llvm-6502/lib/MC/WinCOFFObjectWriter.cpp
2014-12-04 08:30:39 +00:00

1064 lines
36 KiB
C++

//===-- llvm/MC/WinCOFFObjectWriter.cpp -------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains an implementation of a Win32 COFF object file writer.
//
//===----------------------------------------------------------------------===//
#include "llvm/MC/MCWinCOFFObjectWriter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmLayout.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCSection.h"
#include "llvm/MC/MCSectionCOFF.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Support/COFF.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TimeValue.h"
#include <cstdio>
using namespace llvm;
#define DEBUG_TYPE "WinCOFFObjectWriter"
namespace {
typedef SmallString<COFF::NameSize> name;
enum AuxiliaryType {
ATFunctionDefinition,
ATbfAndefSymbol,
ATWeakExternal,
ATFile,
ATSectionDefinition
};
struct AuxSymbol {
AuxiliaryType AuxType;
COFF::Auxiliary Aux;
};
class COFFSymbol;
class COFFSection;
class COFFSymbol {
public:
COFF::symbol Data;
typedef SmallVector<AuxSymbol, 1> AuxiliarySymbols;
name Name;
int Index;
AuxiliarySymbols Aux;
COFFSymbol *Other;
COFFSection *Section;
int Relocations;
MCSymbolData const *MCData;
COFFSymbol(StringRef name);
void set_name_offset(uint32_t Offset);
bool should_keep() const;
};
// This class contains staging data for a COFF relocation entry.
struct COFFRelocation {
COFF::relocation Data;
COFFSymbol *Symb;
COFFRelocation() : Symb(nullptr) {}
static size_t size() { return COFF::RelocationSize; }
};
typedef std::vector<COFFRelocation> relocations;
class COFFSection {
public:
COFF::section Header;
std::string Name;
int Number;
MCSectionData const *MCData;
COFFSymbol *Symbol;
relocations Relocations;
COFFSection(StringRef name);
static size_t size();
};
class WinCOFFObjectWriter : public MCObjectWriter {
public:
typedef std::vector<std::unique_ptr<COFFSymbol>> symbols;
typedef std::vector<std::unique_ptr<COFFSection>> sections;
typedef DenseMap<MCSymbol const *, COFFSymbol *> symbol_map;
typedef DenseMap<MCSection const *, COFFSection *> section_map;
std::unique_ptr<MCWinCOFFObjectTargetWriter> TargetObjectWriter;
// Root level file contents.
COFF::header Header;
sections Sections;
symbols Symbols;
StringTableBuilder Strings;
// Maps used during object file creation.
section_map SectionMap;
symbol_map SymbolMap;
bool UseBigObj;
WinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW, raw_ostream &OS);
void reset() override {
memset(&Header, 0, sizeof(Header));
Header.Machine = TargetObjectWriter->getMachine();
Sections.clear();
Symbols.clear();
Strings.clear();
SectionMap.clear();
SymbolMap.clear();
MCObjectWriter::reset();
}
COFFSymbol *createSymbol(StringRef Name);
COFFSymbol *GetOrCreateCOFFSymbol(const MCSymbol * Symbol);
COFFSection *createSection(StringRef Name);
template <typename object_t, typename list_t>
object_t *createCOFFEntity(StringRef Name, list_t &List);
void DefineSection(MCSectionData const &SectionData);
void DefineSymbol(MCSymbolData const &SymbolData, MCAssembler &Assembler,
const MCAsmLayout &Layout);
void SetSymbolName(COFFSymbol &S);
void SetSectionName(COFFSection &S);
bool ExportSymbol(const MCSymbol &Symbol, MCAssembler &Asm);
bool IsPhysicalSection(COFFSection *S);
// Entity writing methods.
void WriteFileHeader(const COFF::header &Header);
void WriteSymbol(const COFFSymbol &S);
void WriteAuxiliarySymbols(const COFFSymbol::AuxiliarySymbols &S);
void WriteSectionHeader(const COFF::section &S);
void WriteRelocation(const COFF::relocation &R);
// MCObjectWriter interface implementation.
void ExecutePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) override;
bool IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
const MCSymbolData &DataA,
const MCFragment &FB, bool InSet,
bool IsPCRel) const override;
void RecordRelocation(const MCAssembler &Asm, const MCAsmLayout &Layout,
const MCFragment *Fragment, const MCFixup &Fixup,
MCValue Target, bool &IsPCRel,
uint64_t &FixedValue) override;
void WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
};
}
static inline void write_uint32_le(void *Data, uint32_t Value) {
support::endian::write<uint32_t, support::little, support::unaligned>(Data,
Value);
}
//------------------------------------------------------------------------------
// Symbol class implementation
COFFSymbol::COFFSymbol(StringRef name)
: Name(name.begin(), name.end())
, Other(nullptr)
, Section(nullptr)
, Relocations(0)
, MCData(nullptr) {
memset(&Data, 0, sizeof(Data));
}
// In the case that the name does not fit within 8 bytes, the offset
// into the string table is stored in the last 4 bytes instead, leaving
// the first 4 bytes as 0.
void COFFSymbol::set_name_offset(uint32_t Offset) {
write_uint32_le(Data.Name + 0, 0);
write_uint32_le(Data.Name + 4, Offset);
}
/// logic to decide if the symbol should be reported in the symbol table
bool COFFSymbol::should_keep() const {
// no section means its external, keep it
if (!Section)
return true;
// if it has relocations pointing at it, keep it
if (Relocations > 0) {
assert(Section->Number != -1 && "Sections with relocations must be real!");
return true;
}
// if the section its in is being droped, drop it
if (Section->Number == -1)
return false;
// if it is the section symbol, keep it
if (Section->Symbol == this)
return true;
// if its temporary, drop it
if (MCData && MCData->getSymbol().isTemporary())
return false;
// otherwise, keep it
return true;
}
//------------------------------------------------------------------------------
// Section class implementation
COFFSection::COFFSection(StringRef name)
: Name(name)
, MCData(nullptr)
, Symbol(nullptr) {
memset(&Header, 0, sizeof(Header));
}
size_t COFFSection::size() {
return COFF::SectionSize;
}
//------------------------------------------------------------------------------
// WinCOFFObjectWriter class implementation
WinCOFFObjectWriter::WinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW,
raw_ostream &OS)
: MCObjectWriter(OS, true), TargetObjectWriter(MOTW) {
memset(&Header, 0, sizeof(Header));
Header.Machine = TargetObjectWriter->getMachine();
}
COFFSymbol *WinCOFFObjectWriter::createSymbol(StringRef Name) {
return createCOFFEntity<COFFSymbol>(Name, Symbols);
}
COFFSymbol *WinCOFFObjectWriter::GetOrCreateCOFFSymbol(const MCSymbol *Symbol) {
symbol_map::iterator i = SymbolMap.find(Symbol);
if (i != SymbolMap.end())
return i->second;
COFFSymbol *RetSymbol =
createCOFFEntity<COFFSymbol>(Symbol->getName(), Symbols);
SymbolMap[Symbol] = RetSymbol;
return RetSymbol;
}
COFFSection *WinCOFFObjectWriter::createSection(StringRef Name) {
return createCOFFEntity<COFFSection>(Name, Sections);
}
/// A template used to lookup or create a symbol/section, and initialize it if
/// needed.
template <typename object_t, typename list_t>
object_t *WinCOFFObjectWriter::createCOFFEntity(StringRef Name,
list_t &List) {
List.push_back(make_unique<object_t>(Name));
return List.back().get();
}
/// This function takes a section data object from the assembler
/// and creates the associated COFF section staging object.
void WinCOFFObjectWriter::DefineSection(MCSectionData const &SectionData) {
assert(SectionData.getSection().getVariant() == MCSection::SV_COFF
&& "Got non-COFF section in the COFF backend!");
// FIXME: Not sure how to verify this (at least in a debug build).
MCSectionCOFF const &Sec =
static_cast<MCSectionCOFF const &>(SectionData.getSection());
COFFSection *coff_section = createSection(Sec.getSectionName());
COFFSymbol *coff_symbol = createSymbol(Sec.getSectionName());
if (Sec.getSelection() != COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) {
if (const MCSymbol *S = Sec.getCOMDATSymbol()) {
COFFSymbol *COMDATSymbol = GetOrCreateCOFFSymbol(S);
if (COMDATSymbol->Section)
report_fatal_error("two sections have the same comdat");
COMDATSymbol->Section = coff_section;
}
}
coff_section->Symbol = coff_symbol;
coff_symbol->Section = coff_section;
coff_symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_STATIC;
// In this case the auxiliary symbol is a Section Definition.
coff_symbol->Aux.resize(1);
memset(&coff_symbol->Aux[0], 0, sizeof(coff_symbol->Aux[0]));
coff_symbol->Aux[0].AuxType = ATSectionDefinition;
coff_symbol->Aux[0].Aux.SectionDefinition.Selection = Sec.getSelection();
coff_section->Header.Characteristics = Sec.getCharacteristics();
uint32_t &Characteristics = coff_section->Header.Characteristics;
switch (SectionData.getAlignment()) {
case 1: Characteristics |= COFF::IMAGE_SCN_ALIGN_1BYTES; break;
case 2: Characteristics |= COFF::IMAGE_SCN_ALIGN_2BYTES; break;
case 4: Characteristics |= COFF::IMAGE_SCN_ALIGN_4BYTES; break;
case 8: Characteristics |= COFF::IMAGE_SCN_ALIGN_8BYTES; break;
case 16: Characteristics |= COFF::IMAGE_SCN_ALIGN_16BYTES; break;
case 32: Characteristics |= COFF::IMAGE_SCN_ALIGN_32BYTES; break;
case 64: Characteristics |= COFF::IMAGE_SCN_ALIGN_64BYTES; break;
case 128: Characteristics |= COFF::IMAGE_SCN_ALIGN_128BYTES; break;
case 256: Characteristics |= COFF::IMAGE_SCN_ALIGN_256BYTES; break;
case 512: Characteristics |= COFF::IMAGE_SCN_ALIGN_512BYTES; break;
case 1024: Characteristics |= COFF::IMAGE_SCN_ALIGN_1024BYTES; break;
case 2048: Characteristics |= COFF::IMAGE_SCN_ALIGN_2048BYTES; break;
case 4096: Characteristics |= COFF::IMAGE_SCN_ALIGN_4096BYTES; break;
case 8192: Characteristics |= COFF::IMAGE_SCN_ALIGN_8192BYTES; break;
default:
llvm_unreachable("unsupported section alignment");
}
// Bind internal COFF section to MC section.
coff_section->MCData = &SectionData;
SectionMap[&SectionData.getSection()] = coff_section;
}
static uint64_t getSymbolValue(const MCSymbolData &Data,
const MCAsmLayout &Layout) {
if (Data.isCommon() && Data.isExternal())
return Data.getCommonSize();
uint64_t Res;
if (!Layout.getSymbolOffset(&Data, Res))
return 0;
return Res;
}
/// This function takes a symbol data object from the assembler
/// and creates the associated COFF symbol staging object.
void WinCOFFObjectWriter::DefineSymbol(MCSymbolData const &SymbolData,
MCAssembler &Assembler,
const MCAsmLayout &Layout) {
MCSymbol const &Symbol = SymbolData.getSymbol();
COFFSymbol *coff_symbol = GetOrCreateCOFFSymbol(&Symbol);
SymbolMap[&Symbol] = coff_symbol;
if (SymbolData.getFlags() & COFF::SF_WeakExternal) {
coff_symbol->Data.StorageClass = COFF::IMAGE_SYM_CLASS_WEAK_EXTERNAL;
if (Symbol.isVariable()) {
const MCSymbolRefExpr *SymRef =
dyn_cast<MCSymbolRefExpr>(Symbol.getVariableValue());
if (!SymRef)
report_fatal_error("Weak externals may only alias symbols");
coff_symbol->Other = GetOrCreateCOFFSymbol(&SymRef->getSymbol());
} else {
std::string WeakName = std::string(".weak.")
+ Symbol.getName().str()
+ ".default";
COFFSymbol *WeakDefault = createSymbol(WeakName);
WeakDefault->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE;
WeakDefault->Data.StorageClass = COFF::IMAGE_SYM_CLASS_EXTERNAL;
WeakDefault->Data.Type = 0;
WeakDefault->Data.Value = 0;
coff_symbol->Other = WeakDefault;
}
// Setup the Weak External auxiliary symbol.
coff_symbol->Aux.resize(1);
memset(&coff_symbol->Aux[0], 0, sizeof(coff_symbol->Aux[0]));
coff_symbol->Aux[0].AuxType = ATWeakExternal;
coff_symbol->Aux[0].Aux.WeakExternal.TagIndex = 0;
coff_symbol->Aux[0].Aux.WeakExternal.Characteristics =
COFF::IMAGE_WEAK_EXTERN_SEARCH_LIBRARY;
coff_symbol->MCData = &SymbolData;
} else {
const MCSymbolData &ResSymData = Assembler.getSymbolData(Symbol);
const MCSymbol *Base = Layout.getBaseSymbol(Symbol);
coff_symbol->Data.Value = getSymbolValue(ResSymData, Layout);
coff_symbol->Data.Type = (ResSymData.getFlags() & 0x0000FFFF) >> 0;
coff_symbol->Data.StorageClass = (ResSymData.getFlags() & 0x00FF0000) >> 16;
// If no storage class was specified in the streamer, define it here.
if (coff_symbol->Data.StorageClass == 0) {
bool IsExternal =
ResSymData.isExternal() ||
(!ResSymData.getFragment() && !ResSymData.getSymbol().isVariable());
coff_symbol->Data.StorageClass = IsExternal
? COFF::IMAGE_SYM_CLASS_EXTERNAL
: COFF::IMAGE_SYM_CLASS_STATIC;
}
if (!Base) {
coff_symbol->Data.SectionNumber = COFF::IMAGE_SYM_ABSOLUTE;
} else {
const MCSymbolData &BaseData = Assembler.getSymbolData(*Base);
if (BaseData.getFragment()) {
COFFSection *Sec =
SectionMap[&BaseData.getFragment()->getParent()->getSection()];
if (coff_symbol->Section && coff_symbol->Section != Sec)
report_fatal_error("conflicting sections for symbol");
coff_symbol->Section = Sec;
}
}
coff_symbol->MCData = &ResSymData;
}
}
// Maximum offsets for different string table entry encodings.
static const unsigned Max6DecimalOffset = 999999;
static const unsigned Max7DecimalOffset = 9999999;
static const uint64_t MaxBase64Offset = 0xFFFFFFFFFULL; // 64^6, including 0
// Encode a string table entry offset in base 64, padded to 6 chars, and
// prefixed with a double slash: '//AAAAAA', '//AAAAAB', ...
// Buffer must be at least 8 bytes large. No terminating null appended.
static void encodeBase64StringEntry(char* Buffer, uint64_t Value) {
assert(Value > Max7DecimalOffset && Value <= MaxBase64Offset &&
"Illegal section name encoding for value");
static const char Alphabet[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
Buffer[0] = '/';
Buffer[1] = '/';
char* Ptr = Buffer + 7;
for (unsigned i = 0; i < 6; ++i) {
unsigned Rem = Value % 64;
Value /= 64;
*(Ptr--) = Alphabet[Rem];
}
}
void WinCOFFObjectWriter::SetSectionName(COFFSection &S) {
if (S.Name.size() > COFF::NameSize) {
uint64_t StringTableEntry = Strings.getOffset(S.Name);
if (StringTableEntry <= Max6DecimalOffset) {
std::sprintf(S.Header.Name, "/%d", unsigned(StringTableEntry));
} else if (StringTableEntry <= Max7DecimalOffset) {
// With seven digits, we have to skip the terminating null. Because
// sprintf always appends it, we use a larger temporary buffer.
char buffer[9] = { };
std::sprintf(buffer, "/%d", unsigned(StringTableEntry));
std::memcpy(S.Header.Name, buffer, 8);
} else if (StringTableEntry <= MaxBase64Offset) {
// Starting with 10,000,000, offsets are encoded as base64.
encodeBase64StringEntry(S.Header.Name, StringTableEntry);
} else {
report_fatal_error("COFF string table is greater than 64 GB.");
}
} else
std::memcpy(S.Header.Name, S.Name.c_str(), S.Name.size());
}
void WinCOFFObjectWriter::SetSymbolName(COFFSymbol &S) {
if (S.Name.size() > COFF::NameSize)
S.set_name_offset(Strings.getOffset(S.Name));
else
std::memcpy(S.Data.Name, S.Name.c_str(), S.Name.size());
}
bool WinCOFFObjectWriter::ExportSymbol(const MCSymbol &Symbol,
MCAssembler &Asm) {
// This doesn't seem to be right. Strings referred to from the .data section
// need symbols so they can be linked to code in the .text section right?
// return Asm.isSymbolLinkerVisible(Symbol);
// Non-temporary labels should always be visible to the linker.
if (!Symbol.isTemporary())
return true;
// Absolute temporary labels are never visible.
if (!Symbol.isInSection())
return false;
// For now, all non-variable symbols are exported,
// the linker will sort the rest out for us.
return !Symbol.isVariable();
}
bool WinCOFFObjectWriter::IsPhysicalSection(COFFSection *S) {
return (S->Header.Characteristics
& COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA) == 0;
}
//------------------------------------------------------------------------------
// entity writing methods
void WinCOFFObjectWriter::WriteFileHeader(const COFF::header &Header) {
if (UseBigObj) {
WriteLE16(COFF::IMAGE_FILE_MACHINE_UNKNOWN);
WriteLE16(0xFFFF);
WriteLE16(COFF::BigObjHeader::MinBigObjectVersion);
WriteLE16(Header.Machine);
WriteLE32(Header.TimeDateStamp);
for (uint8_t MagicChar : COFF::BigObjMagic)
Write8(MagicChar);
WriteLE32(0);
WriteLE32(0);
WriteLE32(0);
WriteLE32(0);
WriteLE32(Header.NumberOfSections);
WriteLE32(Header.PointerToSymbolTable);
WriteLE32(Header.NumberOfSymbols);
} else {
WriteLE16(Header.Machine);
WriteLE16(static_cast<int16_t>(Header.NumberOfSections));
WriteLE32(Header.TimeDateStamp);
WriteLE32(Header.PointerToSymbolTable);
WriteLE32(Header.NumberOfSymbols);
WriteLE16(Header.SizeOfOptionalHeader);
WriteLE16(Header.Characteristics);
}
}
void WinCOFFObjectWriter::WriteSymbol(const COFFSymbol &S) {
WriteBytes(StringRef(S.Data.Name, COFF::NameSize));
WriteLE32(S.Data.Value);
if (UseBigObj)
WriteLE32(S.Data.SectionNumber);
else
WriteLE16(static_cast<int16_t>(S.Data.SectionNumber));
WriteLE16(S.Data.Type);
Write8(S.Data.StorageClass);
Write8(S.Data.NumberOfAuxSymbols);
WriteAuxiliarySymbols(S.Aux);
}
void WinCOFFObjectWriter::WriteAuxiliarySymbols(
const COFFSymbol::AuxiliarySymbols &S) {
for(COFFSymbol::AuxiliarySymbols::const_iterator i = S.begin(), e = S.end();
i != e; ++i) {
switch(i->AuxType) {
case ATFunctionDefinition:
WriteLE32(i->Aux.FunctionDefinition.TagIndex);
WriteLE32(i->Aux.FunctionDefinition.TotalSize);
WriteLE32(i->Aux.FunctionDefinition.PointerToLinenumber);
WriteLE32(i->Aux.FunctionDefinition.PointerToNextFunction);
WriteZeros(sizeof(i->Aux.FunctionDefinition.unused));
if (UseBigObj)
WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size);
break;
case ATbfAndefSymbol:
WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused1));
WriteLE16(i->Aux.bfAndefSymbol.Linenumber);
WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused2));
WriteLE32(i->Aux.bfAndefSymbol.PointerToNextFunction);
WriteZeros(sizeof(i->Aux.bfAndefSymbol.unused3));
if (UseBigObj)
WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size);
break;
case ATWeakExternal:
WriteLE32(i->Aux.WeakExternal.TagIndex);
WriteLE32(i->Aux.WeakExternal.Characteristics);
WriteZeros(sizeof(i->Aux.WeakExternal.unused));
if (UseBigObj)
WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size);
break;
case ATFile:
WriteBytes(
StringRef(reinterpret_cast<const char *>(&i->Aux),
UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size));
break;
case ATSectionDefinition:
WriteLE32(i->Aux.SectionDefinition.Length);
WriteLE16(i->Aux.SectionDefinition.NumberOfRelocations);
WriteLE16(i->Aux.SectionDefinition.NumberOfLinenumbers);
WriteLE32(i->Aux.SectionDefinition.CheckSum);
WriteLE16(static_cast<int16_t>(i->Aux.SectionDefinition.Number));
Write8(i->Aux.SectionDefinition.Selection);
WriteZeros(sizeof(i->Aux.SectionDefinition.unused));
WriteLE16(static_cast<int16_t>(i->Aux.SectionDefinition.Number >> 16));
if (UseBigObj)
WriteZeros(COFF::Symbol32Size - COFF::Symbol16Size);
break;
}
}
}
void WinCOFFObjectWriter::WriteSectionHeader(const COFF::section &S) {
WriteBytes(StringRef(S.Name, COFF::NameSize));
WriteLE32(S.VirtualSize);
WriteLE32(S.VirtualAddress);
WriteLE32(S.SizeOfRawData);
WriteLE32(S.PointerToRawData);
WriteLE32(S.PointerToRelocations);
WriteLE32(S.PointerToLineNumbers);
WriteLE16(S.NumberOfRelocations);
WriteLE16(S.NumberOfLineNumbers);
WriteLE32(S.Characteristics);
}
void WinCOFFObjectWriter::WriteRelocation(const COFF::relocation &R) {
WriteLE32(R.VirtualAddress);
WriteLE32(R.SymbolTableIndex);
WriteLE16(R.Type);
}
////////////////////////////////////////////////////////////////////////////////
// MCObjectWriter interface implementations
void WinCOFFObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm,
const MCAsmLayout &Layout) {
// "Define" each section & symbol. This creates section & symbol
// entries in the staging area.
for (const auto &Section : Asm)
DefineSection(Section);
for (MCSymbolData &SD : Asm.symbols())
if (ExportSymbol(SD.getSymbol(), Asm))
DefineSymbol(SD, Asm, Layout);
}
bool WinCOFFObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(
const MCAssembler &Asm, const MCSymbolData &DataA, const MCFragment &FB,
bool InSet, bool IsPCRel) const {
// MS LINK expects to be able to replace all references to a function with a
// thunk to implement their /INCREMENTAL feature. Make sure we don't optimize
// away any relocations to functions.
if ((((DataA.getFlags() & COFF::SF_TypeMask) >> COFF::SF_TypeShift) >>
COFF::SCT_COMPLEX_TYPE_SHIFT) == COFF::IMAGE_SYM_DTYPE_FUNCTION)
return false;
return MCObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(Asm, DataA, FB,
InSet, IsPCRel);
}
void WinCOFFObjectWriter::RecordRelocation(const MCAssembler &Asm,
const MCAsmLayout &Layout,
const MCFragment *Fragment,
const MCFixup &Fixup,
MCValue Target,
bool &IsPCRel,
uint64_t &FixedValue) {
assert(Target.getSymA() && "Relocation must reference a symbol!");
const MCSymbol &Symbol = Target.getSymA()->getSymbol();
const MCSymbol &A = Symbol.AliasedSymbol();
if (!Asm.hasSymbolData(A))
Asm.getContext().FatalError(
Fixup.getLoc(),
Twine("symbol '") + A.getName() + "' can not be undefined");
const MCSymbolData &A_SD = Asm.getSymbolData(A);
MCSectionData const *SectionData = Fragment->getParent();
// Mark this symbol as requiring an entry in the symbol table.
assert(SectionMap.find(&SectionData->getSection()) != SectionMap.end() &&
"Section must already have been defined in ExecutePostLayoutBinding!");
assert(SymbolMap.find(&A_SD.getSymbol()) != SymbolMap.end() &&
"Symbol must already have been defined in ExecutePostLayoutBinding!");
COFFSection *coff_section = SectionMap[&SectionData->getSection()];
COFFSymbol *coff_symbol = SymbolMap[&A_SD.getSymbol()];
const MCSymbolRefExpr *SymB = Target.getSymB();
bool CrossSection = false;
if (SymB) {
const MCSymbol *B = &SymB->getSymbol();
const MCSymbolData &B_SD = Asm.getSymbolData(*B);
if (!B_SD.getFragment())
Asm.getContext().FatalError(
Fixup.getLoc(),
Twine("symbol '") + B->getName() +
"' can not be undefined in a subtraction expression");
if (!A_SD.getFragment())
Asm.getContext().FatalError(
Fixup.getLoc(),
Twine("symbol '") + Symbol.getName() +
"' can not be undefined in a subtraction expression");
CrossSection = &Symbol.getSection() != &B->getSection();
// Offset of the symbol in the section
int64_t a = Layout.getSymbolOffset(&B_SD);
// Offset of the relocation in the section
int64_t b = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
FixedValue = b - a;
// In the case where we have SymbA and SymB, we just need to store the delta
// between the two symbols. Update FixedValue to account for the delta, and
// skip recording the relocation.
if (!CrossSection)
return;
} else {
FixedValue = Target.getConstant();
}
COFFRelocation Reloc;
Reloc.Data.SymbolTableIndex = 0;
Reloc.Data.VirtualAddress = Layout.getFragmentOffset(Fragment);
// Turn relocations for temporary symbols into section relocations.
if (coff_symbol->MCData->getSymbol().isTemporary() || CrossSection) {
Reloc.Symb = coff_symbol->Section->Symbol;
FixedValue += Layout.getFragmentOffset(coff_symbol->MCData->getFragment()) +
coff_symbol->MCData->getOffset();
} else
Reloc.Symb = coff_symbol;
++Reloc.Symb->Relocations;
Reloc.Data.VirtualAddress += Fixup.getOffset();
Reloc.Data.Type = TargetObjectWriter->getRelocType(Target, Fixup,
CrossSection);
// FIXME: Can anyone explain what this does other than adjust for the size
// of the offset?
if ((Header.Machine == COFF::IMAGE_FILE_MACHINE_AMD64 &&
Reloc.Data.Type == COFF::IMAGE_REL_AMD64_REL32) ||
(Header.Machine == COFF::IMAGE_FILE_MACHINE_I386 &&
Reloc.Data.Type == COFF::IMAGE_REL_I386_REL32))
FixedValue += 4;
if (Header.Machine == COFF::IMAGE_FILE_MACHINE_ARMNT) {
switch (Reloc.Data.Type) {
case COFF::IMAGE_REL_ARM_ABSOLUTE:
case COFF::IMAGE_REL_ARM_ADDR32:
case COFF::IMAGE_REL_ARM_ADDR32NB:
case COFF::IMAGE_REL_ARM_TOKEN:
case COFF::IMAGE_REL_ARM_SECTION:
case COFF::IMAGE_REL_ARM_SECREL:
break;
case COFF::IMAGE_REL_ARM_BRANCH11:
case COFF::IMAGE_REL_ARM_BLX11:
// IMAGE_REL_ARM_BRANCH11 and IMAGE_REL_ARM_BLX11 are only used for
// pre-ARMv7, which implicitly rules it out of ARMNT (it would be valid
// for Windows CE).
case COFF::IMAGE_REL_ARM_BRANCH24:
case COFF::IMAGE_REL_ARM_BLX24:
case COFF::IMAGE_REL_ARM_MOV32A:
// IMAGE_REL_ARM_BRANCH24, IMAGE_REL_ARM_BLX24, IMAGE_REL_ARM_MOV32A are
// only used for ARM mode code, which is documented as being unsupported
// by Windows on ARM. Empirical proof indicates that masm is able to
// generate the relocations however the rest of the MSVC toolchain is
// unable to handle it.
llvm_unreachable("unsupported relocation");
break;
case COFF::IMAGE_REL_ARM_MOV32T:
break;
case COFF::IMAGE_REL_ARM_BRANCH20T:
case COFF::IMAGE_REL_ARM_BRANCH24T:
case COFF::IMAGE_REL_ARM_BLX23T:
// IMAGE_REL_BRANCH20T, IMAGE_REL_ARM_BRANCH24T, IMAGE_REL_ARM_BLX23T all
// perform a 4 byte adjustment to the relocation. Relative branches are
// offset by 4 on ARM, however, because there is no RELA relocations, all
// branches are offset by 4.
FixedValue = FixedValue + 4;
break;
}
}
if (TargetObjectWriter->recordRelocation(Fixup))
coff_section->Relocations.push_back(Reloc);
}
void WinCOFFObjectWriter::WriteObject(MCAssembler &Asm,
const MCAsmLayout &Layout) {
size_t SectionsSize = Sections.size();
if (SectionsSize > static_cast<size_t>(INT32_MAX))
report_fatal_error(
"PE COFF object files can't have more than 2147483647 sections");
// Assign symbol and section indexes and offsets.
int32_t NumberOfSections = static_cast<int32_t>(SectionsSize);
UseBigObj = NumberOfSections > COFF::MaxNumberOfSections16;
DenseMap<COFFSection *, int32_t> SectionIndices(
NextPowerOf2(NumberOfSections));
// Assign section numbers.
size_t Number = 1;
for (const auto &Section : Sections) {
SectionIndices[Section.get()] = Number;
Section->Number = Number;
Section->Symbol->Data.SectionNumber = Number;
Section->Symbol->Aux[0].Aux.SectionDefinition.Number = Number;
++Number;
}
Header.NumberOfSections = NumberOfSections;
Header.NumberOfSymbols = 0;
for (auto FI = Asm.file_names_begin(), FE = Asm.file_names_end();
FI != FE; ++FI) {
// round up to calculate the number of auxiliary symbols required
unsigned SymbolSize = UseBigObj ? COFF::Symbol32Size : COFF::Symbol16Size;
unsigned Count = (FI->size() + SymbolSize - 1) / SymbolSize;
COFFSymbol *file = createSymbol(".file");
file->Data.SectionNumber = COFF::IMAGE_SYM_DEBUG;
file->Data.StorageClass = COFF::IMAGE_SYM_CLASS_FILE;
file->Aux.resize(Count);
unsigned Offset = 0;
unsigned Length = FI->size();
for (auto &Aux : file->Aux) {
Aux.AuxType = ATFile;
if (Length > SymbolSize) {
memcpy(&Aux.Aux, FI->c_str() + Offset, SymbolSize);
Length = Length - SymbolSize;
} else {
memcpy(&Aux.Aux, FI->c_str() + Offset, Length);
memset((char *)&Aux.Aux + Length, 0, SymbolSize - Length);
break;
}
Offset += SymbolSize;
}
}
for (auto &Symbol : Symbols) {
// Update section number & offset for symbols that have them.
if (Symbol->Section)
Symbol->Data.SectionNumber = Symbol->Section->Number;
if (Symbol->should_keep()) {
Symbol->Index = Header.NumberOfSymbols++;
// Update auxiliary symbol info.
Symbol->Data.NumberOfAuxSymbols = Symbol->Aux.size();
Header.NumberOfSymbols += Symbol->Data.NumberOfAuxSymbols;
} else
Symbol->Index = -1;
}
// Build string table.
for (const auto &S : Sections)
if (S->Name.size() > COFF::NameSize)
Strings.add(S->Name);
for (const auto &S : Symbols)
if (S->should_keep() && S->Name.size() > COFF::NameSize)
Strings.add(S->Name);
Strings.finalize(StringTableBuilder::WinCOFF);
// Set names.
for (const auto &S : Sections)
SetSectionName(*S);
for (auto &S : Symbols)
if (S->should_keep())
SetSymbolName(*S);
// Fixup weak external references.
for (auto &Symbol : Symbols) {
if (Symbol->Other) {
assert(Symbol->Index != -1);
assert(Symbol->Aux.size() == 1 && "Symbol must contain one aux symbol!");
assert(Symbol->Aux[0].AuxType == ATWeakExternal &&
"Symbol's aux symbol must be a Weak External!");
Symbol->Aux[0].Aux.WeakExternal.TagIndex = Symbol->Other->Index;
}
}
// Fixup associative COMDAT sections.
for (auto &Section : Sections) {
if (Section->Symbol->Aux[0].Aux.SectionDefinition.Selection !=
COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
continue;
const MCSectionCOFF &MCSec =
static_cast<const MCSectionCOFF &>(Section->MCData->getSection());
const MCSymbol *COMDAT = MCSec.getCOMDATSymbol();
assert(COMDAT);
COFFSymbol *COMDATSymbol = GetOrCreateCOFFSymbol(COMDAT);
assert(COMDATSymbol);
COFFSection *Assoc = COMDATSymbol->Section;
if (!Assoc)
report_fatal_error(
Twine("Missing associated COMDAT section for section ") +
MCSec.getSectionName());
// Skip this section if the associated section is unused.
if (Assoc->Number == -1)
continue;
Section->Symbol->Aux[0].Aux.SectionDefinition.Number = SectionIndices[Assoc];
}
// Assign file offsets to COFF object file structures.
unsigned offset = 0;
if (UseBigObj)
offset += COFF::Header32Size;
else
offset += COFF::Header16Size;
offset += COFF::SectionSize * Header.NumberOfSections;
for (const auto &Section : Asm) {
COFFSection *Sec = SectionMap[&Section.getSection()];
if (Sec->Number == -1)
continue;
Sec->Header.SizeOfRawData = Layout.getSectionAddressSize(&Section);
if (IsPhysicalSection(Sec)) {
Sec->Header.PointerToRawData = offset;
offset += Sec->Header.SizeOfRawData;
}
if (Sec->Relocations.size() > 0) {
bool RelocationsOverflow = Sec->Relocations.size() >= 0xffff;
if (RelocationsOverflow) {
// Signal overflow by setting NumberOfRelocations to max value. Actual
// size is found in reloc #0. Microsoft tools understand this.
Sec->Header.NumberOfRelocations = 0xffff;
} else {
Sec->Header.NumberOfRelocations = Sec->Relocations.size();
}
Sec->Header.PointerToRelocations = offset;
if (RelocationsOverflow) {
// Reloc #0 will contain actual count, so make room for it.
offset += COFF::RelocationSize;
}
offset += COFF::RelocationSize * Sec->Relocations.size();
for (auto &Relocation : Sec->Relocations) {
assert(Relocation.Symb->Index != -1);
Relocation.Data.SymbolTableIndex = Relocation.Symb->Index;
}
}
assert(Sec->Symbol->Aux.size() == 1 &&
"Section's symbol must have one aux!");
AuxSymbol &Aux = Sec->Symbol->Aux[0];
assert(Aux.AuxType == ATSectionDefinition &&
"Section's symbol's aux symbol must be a Section Definition!");
Aux.Aux.SectionDefinition.Length = Sec->Header.SizeOfRawData;
Aux.Aux.SectionDefinition.NumberOfRelocations =
Sec->Header.NumberOfRelocations;
Aux.Aux.SectionDefinition.NumberOfLinenumbers =
Sec->Header.NumberOfLineNumbers;
}
Header.PointerToSymbolTable = offset;
// We want a deterministic output. It looks like GNU as also writes 0 in here.
Header.TimeDateStamp = 0;
// Write it all to disk...
WriteFileHeader(Header);
{
sections::iterator i, ie;
MCAssembler::const_iterator j, je;
for (auto &Section : Sections) {
if (Section->Number != -1) {
if (Section->Relocations.size() >= 0xffff)
Section->Header.Characteristics |= COFF::IMAGE_SCN_LNK_NRELOC_OVFL;
WriteSectionHeader(Section->Header);
}
}
for (i = Sections.begin(), ie = Sections.end(),
j = Asm.begin(), je = Asm.end();
(i != ie) && (j != je); ++i, ++j) {
if ((*i)->Number == -1)
continue;
if ((*i)->Header.PointerToRawData != 0) {
assert(OS.tell() == (*i)->Header.PointerToRawData &&
"Section::PointerToRawData is insane!");
Asm.writeSectionData(j, Layout);
}
if ((*i)->Relocations.size() > 0) {
assert(OS.tell() == (*i)->Header.PointerToRelocations &&
"Section::PointerToRelocations is insane!");
if ((*i)->Relocations.size() >= 0xffff) {
// In case of overflow, write actual relocation count as first
// relocation. Including the synthetic reloc itself (+ 1).
COFF::relocation r;
r.VirtualAddress = (*i)->Relocations.size() + 1;
r.SymbolTableIndex = 0;
r.Type = 0;
WriteRelocation(r);
}
for (const auto &Relocation : (*i)->Relocations)
WriteRelocation(Relocation.Data);
} else
assert((*i)->Header.PointerToRelocations == 0 &&
"Section::PointerToRelocations is insane!");
}
}
assert(OS.tell() == Header.PointerToSymbolTable &&
"Header::PointerToSymbolTable is insane!");
for (auto &Symbol : Symbols)
if (Symbol->Index != -1)
WriteSymbol(*Symbol);
OS.write(Strings.data().data(), Strings.data().size());
}
MCWinCOFFObjectTargetWriter::MCWinCOFFObjectTargetWriter(unsigned Machine_) :
Machine(Machine_) {
}
// Pin the vtable to this file.
void MCWinCOFFObjectTargetWriter::anchor() {}
//------------------------------------------------------------------------------
// WinCOFFObjectWriter factory function
namespace llvm {
MCObjectWriter *createWinCOFFObjectWriter(MCWinCOFFObjectTargetWriter *MOTW,
raw_ostream &OS) {
return new WinCOFFObjectWriter(MOTW, OS);
}
}