mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-06 20:32:19 +00:00
5b3a4553c1
Bill Wendling!! git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@20649 91177308-0d34-0410-b5e6-96231b3b80d8
449 lines
16 KiB
C++
449 lines
16 KiB
C++
//===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a MachineCodeEmitter object that is used by the JIT to
|
|
// write machine code to memory and remember where relocatable values are.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "jit"
|
|
#include "JIT.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/CodeGen/MachineCodeEmitter.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineRelocation.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetJITInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/System/Memory.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumBytes("jit", "Number of bytes of machine code compiled");
|
|
JIT *TheJIT = 0;
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JITMemoryManager code.
|
|
//
|
|
namespace {
|
|
/// JITMemoryManager - Manage memory for the JIT code generation in a logical,
|
|
/// sane way. This splits a large block of MAP_NORESERVE'd memory into two
|
|
/// sections, one for function stubs, one for the functions themselves. We
|
|
/// have to do this because we may need to emit a function stub while in the
|
|
/// middle of emitting a function, and we don't know how large the function we
|
|
/// are emitting is. This never bothers to release the memory, because when
|
|
/// we are ready to destroy the JIT, the program exits.
|
|
class JITMemoryManager {
|
|
sys::MemoryBlock MemBlock; // Virtual memory block allocated RWX
|
|
unsigned char *MemBase; // Base of block of memory, start of stub mem
|
|
unsigned char *FunctionBase; // Start of the function body area
|
|
unsigned char *ConstantPool; // Memory allocated for constant pools
|
|
unsigned char *CurStubPtr, *CurFunctionPtr, *CurConstantPtr;
|
|
public:
|
|
JITMemoryManager();
|
|
~JITMemoryManager();
|
|
|
|
inline unsigned char *allocateStub(unsigned StubSize);
|
|
inline unsigned char *allocateConstant(unsigned ConstantSize,
|
|
unsigned Alignment);
|
|
inline unsigned char *startFunctionBody();
|
|
inline void endFunctionBody(unsigned char *FunctionEnd);
|
|
};
|
|
}
|
|
|
|
JITMemoryManager::JITMemoryManager() {
|
|
// Allocate a 16M block of memory...
|
|
MemBlock = sys::Memory::AllocateRWX((16 << 20));
|
|
MemBase = reinterpret_cast<unsigned char*>(MemBlock.base());
|
|
FunctionBase = MemBase + 512*1024; // Use 512k for stubs
|
|
|
|
// Allocate stubs backwards from the function base, allocate functions forward
|
|
// from the function base.
|
|
CurStubPtr = CurFunctionPtr = FunctionBase;
|
|
|
|
ConstantPool = new unsigned char [512*1024]; // Use 512k for constant pools
|
|
CurConstantPtr = ConstantPool + 512*1024;
|
|
}
|
|
|
|
JITMemoryManager::~JITMemoryManager() {
|
|
sys::Memory::ReleaseRWX(MemBlock);
|
|
delete[] ConstantPool;
|
|
}
|
|
|
|
unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) {
|
|
CurStubPtr -= StubSize;
|
|
if (CurStubPtr < MemBase) {
|
|
std::cerr << "JIT ran out of memory for function stubs!\n";
|
|
abort();
|
|
}
|
|
return CurStubPtr;
|
|
}
|
|
|
|
unsigned char *JITMemoryManager::allocateConstant(unsigned ConstantSize,
|
|
unsigned Alignment) {
|
|
// Reserve space and align pointer.
|
|
CurConstantPtr -= ConstantSize;
|
|
CurConstantPtr =
|
|
(unsigned char *)((intptr_t)CurConstantPtr & ~((intptr_t)Alignment - 1));
|
|
|
|
if (CurConstantPtr < ConstantPool) {
|
|
std::cerr << "JIT ran out of memory for constant pools!\n";
|
|
abort();
|
|
}
|
|
return CurConstantPtr;
|
|
}
|
|
|
|
unsigned char *JITMemoryManager::startFunctionBody() {
|
|
// Round up to an even multiple of 8 bytes, this should eventually be target
|
|
// specific.
|
|
return (unsigned char*)(((intptr_t)CurFunctionPtr + 7) & ~7);
|
|
}
|
|
|
|
void JITMemoryManager::endFunctionBody(unsigned char *FunctionEnd) {
|
|
assert(FunctionEnd > CurFunctionPtr);
|
|
CurFunctionPtr = FunctionEnd;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JIT lazy compilation code.
|
|
//
|
|
namespace {
|
|
/// JITResolver - Keep track of, and resolve, call sites for functions that
|
|
/// have not yet been compiled.
|
|
class JITResolver {
|
|
/// MCE - The MachineCodeEmitter to use to emit stubs with.
|
|
MachineCodeEmitter &MCE;
|
|
|
|
/// LazyResolverFn - The target lazy resolver function that we actually
|
|
/// rewrite instructions to use.
|
|
TargetJITInfo::LazyResolverFn LazyResolverFn;
|
|
|
|
// FunctionToStubMap - Keep track of the stub created for a particular
|
|
// function so that we can reuse them if necessary.
|
|
std::map<Function*, void*> FunctionToStubMap;
|
|
|
|
// StubToFunctionMap - Keep track of the function that each stub corresponds
|
|
// to.
|
|
std::map<void*, Function*> StubToFunctionMap;
|
|
|
|
public:
|
|
JITResolver(MachineCodeEmitter &mce) : MCE(mce) {
|
|
LazyResolverFn =
|
|
TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn);
|
|
}
|
|
|
|
/// getFunctionStub - This returns a pointer to a function stub, creating
|
|
/// one on demand as needed.
|
|
void *getFunctionStub(Function *F);
|
|
|
|
/// AddCallbackAtLocation - If the target is capable of rewriting an
|
|
/// instruction without the use of a stub, record the location of the use so
|
|
/// we know which function is being used at the location.
|
|
void *AddCallbackAtLocation(Function *F, void *Location) {
|
|
/// Get the target-specific JIT resolver function.
|
|
StubToFunctionMap[Location] = F;
|
|
return (void*)LazyResolverFn;
|
|
}
|
|
|
|
/// JITCompilerFn - This function is called to resolve a stub to a compiled
|
|
/// address. If the LLVM Function corresponding to the stub has not yet
|
|
/// been compiled, this function compiles it first.
|
|
static void *JITCompilerFn(void *Stub);
|
|
};
|
|
}
|
|
|
|
/// getJITResolver - This function returns the one instance of the JIT resolver.
|
|
///
|
|
static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) {
|
|
static JITResolver TheJITResolver(*MCE);
|
|
return TheJITResolver;
|
|
}
|
|
|
|
/// getFunctionStub - This returns a pointer to a function stub, creating
|
|
/// one on demand as needed.
|
|
void *JITResolver::getFunctionStub(Function *F) {
|
|
// If we already have a stub for this function, recycle it.
|
|
void *&Stub = FunctionToStubMap[F];
|
|
if (Stub) return Stub;
|
|
|
|
// Call the lazy resolver function unless we already KNOW it is an external
|
|
// function, in which case we just skip the lazy resolution step.
|
|
void *Actual = (void*)LazyResolverFn;
|
|
if (F->isExternal() && F->hasExternalLinkage())
|
|
Actual = TheJIT->getPointerToFunction(F);
|
|
|
|
// Otherwise, codegen a new stub. For now, the stub will call the lazy
|
|
// resolver function.
|
|
Stub = TheJIT->getJITInfo().emitFunctionStub(Actual, MCE);
|
|
|
|
if (Actual != (void*)LazyResolverFn) {
|
|
// If we are getting the stub for an external function, we really want the
|
|
// address of the stub in the GlobalAddressMap for the JIT, not the address
|
|
// of the external function.
|
|
TheJIT->updateGlobalMapping(F, Stub);
|
|
}
|
|
|
|
DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '"
|
|
<< F->getName() << "'\n");
|
|
|
|
// Finally, keep track of the stub-to-Function mapping so that the
|
|
// JITCompilerFn knows which function to compile!
|
|
StubToFunctionMap[Stub] = F;
|
|
return Stub;
|
|
}
|
|
|
|
/// JITCompilerFn - This function is called when a lazy compilation stub has
|
|
/// been entered. It looks up which function this stub corresponds to, compiles
|
|
/// it if necessary, then returns the resultant function pointer.
|
|
void *JITResolver::JITCompilerFn(void *Stub) {
|
|
JITResolver &JR = getJITResolver();
|
|
|
|
// The address given to us for the stub may not be exactly right, it might be
|
|
// a little bit after the stub. As such, use upper_bound to find it.
|
|
std::map<void*, Function*>::iterator I =
|
|
JR.StubToFunctionMap.upper_bound(Stub);
|
|
assert(I != JR.StubToFunctionMap.begin() && "This is not a known stub!");
|
|
Function *F = (--I)->second;
|
|
|
|
// The target function will rewrite the stub so that the compilation callback
|
|
// function is no longer called from this stub.
|
|
JR.StubToFunctionMap.erase(I);
|
|
|
|
DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName()
|
|
<< "' In stub ptr = " << Stub << " actual ptr = "
|
|
<< I->first << "\n");
|
|
|
|
void *Result = TheJIT->getPointerToFunction(F);
|
|
|
|
// We don't need to reuse this stub in the future, as F is now compiled.
|
|
JR.FunctionToStubMap.erase(F);
|
|
|
|
// FIXME: We could rewrite all references to this stub if we knew them.
|
|
return Result;
|
|
}
|
|
|
|
|
|
// getPointerToFunctionOrStub - If the specified function has been
|
|
// code-gen'd, return a pointer to the function. If not, compile it, or use
|
|
// a stub to implement lazy compilation if available.
|
|
//
|
|
void *JIT::getPointerToFunctionOrStub(Function *F) {
|
|
// If we have already code generated the function, just return the address.
|
|
if (void *Addr = getPointerToGlobalIfAvailable(F))
|
|
return Addr;
|
|
|
|
// Get a stub if the target supports it
|
|
return getJITResolver(MCE).getFunctionStub(F);
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// JITEmitter code.
|
|
//
|
|
namespace {
|
|
/// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
|
|
/// used to output functions to memory for execution.
|
|
class JITEmitter : public MachineCodeEmitter {
|
|
JITMemoryManager MemMgr;
|
|
|
|
// CurBlock - The start of the current block of memory. CurByte - The
|
|
// current byte being emitted to.
|
|
unsigned char *CurBlock, *CurByte;
|
|
|
|
// When outputting a function stub in the context of some other function, we
|
|
// save CurBlock and CurByte here.
|
|
unsigned char *SavedCurBlock, *SavedCurByte;
|
|
|
|
// ConstantPoolAddresses - Contains the location for each entry in the
|
|
// constant pool.
|
|
std::vector<void*> ConstantPoolAddresses;
|
|
|
|
/// Relocations - These are the relocations that the function needs, as
|
|
/// emitted.
|
|
std::vector<MachineRelocation> Relocations;
|
|
public:
|
|
JITEmitter(JIT &jit) { TheJIT = &jit; }
|
|
|
|
virtual void startFunction(MachineFunction &F);
|
|
virtual void finishFunction(MachineFunction &F);
|
|
virtual void emitConstantPool(MachineConstantPool *MCP);
|
|
virtual void startFunctionStub(unsigned StubSize);
|
|
virtual void* finishFunctionStub(const Function *F);
|
|
virtual void emitByte(unsigned char B);
|
|
virtual void emitWord(unsigned W);
|
|
virtual void emitWordAt(unsigned W, unsigned *Ptr);
|
|
|
|
virtual void addRelocation(const MachineRelocation &MR) {
|
|
Relocations.push_back(MR);
|
|
}
|
|
|
|
virtual uint64_t getCurrentPCValue();
|
|
virtual uint64_t getCurrentPCOffset();
|
|
virtual uint64_t getConstantPoolEntryAddress(unsigned Entry);
|
|
|
|
private:
|
|
void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
|
|
};
|
|
}
|
|
|
|
MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
|
|
return new JITEmitter(jit);
|
|
}
|
|
|
|
void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
|
|
bool DoesntNeedStub) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
|
|
/// FIXME: If we straightened things out, this could actually emit the
|
|
/// global immediately instead of queuing it for codegen later!
|
|
return TheJIT->getOrEmitGlobalVariable(GV);
|
|
}
|
|
|
|
// If we have already compiled the function, return a pointer to its body.
|
|
Function *F = cast<Function>(V);
|
|
void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
|
|
if (ResultPtr) return ResultPtr;
|
|
|
|
if (F->hasExternalLinkage() && F->isExternal()) {
|
|
// If this is an external function pointer, we can force the JIT to
|
|
// 'compile' it, which really just adds it to the map.
|
|
if (DoesntNeedStub)
|
|
return TheJIT->getPointerToFunction(F);
|
|
|
|
return getJITResolver(this).getFunctionStub(F);
|
|
}
|
|
|
|
// Okay, the function has not been compiled yet, if the target callback
|
|
// mechanism is capable of rewriting the instruction directly, prefer to do
|
|
// that instead of emitting a stub.
|
|
if (DoesntNeedStub)
|
|
return getJITResolver(this).AddCallbackAtLocation(F, Reference);
|
|
|
|
// Otherwise, we have to emit a lazy resolving stub.
|
|
return getJITResolver(this).getFunctionStub(F);
|
|
}
|
|
|
|
void JITEmitter::startFunction(MachineFunction &F) {
|
|
CurByte = CurBlock = MemMgr.startFunctionBody();
|
|
TheJIT->addGlobalMapping(F.getFunction(), CurBlock);
|
|
}
|
|
|
|
void JITEmitter::finishFunction(MachineFunction &F) {
|
|
MemMgr.endFunctionBody(CurByte);
|
|
ConstantPoolAddresses.clear();
|
|
NumBytes += CurByte-CurBlock;
|
|
|
|
if (!Relocations.empty()) {
|
|
// Resolve the relocations to concrete pointers.
|
|
for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
|
|
MachineRelocation &MR = Relocations[i];
|
|
void *ResultPtr;
|
|
if (MR.isString())
|
|
ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
|
|
else
|
|
ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
|
|
CurBlock+MR.getMachineCodeOffset(),
|
|
MR.doesntNeedFunctionStub());
|
|
MR.setResultPointer(ResultPtr);
|
|
}
|
|
|
|
TheJIT->getJITInfo().relocate(CurBlock, &Relocations[0],
|
|
Relocations.size());
|
|
}
|
|
|
|
DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)CurBlock
|
|
<< "] Function: " << F.getFunction()->getName()
|
|
<< ": " << CurByte-CurBlock << " bytes of text, "
|
|
<< Relocations.size() << " relocations\n");
|
|
Relocations.clear();
|
|
}
|
|
|
|
void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
|
|
const std::vector<Constant*> &Constants = MCP->getConstants();
|
|
if (Constants.empty()) return;
|
|
|
|
for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
|
|
const Type *Ty = Constants[i]->getType();
|
|
unsigned Size = (unsigned)TheJIT->getTargetData().getTypeSize(Ty);
|
|
unsigned Alignment = TheJIT->getTargetData().getTypeAlignment(Ty);
|
|
|
|
void *Addr = MemMgr.allocateConstant(Size, Alignment);
|
|
TheJIT->InitializeMemory(Constants[i], Addr);
|
|
ConstantPoolAddresses.push_back(Addr);
|
|
}
|
|
}
|
|
|
|
void JITEmitter::startFunctionStub(unsigned StubSize) {
|
|
SavedCurBlock = CurBlock; SavedCurByte = CurByte;
|
|
CurByte = CurBlock = MemMgr.allocateStub(StubSize);
|
|
}
|
|
|
|
void *JITEmitter::finishFunctionStub(const Function *F) {
|
|
NumBytes += CurByte-CurBlock;
|
|
std::swap(CurBlock, SavedCurBlock);
|
|
CurByte = SavedCurByte;
|
|
return SavedCurBlock;
|
|
}
|
|
|
|
void JITEmitter::emitByte(unsigned char B) {
|
|
*CurByte++ = B; // Write the byte to memory
|
|
}
|
|
|
|
void JITEmitter::emitWord(unsigned W) {
|
|
// This won't work if the endianness of the host and target don't agree! (For
|
|
// a JIT this can't happen though. :)
|
|
*(unsigned*)CurByte = W;
|
|
CurByte += sizeof(unsigned);
|
|
}
|
|
|
|
void JITEmitter::emitWordAt(unsigned W, unsigned *Ptr) {
|
|
*Ptr = W;
|
|
}
|
|
|
|
// getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
|
|
// in the constant pool that was last emitted with the 'emitConstantPool'
|
|
// method.
|
|
//
|
|
uint64_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) {
|
|
assert(ConstantNum < ConstantPoolAddresses.size() &&
|
|
"Invalid ConstantPoolIndex!");
|
|
return (intptr_t)ConstantPoolAddresses[ConstantNum];
|
|
}
|
|
|
|
// getCurrentPCValue - This returns the address that the next emitted byte
|
|
// will be output to.
|
|
//
|
|
uint64_t JITEmitter::getCurrentPCValue() {
|
|
return (intptr_t)CurByte;
|
|
}
|
|
|
|
uint64_t JITEmitter::getCurrentPCOffset() {
|
|
return (intptr_t)CurByte-(intptr_t)CurBlock;
|
|
}
|
|
|
|
// getPointerToNamedFunction - This function is used as a global wrapper to
|
|
// JIT::getPointerToNamedFunction for the purpose of resolving symbols when
|
|
// bugpoint is debugging the JIT. In that scenario, we are loading an .so and
|
|
// need to resolve function(s) that are being mis-codegenerated, so we need to
|
|
// resolve their addresses at runtime, and this is the way to do it.
|
|
extern "C" {
|
|
void *getPointerToNamedFunction(const char *Name) {
|
|
Module &M = TheJIT->getModule();
|
|
if (Function *F = M.getNamedFunction(Name))
|
|
return TheJIT->getPointerToFunction(F);
|
|
return TheJIT->getPointerToNamedFunction(Name);
|
|
}
|
|
}
|