>, SDTCisSameAs<0, 1>, SDTCisPtrTy<3>
]>;
def STDPrefetch : SDTypeProfile<0, 3, [ // prefetch
SDTCisPtrTy<0>, SDTCisSameAs<1, 2>, SDTCisInt<1>
]>;
def STDMemBarrier : SDTypeProfile<0, 5, [ // memory barier
SDTCisSameAs<0,1>, SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisSameAs<0,4>,
SDTCisInt<0>
]>;
def STDAtomic3 : SDTypeProfile<1, 3, [
SDTCisSameAs<0,2>, SDTCisSameAs<0,3>, SDTCisInt<0>, SDTCisPtrTy<1>
]>;
def STDAtomic2 : SDTypeProfile<1, 2, [
SDTCisSameAs<0,2>, SDTCisInt<0>, SDTCisPtrTy<1>
]>;
class SDCallSeqStart<list<SDTypeConstraint> constraints> :
SDTypeProfile<0, 1, constraints>;
class SDCallSeqEnd<list<SDTypeConstraint> constraints> :
SDTypeProfile<0, 2, constraints>;
//===----------------------------------------------------------------------===//
// Selection DAG Node Properties.
//
// Note: These are hard coded into tblgen.
//
class SDNodeProperty;
def SDNPCommutative : SDNodeProperty; // X op Y == Y op X
def SDNPAssociative : SDNodeProperty; // (X op Y) op Z == X op (Y op Z)
def SDNPHasChain : SDNodeProperty; // R/W chain operand and result
def SDNPOutFlag : SDNodeProperty; // Write a flag result
def SDNPInFlag : SDNodeProperty; // Read a flag operand
def SDNPOptInFlag : SDNodeProperty; // Optionally read a flag operand
def SDNPMayStore : SDNodeProperty; // May write to memory, sets 'mayStore'.
def SDNPMayLoad : SDNodeProperty; // May read memory, sets 'mayLoad'.
def SDNPSideEffect : SDNodeProperty; // Sets 'HasUnmodelledSideEffects'.
//===----------------------------------------------------------------------===//
// Selection DAG Node definitions.
//
class SDNode<string opcode, SDTypeProfile typeprof,
list<SDNodeProperty> props = [], string sdclass = "SDNode"> {
string Opcode = opcode;
string SDClass = sdclass;
list<SDNodeProperty> Properties = props;
SDTypeProfile TypeProfile = typeprof;
}
def set;
def implicit;
def parallel;
def node;
def srcvalue;
def imm : SDNode<"ISD::Constant" , SDTIntLeaf , [], "ConstantSDNode">;
def fpimm : SDNode<"ISD::ConstantFP", SDTFPLeaf , [], "ConstantFPSDNode">;
def vt : SDNode<"ISD::VALUETYPE" , SDTOther , [], "VTSDNode">;
def bb : SDNode<"ISD::BasicBlock", SDTOther , [], "BasicBlockSDNode">;
def cond : SDNode<"ISD::CONDCODE" , SDTOther , [], "CondCodeSDNode">;
def undef : SDNode<"ISD::UNDEF" , SDTUNDEF , []>;
def globaladdr : SDNode<"ISD::GlobalAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def tglobaladdr : SDNode<"ISD::TargetGlobalAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def globaltlsaddr : SDNode<"ISD::GlobalTLSAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def tglobaltlsaddr : SDNode<"ISD::TargetGlobalTLSAddress", SDTPtrLeaf, [],
"GlobalAddressSDNode">;
def constpool : SDNode<"ISD::ConstantPool", SDTPtrLeaf, [],
"ConstantPoolSDNode">;
def tconstpool : SDNode<"ISD::TargetConstantPool", SDTPtrLeaf, [],
"ConstantPoolSDNode">;
def jumptable : SDNode<"ISD::JumpTable", SDTPtrLeaf, [],
"JumpTableSDNode">;
def tjumptable : SDNode<"ISD::TargetJumpTable", SDTPtrLeaf, [],
"JumpTableSDNode">;
def frameindex : SDNode<"ISD::FrameIndex", SDTPtrLeaf, [],
"FrameIndexSDNode">;
def tframeindex : SDNode<"ISD::TargetFrameIndex", SDTPtrLeaf, [],
"FrameIndexSDNode">;
def externalsym : SDNode<"ISD::ExternalSymbol", SDTPtrLeaf, [],
"ExternalSymbolSDNode">;
def texternalsym: SDNode<"ISD::TargetExternalSymbol", SDTPtrLeaf, [],
"ExternalSymbolSDNode">;
def add : SDNode<"ISD::ADD" , SDTIntBinOp ,
[SDNPCommutative, SDNPAssociative]>;
def sub : SDNode<"ISD::SUB" , SDTIntBinOp>;
def mul : SDNode<"ISD::MUL" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def mulhs : SDNode<"ISD::MULHS" , SDTIntBinOp, [SDNPCommutative]>;
def mulhu : SDNode<"ISD::MULHU" , SDTIntBinOp, [SDNPCommutative]>;
def sdiv : SDNode<"ISD::SDIV" , SDTIntBinOp>;
def udiv : SDNode<"ISD::UDIV" , SDTIntBinOp>;
def srem : SDNode<"ISD::SREM" , SDTIntBinOp>;
def urem : SDNode<"ISD::UREM" , SDTIntBinOp>;
def srl : SDNode<"ISD::SRL" , SDTIntShiftOp>;
def sra : SDNode<"ISD::SRA" , SDTIntShiftOp>;
def shl : SDNode<"ISD::SHL" , SDTIntShiftOp>;
def rotl : SDNode<"ISD::ROTL" , SDTIntShiftOp>;
def rotr : SDNode<"ISD::ROTR" , SDTIntShiftOp>;
def and : SDNode<"ISD::AND" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def or : SDNode<"ISD::OR" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def xor : SDNode<"ISD::XOR" , SDTIntBinOp,
[SDNPCommutative, SDNPAssociative]>;
def addc : SDNode<"ISD::ADDC" , SDTIntBinOp,
[SDNPCommutative, SDNPOutFlag]>;
def adde : SDNode<"ISD::ADDE" , SDTIntBinOp,
[SDNPCommutative, SDNPOutFlag, SDNPInFlag]>;
def subc : SDNode<"ISD::SUBC" , SDTIntBinOp,
[SDNPOutFlag]>;
def sube : SDNode<"ISD::SUBE" , SDTIntBinOp,
[SDNPOutFlag, SDNPInFlag]>;
def sext_inreg : SDNode<"ISD::SIGN_EXTEND_INREG", SDTExtInreg>;
def bswap : SDNode<"ISD::BSWAP" , SDTIntUnaryOp>;
def ctlz : SDNode<"ISD::CTLZ" , SDTIntUnaryOp>;
def cttz : SDNode<"ISD::CTTZ" , SDTIntUnaryOp>;
def ctpop : SDNode<"ISD::CTPOP" , SDTIntUnaryOp>;
def sext : SDNode<"ISD::SIGN_EXTEND", SDTIntExtendOp>;
def zext : SDNode<"ISD::ZERO_EXTEND", SDTIntExtendOp>;
def anyext : SDNode<"ISD::ANY_EXTEND" , SDTIntExtendOp>;
def trunc : SDNode<"ISD::TRUNCATE" , SDTIntTruncOp>;
def bitconvert : SDNode<"ISD::BIT_CONVERT", SDTUnaryOp>;
def extractelt : SDNode<"ISD::EXTRACT_VECTOR_ELT", SDTVecExtract>;
def insertelt : SDNode<"ISD::INSERT_VECTOR_ELT", SDTVecInsert>;
def fadd : SDNode<"ISD::FADD" , SDTFPBinOp, [SDNPCommutative]>;
def fsub : SDNode<"ISD::FSUB" , SDTFPBinOp>;
def fmul : SDNode<"ISD::FMUL" , SDTFPBinOp, [SDNPCommutative]>;
def fdiv : SDNode<"ISD::FDIV" , SDTFPBinOp>;
def frem : SDNode<"ISD::FREM" , SDTFPBinOp>;
def fabs : SDNode<"ISD::FABS" , SDTFPUnaryOp>;
def fneg : SDNode<"ISD::FNEG" , SDTFPUnaryOp>;
def fsqrt : SDNode<"ISD::FSQRT" , SDTFPUnaryOp>;
def fsin : SDNode<"ISD::FSIN" , SDTFPUnaryOp>;
def fcos : SDNode<"ISD::FCOS" , SDTFPUnaryOp>;
def fround : SDNode<"ISD::FP_ROUND" , SDTFPRoundOp>;
def fextend : SDNode<"ISD::FP_EXTEND" , SDTFPExtendOp>;
def fcopysign : SDNode<"ISD::FCOPYSIGN" , SDTFPSignOp>;
def sint_to_fp : SDNode<"ISD::SINT_TO_FP" , SDTIntToFPOp>;
def uint_to_fp : SDNode<"ISD::UINT_TO_FP" , SDTIntToFPOp>;
def fp_to_sint : SDNode<"ISD::FP_TO_SINT" , SDTFPToIntOp>;
def fp_to_uint : SDNode<"ISD::FP_TO_UINT" , SDTFPToIntOp>;
def setcc : SDNode<"ISD::SETCC" , SDTSetCC>;
def select : SDNode<"ISD::SELECT" , SDTSelect>;
def selectcc : SDNode<"ISD::SELECT_CC" , SDTSelectCC>;
def brcond : SDNode<"ISD::BRCOND" , SDTBrcond, [SDNPHasChain]>;
def brind : SDNode<"ISD::BRIND" , SDTBrind, [SDNPHasChain]>;
def br : SDNode<"ISD::BR" , SDTBr, [SDNPHasChain]>;
def ret : SDNode<"ISD::RET" , SDTNone, [SDNPHasChain]>;
def trap : SDNode<"ISD::TRAP" , SDTNone,
[SDNPHasChain, SDNPSideEffect]>;
def prefetch : SDNode<"ISD::PREFETCH" , STDPrefetch,
[SDNPHasChain, SDNPMayLoad, SDNPMayStore]>;
def membarrier : SDNode<"ISD::MEMBARRIER" , STDMemBarrier,
[SDNPHasChain, SDNPSideEffect]>;
// Do not use atomic_* directly, use atomic_*_size (see below)
def atomic_lcs : SDNode<"ISD::ATOMIC_LCS" , STDAtomic3,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_las : SDNode<"ISD::ATOMIC_LAS" , STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_swap : SDNode<"ISD::ATOMIC_SWAP", STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_lss : SDNode<"ISD::ATOMIC_LSS" , STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_load_and : SDNode<"ISD::ATOMIC_LOAD_AND" , STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_load_or : SDNode<"ISD::ATOMIC_LOAD_OR" , STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_load_xor : SDNode<"ISD::ATOMIC_LOAD_XOR" , STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_load_min : SDNode<"ISD::ATOMIC_LOAD_MIN", STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_load_max : SDNode<"ISD::ATOMIC_LOAD_MAX", STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_load_umin : SDNode<"ISD::ATOMIC_LOAD_UMIN", STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
def atomic_load_umax : SDNode<"ISD::ATOMIC_LOAD_UMAX", STDAtomic2,
[SDNPHasChain, SDNPMayStore, SDNPMayLoad]>;
// Do not use ld, st directly. Use load, extload, sextload, zextload, store,
// and truncst (see below).
def ld : SDNode<"ISD::LOAD" , SDTLoad,
[SDNPHasChain, SDNPMayLoad]>;
def st : SDNode<"ISD::STORE" , SDTStore,
[SDNPHasChain, SDNPMayStore]>;
def ist : SDNode<"ISD::STORE" , SDTIStore,
[SDNPHasChain, SDNPMayStore]>;
def vector_shuffle : SDNode<"ISD::VECTOR_SHUFFLE", SDTVecShuffle, []>;
def build_vector : SDNode<"ISD::BUILD_VECTOR", SDTypeProfile<1, 0, []>, []>;
def scalar_to_vector : SDNode<"ISD::SCALAR_TO_VECTOR", SDTypeProfile<1, 1, []>,
[]>;
def vector_extract : SDNode<"ISD::EXTRACT_VECTOR_ELT",
SDTypeProfile<1, 2, [SDTCisPtrTy<2>]>, []>;
def vector_insert : SDNode<"ISD::INSERT_VECTOR_ELT",
SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisPtrTy<3>]>, []>;
def extract_subreg : SDNode<"ISD::EXTRACT_SUBREG",
SDTypeProfile<1, 2, []>>;
def insert_subreg : SDNode<"ISD::INSERT_SUBREG",
SDTypeProfile<1, 3, []>>;
// Nodes for intrinsics, you should use the intrinsic itself and let tblgen use
// these internally. Don't reference these directly.
def intrinsic_void : SDNode<"ISD::INTRINSIC_VOID",
SDTypeProfile<0, -1, [SDTCisPtrTy<0>]>,
[SDNPHasChain]>;
def intrinsic_w_chain : SDNode<"ISD::INTRINSIC_W_CHAIN",
SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>,
[SDNPHasChain]>;
def intrinsic_wo_chain : SDNode<"ISD::INTRINSIC_WO_CHAIN",
SDTypeProfile<1, -1, [SDTCisPtrTy<1>]>, []>;
//===----------------------------------------------------------------------===//
// Selection DAG Condition Codes
class CondCode; // ISD::CondCode enums
def SETOEQ : CondCode; def SETOGT : CondCode;
def SETOGE : CondCode; def SETOLT : CondCode; def SETOLE : CondCode;
def SETONE : CondCode; def SETO : CondCode; def SETUO : CondCode;
def SETUEQ : CondCode; def SETUGT : CondCode; def SETUGE : CondCode;
def SETULT : CondCode; def SETULE : CondCode; def SETUNE : CondCode;
def SETEQ : CondCode; def SETGT : CondCode; def SETGE : CondCode;
def SETLT : CondCode; def SETLE : CondCode; def SETNE : CondCode;
//===----------------------------------------------------------------------===//
// Selection DAG Node Transformation Functions.
//
// This mechanism allows targets to manipulate nodes in the output DAG once a
// match has been formed. This is typically used to manipulate immediate
// values.
//
class SDNodeXForm<SDNode opc, code xformFunction> {
SDNode Opcode = opc;
code XFormFunction = xformFunction;
}
def NOOP_SDNodeXForm : SDNodeXForm<imm, [{}]>;
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Fragments.
//
// Pattern fragments are reusable chunks of dags that match specific things.
// They can take arguments and have C++ predicates that control whether they
// match. They are intended to make the patterns for common instructions more
// compact and readable.
//
/// PatFrag - Represents a pattern fragment. This can match something on the
/// DAG, frame a single node to multiply nested other fragments.
///
class PatFrag<dag ops, dag frag, code pred = [{}],
SDNodeXForm xform = NOOP_SDNodeXForm> {
dag Operands = ops;
dag Fragment = frag;
code Predicate = pred;
SDNodeXForm OperandTransform = xform;
}
// PatLeaf's are pattern fragments that have no operands. This is just a helper
// to define immediates and other common things concisely.
class PatLeaf<dag frag, code pred = [{}], SDNodeXForm xform = NOOP_SDNodeXForm>
: PatFrag<(ops), frag, pred, xform>;
// Leaf fragments.
def vtInt : PatLeaf<(vt), [{ return MVT::isInteger(N->getVT()); }]>;
def vtFP : PatLeaf<(vt), [{ return MVT::isFloatingPoint(N->getVT()); }]>;
def immAllOnes : PatLeaf<(imm), [{ return N->isAllOnesValue(); }]>;
def immAllOnesV: PatLeaf<(build_vector), [{
return ISD::isBuildVectorAllOnes(N);
}]>;
def immAllOnesV_bc: PatLeaf<(bitconvert), [{
return ISD::isBuildVectorAllOnes(N);
}]>;
def immAllZerosV: PatLeaf<(build_vector), [{
return ISD::isBuildVectorAllZeros(N);
}]>;
def immAllZerosV_bc: PatLeaf<(bitconvert), [{
return ISD::isBuildVectorAllZeros(N);
}]>;
// Other helper fragments.
def not : PatFrag<(ops node:$in), (xor node:$in, immAllOnes)>;
def vnot : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV)>;
def vnot_conv : PatFrag<(ops node:$in), (xor node:$in, immAllOnesV_bc)>;
def ineg : PatFrag<(ops node:$in), (sub 0, node:$in)>;
// load fragments.
def load : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::NON_EXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED;
return false;
}]>;
// extending load fragments.
def extloadi1 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::EXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i1;
return false;
}]>;
def extloadi8 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::EXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i8;
return false;
}]>;
def extloadi16 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::EXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i16;
return false;
}]>;
def extloadi32 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::EXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i32;
return false;
}]>;
def extloadf32 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::EXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::f32;
return false;
}]>;
def extloadf64 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::EXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::f64;
return false;
}]>;
def sextloadi1 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::SEXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i1;
return false;
}]>;
def sextloadi8 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::SEXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i8;
return false;
}]>;
def sextloadi16 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::SEXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i16;
return false;
}]>;
def sextloadi32 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::SEXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i32;
return false;
}]>;
def zextloadi1 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::ZEXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i1;
return false;
}]>;
def zextloadi8 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::ZEXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i8;
return false;
}]>;
def zextloadi16 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::ZEXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i16;
return false;
}]>;
def zextloadi32 : PatFrag<(ops node:$ptr), (ld node:$ptr), [{
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
return LD->getExtensionType() == ISD::ZEXTLOAD &&
LD->getAddressingMode() == ISD::UNINDEXED &&
LD->getMemoryVT() == MVT::i32;
return false;
}]>;
// store fragments.
def store : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return !ST->isTruncatingStore() &&
ST->getAddressingMode() == ISD::UNINDEXED;
return false;
}]>;
// truncstore fragments.
def truncstorei8 : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i8 &&
ST->getAddressingMode() == ISD::UNINDEXED;
return false;
}]>;
def truncstorei16 : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i16 &&
ST->getAddressingMode() == ISD::UNINDEXED;
return false;
}]>;
def truncstorei32 : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i32 &&
ST->getAddressingMode() == ISD::UNINDEXED;
return false;
}]>;
def truncstoref32 : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::f32 &&
ST->getAddressingMode() == ISD::UNINDEXED;
return false;
}]>;
def truncstoref64 : PatFrag<(ops node:$val, node:$ptr),
(st node:$val, node:$ptr), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N))
return ST->isTruncatingStore() && ST->getMemoryVT() == MVT::f64 &&
ST->getAddressingMode() == ISD::UNINDEXED;
return false;
}]>;
// indexed store fragments.
def pre_store : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) &&
!ST->isTruncatingStore();
}
return false;
}]>;
def pre_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i1;
}
return false;
}]>;
def pre_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i8;
}
return false;
}]>;
def pre_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i16;
}
return false;
}]>;
def pre_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i32;
}
return false;
}]>;
def pre_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::PRE_INC || AM == ISD::PRE_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::f32;
}
return false;
}]>;
def post_store : PatFrag<(ops node:$val, node:$ptr, node:$offset),
(ist node:$val, node:$ptr, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return !ST->isTruncatingStore() &&
(AM == ISD::POST_INC || AM == ISD::POST_DEC);
}
return false;
}]>;
def post_truncsti1 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::POST_INC || AM == ISD::POST_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i1;
}
return false;
}]>;
def post_truncsti8 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::POST_INC || AM == ISD::POST_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i8;
}
return false;
}]>;
def post_truncsti16 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::POST_INC || AM == ISD::POST_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i16;
}
return false;
}]>;
def post_truncsti32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::POST_INC || AM == ISD::POST_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::i32;
}
return false;
}]>;
def post_truncstf32 : PatFrag<(ops node:$val, node:$base, node:$offset),
(ist node:$val, node:$base, node:$offset), [{
if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
ISD::MemIndexedMode AM = ST->getAddressingMode();
return (AM == ISD::POST_INC || AM == ISD::POST_DEC) &&
ST->isTruncatingStore() && ST->getMemoryVT() == MVT::f32;
}
return false;
}]>;
//Atomic patterns
def atomic_lcs_8 : PatFrag<(ops node:$ptr, node:$cmp, node:$swp),
(atomic_lcs node:$ptr, node:$cmp, node:$swp), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i8;
return false;
}]>;
def atomic_lcs_16 : PatFrag<(ops node:$ptr, node:$cmp, node:$swp),
(atomic_lcs node:$ptr, node:$cmp, node:$swp), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i16;
return false;
}]>;
def atomic_lcs_32 : PatFrag<(ops node:$ptr, node:$cmp, node:$swp),
(atomic_lcs node:$ptr, node:$cmp, node:$swp), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i32;
return false;
}]>;
def atomic_lcs_64 : PatFrag<(ops node:$ptr, node:$cmp, node:$swp),
(atomic_lcs node:$ptr, node:$cmp, node:$swp), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i64;
return false;
}]>;
def atomic_las_8 : PatFrag<(ops node:$ptr, node:$inc),
(atomic_las node:$ptr, node:$inc), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i8;
return false;
}]>;
def atomic_las_16 : PatFrag<(ops node:$ptr, node:$inc),
(atomic_las node:$ptr, node:$inc), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i16;
return false;
}]>;
def atomic_las_32 : PatFrag<(ops node:$ptr, node:$inc),
(atomic_las node:$ptr, node:$inc), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i32;
return false;
}]>;
def atomic_las_64 : PatFrag<(ops node:$ptr, node:$inc),
(atomic_las node:$ptr, node:$inc), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i64;
return false;
}]>;
def atomic_swap_8 : PatFrag<(ops node:$ptr, node:$inc),
(atomic_swap node:$ptr, node:$inc), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i8;
return false;
}]>;
def atomic_swap_16 : PatFrag<(ops node:$ptr, node:$inc),
(atomic_swap node:$ptr, node:$inc), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i16;
return false;
}]>;
def atomic_swap_32 : PatFrag<(ops node:$ptr, node:$inc),
(atomic_swap node:$ptr, node:$inc), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i32;
return false;
}]>;
def atomic_swap_64 : PatFrag<(ops node:$ptr, node:$inc),
(atomic_swap node:$ptr, node:$inc), [{
if (AtomicSDNode* V = dyn_cast<AtomicSDNode>(N))
return V->getVT() == MVT::i64;
return false;
}]>;
// setcc convenience fragments.
def setoeq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOEQ)>;
def setogt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOGT)>;
def setoge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOGE)>;
def setolt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOLT)>;
def setole : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETOLE)>;
def setone : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETONE)>;
def seto : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETO)>;
def setuo : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUO)>;
def setueq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUEQ)>;
def setugt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUGT)>;
def setuge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUGE)>;
def setult : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETULT)>;
def setule : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETULE)>;
def setune : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETUNE)>;
def seteq : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETEQ)>;
def setgt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETGT)>;
def setge : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETGE)>;
def setlt : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETLT)>;
def setle : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETLE)>;
def setne : PatFrag<(ops node:$lhs, node:$rhs),
(setcc node:$lhs, node:$rhs, SETNE)>;
//===----------------------------------------------------------------------===//
// Selection DAG Pattern Support.
//
// Patterns are what are actually matched against the target-flavored
// instruction selection DAG. Instructions defined by the target implicitly
// define patterns in most cases, but patterns can also be explicitly added when
// an operation is defined by a sequence of instructions (e.g. loading a large
// immediate value on RISC targets that do not support immediates as large as
// their GPRs).
//
class Pattern<dag patternToMatch, list<dag> resultInstrs> {
dag PatternToMatch = patternToMatch;
list<dag> ResultInstrs = resultInstrs;
list<Predicate> Predicates = []; // See class Instruction in Target.td.
int AddedComplexity = 0; // See class Instruction in Target.td.
}
// Pat - A simple (but common) form of a pattern, which produces a simple result
// not needing a full list.
class Pat<dag pattern, dag result> : Pattern<pattern, [result]>;
//===----------------------------------------------------------------------===//
// Complex pattern definitions.
//
class CPAttribute;
// Pass the parent Operand as root to CP function rather
// than the root of the sub-DAG
def CPAttrParentAsRoot : CPAttribute;
// Complex patterns, e.g. X86 addressing mode, requires pattern matching code
// in C++. NumOperands is the number of operands returned by the select function;
// SelectFunc is the name of the function used to pattern match the max. pattern;
// RootNodes are the list of possible root nodes of the sub-dags to match.
// e.g. X86 addressing mode - def addr : ComplexPattern<4, "SelectAddr", [add]>;
//
class ComplexPattern<ValueType ty, int numops, string fn,
list<SDNode> roots = [], list<SDNodeProperty> props = [],
list<CPAttribute> attrs = []> {
ValueType Ty = ty;
int NumOperands = numops;
string SelectFunc = fn;
list<SDNode> RootNodes = roots;
list<SDNodeProperty> Properties = props;
list<CPAttribute> Attributes = attrs;
}
//===----------------------------------------------------------------------===//
// Dwarf support.
//
def SDT_dwarf_loc : SDTypeProfile<0, 3,
[SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
def dwarf_loc : SDNode<"ISD::DEBUG_LOC", SDT_dwarf_loc,[SDNPHasChain]>;