llvm-6502/test/CodeGen/X86/win32_sret.ll
Reid Kleckner 805a83c041 Allow sret on the second parameter as well as the first
MSVC always places the implicit sret parameter after the implicit this
parameter of instance methods.  We used to handle this for
x86_thiscallcc by allocating the sret parameter on the stack and leaving
the this pointer in ecx, but that doesn't handle alternative calling
conventions like cdecl, stdcall, fastcall, or the win64 convention.

Instead, change the verifier to allow sret on the second parameter.

This also requires changing the Mips and X86 backends to return the
argument with the sret parameter, instead of assuming that the sret
parameter comes first.

The Sparc backend also returns sret parameters in a register, but I
wasn't able to update it to handle secondary sret parameters.  It
currently calls report_fatal_error if you feed it an sret in the second
parameter.

Reviewers: rafael.espindola, majnemer

Differential Revision: http://reviews.llvm.org/D3617

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208453 91177308-0d34-0410-b5e6-96231b3b80d8
2014-05-09 22:32:13 +00:00

244 lines
7.1 KiB
LLVM

; We specify -mcpu explicitly to avoid instruction reordering that happens on
; some setups (e.g., Atom) from affecting the output.
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
; RUN: llc < %s -mcpu=core2 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer
; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer
; arguments are caller-cleanup like normal arguments.
define void @sret1(i8* sret %x) nounwind {
entry:
; WIN32-LABEL: _sret1:
; WIN32: movb $42, (%eax)
; WIN32-NOT: popl %eax
; WIN32: {{retl$}}
; MINGW_X86-LABEL: _sret1:
; MINGW_X86: {{retl$}}
; CYGWIN-LABEL: _sret1:
; CYGWIN: retl $4
; LINUX-LABEL: sret1:
; LINUX: retl $4
store i8 42, i8* %x, align 4
ret void
}
define void @sret2(i8* sret %x, i8 %y) nounwind {
entry:
; WIN32-LABEL: _sret2:
; WIN32: movb {{.*}}, (%eax)
; WIN32-NOT: popl %eax
; WIN32: {{retl$}}
; MINGW_X86-LABEL: _sret2:
; MINGW_X86: {{retl$}}
; CYGWIN-LABEL: _sret2:
; CYGWIN: retl $4
; LINUX-LABEL: sret2:
; LINUX: retl $4
store i8 %y, i8* %x
ret void
}
define void @sret3(i8* sret %x, i8* %y) nounwind {
entry:
; WIN32-LABEL: _sret3:
; WIN32: movb $42, (%eax)
; WIN32-NOT: movb $13, (%eax)
; WIN32-NOT: popl %eax
; WIN32: {{retl$}}
; MINGW_X86-LABEL: _sret3:
; MINGW_X86: {{retl$}}
; CYGWIN-LABEL: _sret3:
; CYGWIN: retl $4
; LINUX-LABEL: sret3:
; LINUX: retl $4
store i8 42, i8* %x
store i8 13, i8* %y
ret void
}
; PR15556
%struct.S4 = type { i32, i32, i32 }
define void @sret4(%struct.S4* noalias sret %agg.result) {
entry:
; WIN32-LABEL: _sret4:
; WIN32: movl $42, (%eax)
; WIN32-NOT: popl %eax
; WIN32: {{retl$}}
; MINGW_X86-LABEL: _sret4:
; MINGW_X86: {{retl$}}
; CYGWIN-LABEL: _sret4:
; CYGWIN: retl $4
; LINUX-LABEL: sret4:
; LINUX: retl $4
%x = getelementptr inbounds %struct.S4* %agg.result, i32 0, i32 0
store i32 42, i32* %x, align 4
ret void
}
%struct.S5 = type { i32 }
%class.C5 = type { i8 }
define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* noalias sret %agg.result, %class.C5* %this) {
entry:
%this.addr = alloca %class.C5*, align 4
store %class.C5* %this, %class.C5** %this.addr, align 4
%this1 = load %class.C5** %this.addr
%x = getelementptr inbounds %struct.S5* %agg.result, i32 0, i32 0
store i32 42, i32* %x, align 4
ret void
; WIN32-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
; MINGW_X86-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
; CYGWIN-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
; LINUX-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
; The address of the return structure is passed as an implicit parameter.
; In the -O0 build, %eax is spilled at the beginning of the function, hence we
; should match both 4(%esp) and 8(%esp).
; WIN32: {{[48]}}(%esp), %eax
; WIN32: movl $42, (%eax)
; WIN32: retl $4
}
define void @call_foo5() {
entry:
%c = alloca %class.C5, align 1
%s = alloca %struct.S5, align 4
call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* sret %s, %class.C5* %c)
; WIN32-LABEL: {{^}}_call_foo5:
; MINGW_X86-LABEL: {{^}}_call_foo5:
; CYGWIN-LABEL: {{^}}_call_foo5:
; LINUX-LABEL: {{^}}call_foo5:
; Load the address of the result and put it onto stack
; (through %ecx in the -O0 build).
; WIN32: leal {{[0-9]+}}(%esp), %e{{[a-d]}}x
; WIN32: movl %e{{[a-d]}}x, (%e{{([a-d]x)|(sp)}})
; The this pointer goes to ECX.
; WIN32-NEXT: leal {{[0-9]+}}(%esp), %ecx
; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ"
; WIN32: retl
ret void
}
%struct.test6 = type { i32, i32, i32 }
define void @test6_f(%struct.test6* %x) nounwind {
; WIN32-LABEL: _test6_f:
; MINGW_X86-LABEL: _test6_f:
; CYGWIN-LABEL: _test6_f:
; LINUX-LABEL: test6_f:
; The %x argument is moved to %ecx. It will be the this pointer.
; WIN32: movl 8(%ebp), %ecx
; The %x argument is moved to (%esp). It will be the this pointer. With -O0
; we copy esp to ecx and use (ecx) instead of (esp).
; MINGW_X86: movl 8(%ebp), %eax
; MINGW_X86: movl %eax, (%e{{([a-d]x)|(sp)}})
; CYGWIN: movl 8(%ebp), %eax
; CYGWIN: movl %eax, (%e{{([a-d]x)|(sp)}})
; The sret pointer is (%esp)
; WIN32: leal 8(%esp), %[[REG:e[a-d]x]]
; WIN32-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}})
; The sret pointer is %ecx
; MINGW_X86-NEXT: leal 8(%esp), %ecx
; MINGW_X86-NEXT: calll _test6_g
; CYGWIN-NEXT: leal 8(%esp), %ecx
; CYGWIN-NEXT: calll _test6_g
%tmp = alloca %struct.test6, align 4
call x86_thiscallcc void @test6_g(%struct.test6* sret %tmp, %struct.test6* %x)
ret void
}
declare x86_thiscallcc void @test6_g(%struct.test6* sret, %struct.test6*)
; Flipping the parameters at the IR level generates the same code.
%struct.test7 = type { i32, i32, i32 }
define void @test7_f(%struct.test7* %x) nounwind {
; WIN32-LABEL: _test7_f:
; MINGW_X86-LABEL: _test7_f:
; CYGWIN-LABEL: _test7_f:
; LINUX-LABEL: test7_f:
; The %x argument is moved to %ecx on all OSs. It will be the this pointer.
; WIN32: movl 8(%ebp), %ecx
; MINGW_X86: movl 8(%ebp), %ecx
; CYGWIN: movl 8(%ebp), %ecx
; The sret pointer is (%esp)
; WIN32: leal 8(%esp), %[[REG:e[a-d]x]]
; WIN32-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}})
; MINGW_X86: leal 8(%esp), %[[REG:e[a-d]x]]
; MINGW_X86-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}})
; CYGWIN: leal 8(%esp), %[[REG:e[a-d]x]]
; CYGWIN-NEXT: movl %[[REG]], (%e{{([a-d]x)|(sp)}})
%tmp = alloca %struct.test7, align 4
call x86_thiscallcc void @test7_g(%struct.test7* %x, %struct.test7* sret %tmp)
ret void
}
define x86_thiscallcc void @test7_g(%struct.test7* %in, %struct.test7* sret %out) {
%s = getelementptr %struct.test7* %in, i32 0, i32 0
%d = getelementptr %struct.test7* %out, i32 0, i32 0
%v = load i32* %s
store i32 %v, i32* %d
call void @clobber_eax()
ret void
; Make sure we return the second parameter in %eax.
; WIN32-LABEL: _test7_g:
; WIN32: calll _clobber_eax
; WIN32: movl {{.*}}, %eax
; WIN32: retl
}
declare void @clobber_eax()
; Test what happens if the first parameter has to be split by codegen.
; Realistically, no frontend will generate code like this, but here it is for
; completeness.
define void @test8_f(i64 inreg %a, i64* sret %out) {
store i64 %a, i64* %out
call void @clobber_eax()
ret void
; WIN32-LABEL: _test8_f:
; WIN32: movl {{[0-9]+}}(%esp), %[[out:[a-z]+]]
; WIN32-DAG: movl %edx, 4(%[[out]])
; WIN32-DAG: movl %eax, (%[[out]])
; WIN32: calll _clobber_eax
; WIN32: movl {{.*}}, %eax
; WIN32: retl
}