2013-04-25 21:02:36 +00:00

377 lines
12 KiB
C++

//===-- MCJIT.cpp - MC-based Just-in-Time Compiler ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCJIT.h"
#include "llvm/ExecutionEngine/GenericValue.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/JITMemoryManager.h"
#include "llvm/ExecutionEngine/MCJIT.h"
#include "llvm/ExecutionEngine/ObjectBuffer.h"
#include "llvm/ExecutionEngine/ObjectImage.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/DynamicLibrary.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/MutexGuard.h"
using namespace llvm;
namespace {
static struct RegisterJIT {
RegisterJIT() { MCJIT::Register(); }
} JITRegistrator;
}
extern "C" void LLVMLinkInMCJIT() {
}
ExecutionEngine *MCJIT::createJIT(Module *M,
std::string *ErrorStr,
JITMemoryManager *JMM,
bool GVsWithCode,
TargetMachine *TM) {
// Try to register the program as a source of symbols to resolve against.
//
// FIXME: Don't do this here.
sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
return new MCJIT(M, TM, JMM, GVsWithCode);
}
MCJIT::MCJIT(Module *m, TargetMachine *tm, RTDyldMemoryManager *MM,
bool AllocateGVsWithCode)
: ExecutionEngine(m), TM(tm), Ctx(0), MemMgr(MM), Dyld(MM),
IsLoaded(false), M(m), ObjCache(0) {
setDataLayout(TM->getDataLayout());
}
MCJIT::~MCJIT() {
if (LoadedObject)
NotifyFreeingObject(*LoadedObject.get());
delete MemMgr;
delete TM;
}
void MCJIT::setObjectCache(ObjectCache* NewCache) {
ObjCache = NewCache;
}
ObjectBufferStream* MCJIT::emitObject(Module *m) {
/// Currently, MCJIT only supports a single module and the module passed to
/// this function call is expected to be the contained module. The module
/// is passed as a parameter here to prepare for multiple module support in
/// the future.
assert(M == m);
// Get a thread lock to make sure we aren't trying to compile multiple times
MutexGuard locked(lock);
// FIXME: Track compilation state on a per-module basis when multiple modules
// are supported.
// Re-compilation is not supported
assert(!IsLoaded);
PassManager PM;
PM.add(new DataLayout(*TM->getDataLayout()));
// The RuntimeDyld will take ownership of this shortly
OwningPtr<ObjectBufferStream> CompiledObject(new ObjectBufferStream());
// Turn the machine code intermediate representation into bytes in memory
// that may be executed.
if (TM->addPassesToEmitMC(PM, Ctx, CompiledObject->getOStream(), false)) {
report_fatal_error("Target does not support MC emission!");
}
// Initialize passes.
PM.run(*m);
// Flush the output buffer to get the generated code into memory
CompiledObject->flush();
// If we have an object cache, tell it about the new object.
// Note that we're using the compiled image, not the loaded image (as below).
if (ObjCache) {
// MemoryBuffer is a thin wrapper around the actual memory, so it's OK
// to create a temporary object here and delete it after the call.
OwningPtr<MemoryBuffer> MB(CompiledObject->getMemBuffer());
ObjCache->notifyObjectCompiled(m, MB.get());
}
return CompiledObject.take();
}
void MCJIT::loadObject(Module *M) {
// Get a thread lock to make sure we aren't trying to load multiple times
MutexGuard locked(lock);
// FIXME: Track compilation state on a per-module basis when multiple modules
// are supported.
// Re-compilation is not supported
if (IsLoaded)
return;
OwningPtr<ObjectBuffer> ObjectToLoad;
// Try to load the pre-compiled object from cache if possible
if (0 != ObjCache) {
OwningPtr<MemoryBuffer> PreCompiledObject(ObjCache->getObjectCopy(M));
if (0 != PreCompiledObject.get())
ObjectToLoad.reset(new ObjectBuffer(PreCompiledObject.take()));
}
// If the cache did not contain a suitable object, compile the object
if (!ObjectToLoad) {
ObjectToLoad.reset(emitObject(M));
assert(ObjectToLoad.get() && "Compilation did not produce an object.");
}
// Load the object into the dynamic linker.
// handing off ownership of the buffer
LoadedObject.reset(Dyld.loadObject(ObjectToLoad.take()));
if (!LoadedObject)
report_fatal_error(Dyld.getErrorString());
// Resolve any relocations.
Dyld.resolveRelocations();
// FIXME: Make this optional, maybe even move it to a JIT event listener
LoadedObject->registerWithDebugger();
NotifyObjectEmitted(*LoadedObject);
// FIXME: Add support for per-module compilation state
IsLoaded = true;
}
// FIXME: Add a parameter to identify which object is being finalized when
// MCJIT supports multiple modules.
// FIXME: Provide a way to separate code emission, relocations and page
// protection in the interface.
void MCJIT::finalizeObject() {
// If the module hasn't been compiled, just do that.
if (!IsLoaded) {
// If the call to Dyld.resolveRelocations() is removed from loadObject()
// we'll need to do that here.
loadObject(M);
// Set page permissions.
MemMgr->applyPermissions();
return;
}
// Resolve any relocations.
Dyld.resolveRelocations();
// Set page permissions.
MemMgr->applyPermissions();
}
void *MCJIT::getPointerToBasicBlock(BasicBlock *BB) {
report_fatal_error("not yet implemented");
}
void *MCJIT::getPointerToFunction(Function *F) {
// FIXME: This should really return a uint64_t since it's a pointer in the
// target address space, not our local address space. That's part of the
// ExecutionEngine interface, though. Fix that when the old JIT finally
// dies.
// FIXME: Add support for per-module compilation state
if (!IsLoaded)
loadObject(M);
if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
bool AbortOnFailure = !F->hasExternalWeakLinkage();
void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
addGlobalMapping(F, Addr);
return Addr;
}
// FIXME: Should the Dyld be retaining module information? Probably not.
// FIXME: Should we be using the mangler for this? Probably.
//
// This is the accessor for the target address, so make sure to check the
// load address of the symbol, not the local address.
StringRef BaseName = F->getName();
if (BaseName[0] == '\1')
return (void*)Dyld.getSymbolLoadAddress(BaseName.substr(1));
return (void*)Dyld.getSymbolLoadAddress((TM->getMCAsmInfo()->getGlobalPrefix()
+ BaseName).str());
}
void *MCJIT::recompileAndRelinkFunction(Function *F) {
report_fatal_error("not yet implemented");
}
void MCJIT::freeMachineCodeForFunction(Function *F) {
report_fatal_error("not yet implemented");
}
GenericValue MCJIT::runFunction(Function *F,
const std::vector<GenericValue> &ArgValues) {
assert(F && "Function *F was null at entry to run()");
void *FPtr = getPointerToFunction(F);
assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
FunctionType *FTy = F->getFunctionType();
Type *RetTy = FTy->getReturnType();
assert((FTy->getNumParams() == ArgValues.size() ||
(FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
"Wrong number of arguments passed into function!");
assert(FTy->getNumParams() == ArgValues.size() &&
"This doesn't support passing arguments through varargs (yet)!");
// Handle some common cases first. These cases correspond to common `main'
// prototypes.
if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
switch (ArgValues.size()) {
case 3:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy() &&
FTy->getParamType(2)->isPointerTy()) {
int (*PF)(int, char **, const char **) =
(int(*)(int, char **, const char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1]),
(const char **)GVTOP(ArgValues[2])));
return rv;
}
break;
case 2:
if (FTy->getParamType(0)->isIntegerTy(32) &&
FTy->getParamType(1)->isPointerTy()) {
int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
// Call the function.
GenericValue rv;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
(char **)GVTOP(ArgValues[1])));
return rv;
}
break;
case 1:
if (FTy->getNumParams() == 1 &&
FTy->getParamType(0)->isIntegerTy(32)) {
GenericValue rv;
int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
return rv;
}
break;
}
}
// Handle cases where no arguments are passed first.
if (ArgValues.empty()) {
GenericValue rv;
switch (RetTy->getTypeID()) {
default: llvm_unreachable("Unknown return type for function call!");
case Type::IntegerTyID: {
unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
if (BitWidth == 1)
rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
else if (BitWidth <= 8)
rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
else if (BitWidth <= 16)
rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
else if (BitWidth <= 32)
rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
else if (BitWidth <= 64)
rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
else
llvm_unreachable("Integer types > 64 bits not supported");
return rv;
}
case Type::VoidTyID:
rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
return rv;
case Type::FloatTyID:
rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
return rv;
case Type::DoubleTyID:
rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
return rv;
case Type::X86_FP80TyID:
case Type::FP128TyID:
case Type::PPC_FP128TyID:
llvm_unreachable("long double not supported yet");
case Type::PointerTyID:
return PTOGV(((void*(*)())(intptr_t)FPtr)());
}
}
llvm_unreachable("Full-featured argument passing not supported yet!");
}
void *MCJIT::getPointerToNamedFunction(const std::string &Name,
bool AbortOnFailure) {
// FIXME: Add support for per-module compilation state
if (!IsLoaded)
loadObject(M);
if (!isSymbolSearchingDisabled() && MemMgr) {
void *ptr = MemMgr->getPointerToNamedFunction(Name, false);
if (ptr)
return ptr;
}
/// If a LazyFunctionCreator is installed, use it to get/create the function.
if (LazyFunctionCreator)
if (void *RP = LazyFunctionCreator(Name))
return RP;
if (AbortOnFailure) {
report_fatal_error("Program used external function '"+Name+
"' which could not be resolved!");
}
return 0;
}
void MCJIT::RegisterJITEventListener(JITEventListener *L) {
if (L == NULL)
return;
MutexGuard locked(lock);
EventListeners.push_back(L);
}
void MCJIT::UnregisterJITEventListener(JITEventListener *L) {
if (L == NULL)
return;
MutexGuard locked(lock);
SmallVector<JITEventListener*, 2>::reverse_iterator I=
std::find(EventListeners.rbegin(), EventListeners.rend(), L);
if (I != EventListeners.rend()) {
std::swap(*I, EventListeners.back());
EventListeners.pop_back();
}
}
void MCJIT::NotifyObjectEmitted(const ObjectImage& Obj) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyObjectEmitted(Obj);
}
}
void MCJIT::NotifyFreeingObject(const ObjectImage& Obj) {
MutexGuard locked(lock);
for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
EventListeners[I]->NotifyFreeingObject(Obj);
}
}