llvm-6502/lib/Bytecode/Reader/Parser.cpp
2004-06-10 21:59:20 +00:00

1063 lines
33 KiB
C++

//===- Parser.cpp - Code to parse bytecode files --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This library implements the functionality defined in llvm/Bytecode/Parser.h
//
// Note that this library should be as fast as possible, reentrant, and
// threadsafe!!
//
// TODO: Allow passing in an option to ignore the symbol table
//
//===----------------------------------------------------------------------===//
#include "AnalyzerInternals.h"
#include "llvm/Module.h"
#include "llvm/Bytecode/Format.h"
#include "Support/StringExtras.h"
#include <iostream>
#include <sstream>
using namespace llvm;
// Enable to trace to figure out what the heck is going on when parsing fails
//#define TRACE_LEVEL 10
//#define DEBUG_OUTPUT
#if TRACE_LEVEL // ByteCodeReading_TRACEr
#define BCR_TRACE(n, X) \
if (n < TRACE_LEVEL) std::cerr << std::string(n*2, ' ') << X
#else
#define BCR_TRACE(n, X)
#endif
#define PARSE_ERROR(inserters) { \
std::ostringstream errormsg; \
errormsg << inserters; \
if ( ! handler->handleError( errormsg.str() ) ) \
throw std::string(errormsg.str()); \
}
inline bool AbstractBytecodeParser::moreInBlock() {
return At < BlockEnd;
}
inline void AbstractBytecodeParser::checkPastBlockEnd(const char * block_name) {
if ( At > BlockEnd )
PARSE_ERROR("Attempt to read past the end of " << block_name << " block.");
}
inline void AbstractBytecodeParser::align32() {
BufPtr Save = At;
At = (const unsigned char *)((unsigned long)(At+3) & (~3UL));
if ( reportAlignment && At > Save ) handler->handleAlignment( At - Save );
if (At > BlockEnd)
throw std::string("Ran out of data while aligning!");
}
inline unsigned AbstractBytecodeParser::read_uint() {
if (At+4 > BlockEnd)
throw std::string("Ran out of data reading uint!");
At += 4;
return At[-4] | (At[-3] << 8) | (At[-2] << 16) | (At[-1] << 24);
}
inline unsigned AbstractBytecodeParser::read_vbr_uint() {
unsigned Shift = 0;
unsigned Result = 0;
BufPtr Save = At;
do {
if (At == BlockEnd)
throw std::string("Ran out of data reading vbr_uint!");
Result |= (unsigned)((*At++) & 0x7F) << Shift;
Shift += 7;
} while (At[-1] & 0x80);
if (reportVBR)
handler->handleVBR32(At-Save);
return Result;
}
inline uint64_t AbstractBytecodeParser::read_vbr_uint64() {
unsigned Shift = 0;
uint64_t Result = 0;
BufPtr Save = At;
do {
if (At == BlockEnd)
throw std::string("Ran out of data reading vbr_uint64!");
Result |= (uint64_t)((*At++) & 0x7F) << Shift;
Shift += 7;
} while (At[-1] & 0x80);
if (reportVBR)
handler->handleVBR64(At-Save);
return Result;
}
inline int64_t AbstractBytecodeParser::read_vbr_int64() {
uint64_t R = read_vbr_uint64();
if (R & 1) {
if (R != 1)
return -(int64_t)(R >> 1);
else // There is no such thing as -0 with integers. "-0" really means
// 0x8000000000000000.
return 1LL << 63;
} else
return (int64_t)(R >> 1);
}
inline std::string AbstractBytecodeParser::read_str() {
unsigned Size = read_vbr_uint();
const unsigned char *OldAt = At;
At += Size;
if (At > BlockEnd) // Size invalid?
throw std::string("Ran out of data reading a string!");
return std::string((char*)OldAt, Size);
}
inline void AbstractBytecodeParser::read_data(void *Ptr, void *End) {
unsigned char *Start = (unsigned char *)Ptr;
unsigned Amount = (unsigned char *)End - Start;
if (At+Amount > BlockEnd)
throw std::string("Ran out of data!");
std::copy(At, At+Amount, Start);
At += Amount;
}
inline void AbstractBytecodeParser::readBlock(unsigned &Type, unsigned &Size) {
Type = read_uint();
Size = read_uint();
BlockStart = At;
if ( At + Size > BlockEnd )
throw std::string("Attempt to size a block past end of memory");
BlockEnd = At + Size;
if ( reportBlocks ) {
handler->handleBlock( Type, BlockStart, Size );
}
}
const Type *AbstractBytecodeParser::getType(unsigned ID) {
//cerr << "Looking up Type ID: " << ID << "\n";
if (ID < Type::FirstDerivedTyID)
if (const Type *T = Type::getPrimitiveType((Type::PrimitiveID)ID))
return T; // Asked for a primitive type...
// Otherwise, derived types need offset...
ID -= Type::FirstDerivedTyID;
if (!CompactionTypeTable.empty()) {
if (ID >= CompactionTypeTable.size())
PARSE_ERROR("Type ID out of range for compaction table!");
return CompactionTypeTable[ID];
}
// Is it a module-level type?
if (ID < ModuleTypes.size())
return ModuleTypes[ID].get();
// Nope, is it a function-level type?
ID -= ModuleTypes.size();
if (ID < FunctionTypes.size())
return FunctionTypes[ID].get();
PARSE_ERROR("Illegal type reference!");
return Type::VoidTy;
}
bool AbstractBytecodeParser::ParseInstruction(std::vector<unsigned> &Operands) {
BufPtr SaveAt = At;
Operands.clear();
unsigned iType = 0;
unsigned Opcode = 0;
unsigned Op = read_uint();
// bits Instruction format: Common to all formats
// --------------------------
// 01-00: Opcode type, fixed to 1.
// 07-02: Opcode
Opcode = (Op >> 2) & 63;
Operands.resize((Op >> 0) & 03);
switch (Operands.size()) {
case 1:
// bits Instruction format:
// --------------------------
// 19-08: Resulting type plane
// 31-20: Operand #1 (if set to (2^12-1), then zero operands)
//
iType = (Op >> 8) & 4095;
Operands[0] = (Op >> 20) & 4095;
if (Operands[0] == 4095) // Handle special encoding for 0 operands...
Operands.resize(0);
break;
case 2:
// bits Instruction format:
// --------------------------
// 15-08: Resulting type plane
// 23-16: Operand #1
// 31-24: Operand #2
//
iType = (Op >> 8) & 255;
Operands[0] = (Op >> 16) & 255;
Operands[1] = (Op >> 24) & 255;
break;
case 3:
// bits Instruction format:
// --------------------------
// 13-08: Resulting type plane
// 19-14: Operand #1
// 25-20: Operand #2
// 31-26: Operand #3
//
iType = (Op >> 8) & 63;
Operands[0] = (Op >> 14) & 63;
Operands[1] = (Op >> 20) & 63;
Operands[2] = (Op >> 26) & 63;
break;
case 0:
At -= 4; // Hrm, try this again...
Opcode = read_vbr_uint();
Opcode >>= 2;
iType = read_vbr_uint();
unsigned NumOperands = read_vbr_uint();
Operands.resize(NumOperands);
if (NumOperands == 0)
PARSE_ERROR("Zero-argument instruction found; this is invalid.");
for (unsigned i = 0; i != NumOperands; ++i)
Operands[i] = read_vbr_uint();
align32();
break;
}
return handler->handleInstruction(Opcode, getType(iType), Operands, At-SaveAt);
}
/// ParseBasicBlock - In LLVM 1.0 bytecode files, we used to output one
/// basicblock at a time. This method reads in one of the basicblock packets.
void AbstractBytecodeParser::ParseBasicBlock( unsigned BlockNo) {
handler->handleBasicBlockBegin( BlockNo );
std::vector<unsigned> Args;
bool is_terminating = false;
while ( moreInBlock() )
is_terminating = ParseInstruction(Args);
if ( ! is_terminating )
PARSE_ERROR("Non-terminated basic block found!");
handler->handleBasicBlockEnd( BlockNo );
}
/// ParseInstructionList - Parse all of the BasicBlock's & Instruction's in the
/// body of a function. In post 1.0 bytecode files, we no longer emit basic
/// block individually, in order to avoid per-basic-block overhead.
unsigned AbstractBytecodeParser::ParseInstructionList() {
unsigned BlockNo = 0;
std::vector<unsigned> Args;
while ( moreInBlock() ) {
handler->handleBasicBlockBegin( BlockNo );
// Read instructions into this basic block until we get to a terminator
bool is_terminating = false;
while (moreInBlock() && !is_terminating )
is_terminating = ParseInstruction(Args ) ;
if (!is_terminating)
PARSE_ERROR( "Non-terminated basic block found!");
handler->handleBasicBlockEnd( BlockNo );
++BlockNo;
}
return BlockNo;
}
void AbstractBytecodeParser::ParseSymbolTable() {
handler->handleSymbolTableBegin();
while ( moreInBlock() ) {
// Symtab block header: [num entries][type id number]
unsigned NumEntries = read_vbr_uint();
unsigned Typ = read_vbr_uint();
const Type *Ty = getType(Typ);
handler->handleSymbolTablePlane( Typ, NumEntries, Ty );
for (unsigned i = 0; i != NumEntries; ++i) {
// Symtab entry: [def slot #][name]
unsigned slot = read_vbr_uint();
std::string Name = read_str();
if (Typ == Type::TypeTyID)
handler->handleSymbolTableType( i, slot, Name );
else
handler->handleSymbolTableValue( i, slot, Name );
}
}
checkPastBlockEnd("Symbol Table");
handler->handleSymbolTableEnd();
}
void AbstractBytecodeParser::ParseFunctionLazily() {
if (FunctionSignatureList.empty())
throw std::string("FunctionSignatureList empty!");
Function *Func = FunctionSignatureList.back();
FunctionSignatureList.pop_back();
// Save the information for future reading of the function
LazyFunctionLoadMap[Func] = LazyFunctionInfo(BlockStart, BlockEnd);
// Pretend we've `parsed' this function
At = BlockEnd;
}
void AbstractBytecodeParser::ParseNextFunction(Function* Func) {
// Find {start, end} pointers and slot in the map. If not there, we're done.
LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.find(Func);
// Make sure we found it
if ( Fi == LazyFunctionLoadMap.end() ) {
PARSE_ERROR("Unrecognized function of type " << Func->getType()->getDescription());
return;
}
BlockStart = At = Fi->second.Buf;
BlockEnd = Fi->second.Buf;
assert(Fi->first == Func);
LazyFunctionLoadMap.erase(Fi);
this->ParseFunctionBody( Func );
}
void AbstractBytecodeParser::ParseAllFunctionBodies() {
LazyFunctionMap::iterator Fi = LazyFunctionLoadMap.begin();
LazyFunctionMap::iterator Fe = LazyFunctionLoadMap.end();
while ( Fi != Fe ) {
Function* Func = Fi->first;
BlockStart = At = Fi->second.Buf;
BlockEnd = Fi->second.EndBuf;
this->ParseFunctionBody(Func);
++Fi;
}
}
void AbstractBytecodeParser::ParseFunctionBody(Function* Func ) {
unsigned FuncSize = BlockEnd - At;
GlobalValue::LinkageTypes Linkage = GlobalValue::ExternalLinkage;
unsigned LinkageType = read_vbr_uint();
switch (LinkageType) {
case 0: Linkage = GlobalValue::ExternalLinkage; break;
case 1: Linkage = GlobalValue::WeakLinkage; break;
case 2: Linkage = GlobalValue::AppendingLinkage; break;
case 3: Linkage = GlobalValue::InternalLinkage; break;
case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
default:
PARSE_ERROR("Invalid linkage type for Function.");
Linkage = GlobalValue::InternalLinkage;
break;
}
Func->setLinkage( Linkage );
handler->handleFunctionBegin(Func,FuncSize);
// Keep track of how many basic blocks we have read in...
unsigned BlockNum = 0;
bool InsertedArguments = false;
BufPtr MyEnd = BlockEnd;
while ( At < MyEnd ) {
unsigned Type, Size;
BufPtr OldAt = At;
readBlock(Type, Size);
switch (Type) {
case BytecodeFormat::ConstantPool:
ParseConstantPool(FunctionTypes );
break;
case BytecodeFormat::CompactionTable:
ParseCompactionTable();
break;
case BytecodeFormat::BasicBlock:
ParseBasicBlock(BlockNum++);
break;
case BytecodeFormat::InstructionList:
if (BlockNum)
PARSE_ERROR("InstructionList must come before basic blocks!");
BlockNum = ParseInstructionList();
break;
case BytecodeFormat::SymbolTable:
ParseSymbolTable();
break;
default:
At += Size;
if (OldAt > At)
PARSE_ERROR("Wrapped around reading bytecode");
break;
}
BlockEnd = MyEnd;
// Malformed bc file if read past end of block.
align32();
}
handler->handleFunctionEnd(Func);
// Clear out function-level types...
FunctionTypes.clear();
CompactionTypeTable.clear();
}
void AbstractBytecodeParser::ParseCompactionTable() {
handler->handleCompactionTableBegin();
while ( moreInBlock() ) {
unsigned NumEntries = read_vbr_uint();
unsigned Ty;
if ((NumEntries & 3) == 3) {
NumEntries >>= 2;
Ty = read_vbr_uint();
} else {
Ty = NumEntries >> 2;
NumEntries &= 3;
}
handler->handleCompactionTablePlane( Ty, NumEntries );
if (Ty == Type::TypeTyID) {
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned TypeSlot = read_vbr_uint();
const Type *Typ = getGlobalTableType(TypeSlot);
handler->handleCompactionTableType( i, TypeSlot, Typ );
}
} else {
const Type *Typ = getType(Ty);
// Push the implicit zero
for (unsigned i = 0; i != NumEntries; ++i) {
unsigned ValSlot = read_vbr_uint();
handler->handleCompactionTableValue( i, ValSlot, Typ );
}
}
}
handler->handleCompactionTableEnd();
}
const Type *AbstractBytecodeParser::ParseTypeConstant() {
unsigned PrimType = read_vbr_uint();
const Type *Val = 0;
if ((Val = Type::getPrimitiveType((Type::PrimitiveID)PrimType)))
return Val;
switch (PrimType) {
case Type::FunctionTyID: {
const Type *RetType = getType(read_vbr_uint());
unsigned NumParams = read_vbr_uint();
std::vector<const Type*> Params;
while (NumParams--)
Params.push_back(getType(read_vbr_uint()));
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
if (isVarArg) Params.pop_back();
Type* result = FunctionType::get(RetType, Params, isVarArg);
handler->handleType( result );
return result;
}
case Type::ArrayTyID: {
unsigned ElTyp = read_vbr_uint();
const Type *ElementType = getType(ElTyp);
unsigned NumElements = read_vbr_uint();
BCR_TRACE(5, "Array Type Constant #" << ElTyp << " size="
<< NumElements << "\n");
Type* result = ArrayType::get(ElementType, NumElements);
handler->handleType( result );
return result;
}
case Type::StructTyID: {
std::vector<const Type*> Elements;
unsigned Typ = read_vbr_uint();
while (Typ) { // List is terminated by void/0 typeid
Elements.push_back(getType(Typ));
Typ = read_vbr_uint();
}
Type* result = StructType::get(Elements);
handler->handleType( result );
return result;
}
case Type::PointerTyID: {
unsigned ElTyp = read_vbr_uint();
BCR_TRACE(5, "Pointer Type Constant #" << ElTyp << "\n");
Type* result = PointerType::get(getType(ElTyp));
handler->handleType( result );
return result;
}
case Type::OpaqueTyID: {
Type* result = OpaqueType::get();
handler->handleType( result );
return result;
}
default:
PARSE_ERROR("Don't know how to deserialize primitive type" << PrimType << "\n");
return Val;
}
}
// ParseTypeConstants - We have to use this weird code to handle recursive
// types. We know that recursive types will only reference the current slab of
// values in the type plane, but they can forward reference types before they
// have been read. For example, Type #0 might be '{ Ty#1 }' and Type #1 might
// be 'Ty#0*'. When reading Type #0, type number one doesn't exist. To fix
// this ugly problem, we pessimistically insert an opaque type for each type we
// are about to read. This means that forward references will resolve to
// something and when we reread the type later, we can replace the opaque type
// with a new resolved concrete type.
//
void AbstractBytecodeParser::ParseTypeConstants(
TypeListTy &Tab, unsigned NumEntries
) {
assert(Tab.size() == 0 && "should not have read type constants in before!");
// Insert a bunch of opaque types to be resolved later...
Tab.reserve(NumEntries);
for (unsigned i = 0; i != NumEntries; ++i)
Tab.push_back(OpaqueType::get());
// Loop through reading all of the types. Forward types will make use of the
// opaque types just inserted.
//
for (unsigned i = 0; i != NumEntries; ++i) {
const Type *NewTy = ParseTypeConstant(), *OldTy = Tab[i].get();
if (NewTy == 0) throw std::string("Couldn't parse type!");
BCR_TRACE(4, "#" << i << ": Read Type Constant: '" << NewTy <<
"' Replacing: " << OldTy << "\n");
// Don't insertValue the new type... instead we want to replace the opaque
// type with the new concrete value...
//
// Refine the abstract type to the new type. This causes all uses of the
// abstract type to use NewTy. This also will cause the opaque type to be
// deleted...
//
cast<DerivedType>(const_cast<Type*>(OldTy))->refineAbstractTypeTo(NewTy);
// This should have replace the old opaque type with the new type in the
// value table... or with a preexisting type that was already in the system
assert(Tab[i] != OldTy && "refineAbstractType didn't work!");
}
BCR_TRACE(5, "Resulting types:\n");
for (unsigned i = 0; i < NumEntries; ++i) {
BCR_TRACE(5, (void*)Tab[i].get() << " - " << Tab[i].get() << "\n");
}
}
void AbstractBytecodeParser::ParseConstantValue(unsigned TypeID) {
// We must check for a ConstantExpr before switching by type because
// a ConstantExpr can be of any type, and has no explicit value.
//
// 0 if not expr; numArgs if is expr
unsigned isExprNumArgs = read_vbr_uint();
if (isExprNumArgs) {
unsigned Opcode = read_vbr_uint();
const Type* Typ = getType(TypeID);
// FIXME: Encoding of constant exprs could be much more compact!
std::vector<std::pair<const Type*,unsigned> > ArgVec;
ArgVec.reserve(isExprNumArgs);
// Read the slot number and types of each of the arguments
for (unsigned i = 0; i != isExprNumArgs; ++i) {
unsigned ArgValSlot = read_vbr_uint();
unsigned ArgTypeSlot = read_vbr_uint();
BCR_TRACE(4, "CE Arg " << i << ": Type: '" << *getType(ArgTypeSlot)
<< "' slot: " << ArgValSlot << "\n");
// Get the arg value from its slot if it exists, otherwise a placeholder
ArgVec.push_back(std::make_pair(getType(ArgTypeSlot), ArgValSlot));
}
handler->handleConstantExpression( Opcode, Typ, ArgVec );
return;
}
// Ok, not an ConstantExpr. We now know how to read the given type...
const Type *Ty = getType(TypeID);
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID: {
unsigned Val = read_vbr_uint();
if (Val != 0 && Val != 1)
PARSE_ERROR("Invalid boolean value read.");
handler->handleConstantValue( ConstantBool::get(Val == 1));
break;
}
case Type::UByteTyID: // Unsigned integer types...
case Type::UShortTyID:
case Type::UIntTyID: {
unsigned Val = read_vbr_uint();
if (!ConstantUInt::isValueValidForType(Ty, Val))
throw std::string("Invalid unsigned byte/short/int read.");
handler->handleConstantValue( ConstantUInt::get(Ty, Val) );
break;
}
case Type::ULongTyID: {
handler->handleConstantValue( ConstantUInt::get(Ty, read_vbr_uint64()) );
break;
}
case Type::SByteTyID: // Signed integer types...
case Type::ShortTyID:
case Type::IntTyID: {
case Type::LongTyID:
int64_t Val = read_vbr_int64();
if (!ConstantSInt::isValueValidForType(Ty, Val))
throw std::string("Invalid signed byte/short/int/long read.");
handler->handleConstantValue( ConstantSInt::get(Ty, Val) );
break;
}
case Type::FloatTyID: {
float F;
read_data(&F, &F+1);
handler->handleConstantValue( ConstantFP::get(Ty, F) );
break;
}
case Type::DoubleTyID: {
double Val;
read_data(&Val, &Val+1);
handler->handleConstantValue( ConstantFP::get(Ty, Val) );
break;
}
case Type::TypeTyID:
PARSE_ERROR("Type constants shouldn't live in constant table!");
break;
case Type::ArrayTyID: {
const ArrayType *AT = cast<ArrayType>(Ty);
unsigned NumElements = AT->getNumElements();
std::vector<unsigned> Elements;
Elements.reserve(NumElements);
while (NumElements--) // Read all of the elements of the constant.
Elements.push_back(read_vbr_uint());
handler->handleConstantArray( AT, Elements );
break;
}
case Type::StructTyID: {
const StructType *ST = cast<StructType>(Ty);
std::vector<unsigned> Elements;
Elements.reserve(ST->getNumElements());
for (unsigned i = 0; i != ST->getNumElements(); ++i)
Elements.push_back(read_vbr_uint());
handler->handleConstantStruct( ST, Elements );
break;
}
case Type::PointerTyID: { // ConstantPointerRef value...
const PointerType *PT = cast<PointerType>(Ty);
unsigned Slot = read_vbr_uint();
handler->handleConstantPointer( PT, Slot );
break;
}
default:
PARSE_ERROR("Don't know how to deserialize constant value of type '"+
Ty->getDescription());
}
}
void AbstractBytecodeParser::ParseGlobalTypes() {
ParseConstantPool(ModuleTypes);
}
void AbstractBytecodeParser::ParseStringConstants(unsigned NumEntries ){
for (; NumEntries; --NumEntries) {
unsigned Typ = read_vbr_uint();
const Type *Ty = getType(Typ);
if (!isa<ArrayType>(Ty))
throw std::string("String constant data invalid!");
const ArrayType *ATy = cast<ArrayType>(Ty);
if (ATy->getElementType() != Type::SByteTy &&
ATy->getElementType() != Type::UByteTy)
throw std::string("String constant data invalid!");
// Read character data. The type tells us how long the string is.
char Data[ATy->getNumElements()];
read_data(Data, Data+ATy->getNumElements());
std::vector<Constant*> Elements(ATy->getNumElements());
if (ATy->getElementType() == Type::SByteTy)
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
Elements[i] = ConstantSInt::get(Type::SByteTy, (signed char)Data[i]);
else
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
Elements[i] = ConstantUInt::get(Type::UByteTy, (unsigned char)Data[i]);
// Create the constant, inserting it as needed.
ConstantArray *C = cast<ConstantArray>( ConstantArray::get(ATy, Elements) );
handler->handleConstantString( C );
}
}
void AbstractBytecodeParser::ParseConstantPool( TypeListTy &TypeTab) {
while ( moreInBlock() ) {
unsigned NumEntries = read_vbr_uint();
unsigned Typ = read_vbr_uint();
if (Typ == Type::TypeTyID) {
ParseTypeConstants(TypeTab, NumEntries);
} else if (Typ == Type::VoidTyID) {
ParseStringConstants(NumEntries);
} else {
BCR_TRACE(3, "Type: '" << *getType(Typ) << "' NumEntries: "
<< NumEntries << "\n");
for (unsigned i = 0; i < NumEntries; ++i) {
ParseConstantValue(Typ);
}
}
}
checkPastBlockEnd("Constant Pool");
}
void AbstractBytecodeParser::ParseModuleGlobalInfo() {
handler->handleModuleGlobalsBegin();
// Read global variables...
unsigned VarType = read_vbr_uint();
while (VarType != Type::VoidTyID) { // List is terminated by Void
// VarType Fields: bit0 = isConstant, bit1 = hasInitializer, bit2,3,4 =
// Linkage, bit4+ = slot#
unsigned SlotNo = VarType >> 5;
unsigned LinkageID = (VarType >> 2) & 7;
bool isConstant = VarType & 1;
bool hasInitializer = VarType & 2;
GlobalValue::LinkageTypes Linkage;
switch (LinkageID) {
case 0: Linkage = GlobalValue::ExternalLinkage; break;
case 1: Linkage = GlobalValue::WeakLinkage; break;
case 2: Linkage = GlobalValue::AppendingLinkage; break;
case 3: Linkage = GlobalValue::InternalLinkage; break;
case 4: Linkage = GlobalValue::LinkOnceLinkage; break;
default:
PARSE_ERROR("Unknown linkage type: " << LinkageID);
Linkage = GlobalValue::InternalLinkage;
break;
}
const Type *Ty = getType(SlotNo);
if ( !Ty ) {
PARSE_ERROR("Global has no type! SlotNo=" << SlotNo);
}
if ( !isa<PointerType>(Ty)) {
PARSE_ERROR("Global not a pointer type! Ty= " << Ty->getDescription());
}
const Type *ElTy = cast<PointerType>(Ty)->getElementType();
// Create the global variable...
if (hasInitializer) {
unsigned initSlot = read_vbr_uint();
handler->handleInitializedGV( ElTy, isConstant, Linkage, initSlot );
} else
handler->handleGlobalVariable( ElTy, isConstant, Linkage );
// Get next item
VarType = read_vbr_uint();
}
// Read the function objects for all of the functions that are coming
unsigned FnSignature = read_vbr_uint();
while (FnSignature != Type::VoidTyID) { // List is terminated by Void
const Type *Ty = getType(FnSignature);
if (!isa<PointerType>(Ty) ||
!isa<FunctionType>(cast<PointerType>(Ty)->getElementType())) {
PARSE_ERROR( "Function not a pointer to function type! Ty = " +
Ty->getDescription());
// FIXME: what should Ty be if handler continues?
}
// We create functions by passing the underlying FunctionType to create...
const FunctionType* FTy =
cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
Function* Func = new Function(FTy, GlobalValue::ExternalLinkage);
// Save this for later so we know type of lazily instantiated functions
FunctionSignatureList.push_back(Func);
handler->handleFunctionDeclaration(Func, FTy);
// Get Next function signature
FnSignature = read_vbr_uint();
}
if (hasInconsistentModuleGlobalInfo)
align32();
// Now that the function signature list is set up, reverse it so that we can
// remove elements efficiently from the back of the vector.
std::reverse(FunctionSignatureList.begin(), FunctionSignatureList.end());
// This is for future proofing... in the future extra fields may be added that
// we don't understand, so we transparently ignore them.
//
At = BlockEnd;
handler->handleModuleGlobalsEnd();
}
void AbstractBytecodeParser::ParseVersionInfo() {
unsigned Version = read_vbr_uint();
// Unpack version number: low four bits are for flags, top bits = version
Module::Endianness Endianness;
Module::PointerSize PointerSize;
Endianness = (Version & 1) ? Module::BigEndian : Module::LittleEndian;
PointerSize = (Version & 2) ? Module::Pointer64 : Module::Pointer32;
bool hasNoEndianness = Version & 4;
bool hasNoPointerSize = Version & 8;
RevisionNum = Version >> 4;
// Default values for the current bytecode version
hasInconsistentModuleGlobalInfo = false;
hasExplicitPrimitiveZeros = false;
hasRestrictedGEPTypes = false;
switch (RevisionNum) {
case 0: // LLVM 1.0, 1.1 release version
// Base LLVM 1.0 bytecode format.
hasInconsistentModuleGlobalInfo = true;
hasExplicitPrimitiveZeros = true;
// FALL THROUGH
case 1: // LLVM 1.2 release version
// LLVM 1.2 added explicit support for emitting strings efficiently.
// Also, it fixed the problem where the size of the ModuleGlobalInfo block
// included the size for the alignment at the end, where the rest of the
// blocks did not.
// LLVM 1.2 and before required that GEP indices be ubyte constants for
// structures and longs for sequential types.
hasRestrictedGEPTypes = true;
// FALL THROUGH
case 2: // LLVM 1.3 release version
break;
default:
PARSE_ERROR("Unknown bytecode version number: " << RevisionNum);
}
if (hasNoEndianness) Endianness = Module::AnyEndianness;
if (hasNoPointerSize) PointerSize = Module::AnyPointerSize;
handler->handleVersionInfo(RevisionNum, Endianness, PointerSize );
}
void AbstractBytecodeParser::ParseModule() {
unsigned Type, Size;
FunctionSignatureList.clear(); // Just in case...
// Read into instance variables...
ParseVersionInfo();
align32(); /// FIXME: Is this redundant? VI is first and 4 bytes!
bool SeenModuleGlobalInfo = false;
bool SeenGlobalTypePlane = false;
BufPtr MyEnd = BlockEnd;
while (At < MyEnd) {
BufPtr OldAt = At;
readBlock(Type, Size);
switch (Type) {
case BytecodeFormat::GlobalTypePlane:
if ( SeenGlobalTypePlane )
PARSE_ERROR("Two GlobalTypePlane Blocks Encountered!");
ParseGlobalTypes();
SeenGlobalTypePlane = true;
break;
case BytecodeFormat::ModuleGlobalInfo:
if ( SeenModuleGlobalInfo )
PARSE_ERROR("Two ModuleGlobalInfo Blocks Encountered!");
ParseModuleGlobalInfo();
SeenModuleGlobalInfo = true;
break;
case BytecodeFormat::ConstantPool:
ParseConstantPool(ModuleTypes);
break;
case BytecodeFormat::Function:
ParseFunctionLazily();
break;
case BytecodeFormat::SymbolTable:
ParseSymbolTable();
break;
default:
At += Size;
if (OldAt > At) {
PARSE_ERROR("Unexpected Block of Type" << Type << "encountered!" );
}
break;
}
BlockEnd = MyEnd;
align32();
}
/// Make sure we pulled them all out. If we didn't then there's a declaration
/// but a missing body. That's not allowed.
if (!FunctionSignatureList.empty())
throw std::string(
"Function declared, but bytecode stream ended before definition");
}
void AbstractBytecodeParser::ParseBytecode(
BufPtr b, unsigned Length,
const std::string &ModuleID) {
At = MemStart = BlockStart = b;
MemEnd = BlockEnd = b + Length;
handler->handleStart();
// Read and check signature...
unsigned Sig = read_uint();
if (Sig != ('l' | ('l' << 8) | ('v' << 16) | ('m' << 24))) {
PARSE_ERROR("Invalid bytecode signature: " << Sig);
}
handler->handleModuleBegin(ModuleID);
unsigned Type, Size;
readBlock(Type, Size);
if ( Type != BytecodeFormat::Module ) {
PARSE_ERROR("Expected Module Block! At: " << unsigned(intptr_t(At))
<< ", Type:" << Type << ", Size:" << Size);
}
if ( At + Size != MemEnd ) {
PARSE_ERROR("Invalid Top Level Block Length! At: "
<< unsigned(intptr_t(At)) << ", Type:" << Type << ", Size:" << Size);
}
this->ParseModule();
handler->handleModuleEnd(ModuleID);
handler->handleFinish();
}
//===----------------------------------------------------------------------===//
//=== Default Implementations of Handler Methods
//===----------------------------------------------------------------------===//
bool BytecodeHandler::handleError(const std::string& str ) { return false; }
void BytecodeHandler::handleStart() { }
void BytecodeHandler::handleFinish() { }
void BytecodeHandler::handleModuleBegin(const std::string& id) { }
void BytecodeHandler::handleModuleEnd(const std::string& id) { }
void BytecodeHandler::handleVersionInfo( unsigned char RevisionNum,
Module::Endianness Endianness, Module::PointerSize PointerSize) { }
void BytecodeHandler::handleModuleGlobalsBegin() { }
void BytecodeHandler::handleGlobalVariable(
const Type* ElemType, bool isConstant, GlobalValue::LinkageTypes ) { }
void BytecodeHandler::handleInitializedGV(
const Type* ElemType, bool isConstant, GlobalValue::LinkageTypes,
unsigned initSlot) {}
void BytecodeHandler::handleType( const Type* Ty ) {}
void BytecodeHandler::handleFunctionDeclaration(
Function* Func, const FunctionType* FuncType) {}
void BytecodeHandler::handleModuleGlobalsEnd() { }
void BytecodeHandler::handleCompactionTableBegin() { }
void BytecodeHandler::handleCompactionTablePlane( unsigned Ty,
unsigned NumEntries) {}
void BytecodeHandler::handleCompactionTableType( unsigned i, unsigned TypSlot,
const Type* ) {}
void BytecodeHandler::handleCompactionTableValue( unsigned i, unsigned ValSlot,
const Type* ) {}
void BytecodeHandler::handleCompactionTableEnd() { }
void BytecodeHandler::handleSymbolTableBegin() { }
void BytecodeHandler::handleSymbolTablePlane( unsigned Ty, unsigned NumEntries,
const Type* Typ) { }
void BytecodeHandler::handleSymbolTableType( unsigned i, unsigned slot,
const std::string& name ) { }
void BytecodeHandler::handleSymbolTableValue( unsigned i, unsigned slot,
const std::string& name ) { }
void BytecodeHandler::handleSymbolTableEnd() { }
void BytecodeHandler::handleFunctionBegin( Function* Func,
unsigned Size ) {}
void BytecodeHandler::handleFunctionEnd( Function* Func) { }
void BytecodeHandler::handleBasicBlockBegin( unsigned blocknum) { }
bool BytecodeHandler::handleInstruction( unsigned Opcode, const Type* iType,
std::vector<unsigned>& Operands, unsigned Size) {
return Instruction::isTerminator(Opcode);
}
void BytecodeHandler::handleBasicBlockEnd(unsigned blocknum) { }
void BytecodeHandler::handleGlobalConstantsBegin() { }
void BytecodeHandler::handleConstantExpression( unsigned Opcode,
const Type* Typ, std::vector<std::pair<const Type*,unsigned> > ArgVec ) { }
void BytecodeHandler::handleConstantValue( Constant * c ) { }
void BytecodeHandler::handleConstantArray( const ArrayType* AT,
std::vector<unsigned>& Elements ) { }
void BytecodeHandler::handleConstantStruct( const StructType* ST,
std::vector<unsigned>& ElementSlots) { }
void BytecodeHandler::handleConstantPointer(
const PointerType* PT, unsigned Slot) { }
void BytecodeHandler::handleConstantString( const ConstantArray* CA ) {}
void BytecodeHandler::handleGlobalConstantsEnd() {}
void BytecodeHandler::handleAlignment(unsigned numBytes) {}
void BytecodeHandler::handleBlock(
unsigned BType, const unsigned char* StartPtr, unsigned Size) {}
void BytecodeHandler::handleVBR32(unsigned Size ) {}
void BytecodeHandler::handleVBR64(unsigned Size ) {}
// vim: sw=2