llvm-6502/lib/Target/SparcV9/SparcV9InstrInfo.cpp
Chris Lattner f59391ab9e Remove diff-cluttering tags
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2808 91177308-0d34-0410-b5e6-96231b3b80d8
2002-06-30 16:12:03 +00:00

437 lines
17 KiB
C++

//***************************************************************************
// File:
// SparcInstrInfo.cpp
//
// Purpose:
//
// History:
// 10/15/01 - Vikram Adve - Created
//**************************************************************************/
#include "SparcInternals.h"
#include "SparcInstrSelectionSupport.h"
#include "llvm/Target/Sparc.h"
#include "llvm/CodeGen/InstrSelection.h"
#include "llvm/CodeGen/InstrSelectionSupport.h"
#include "llvm/CodeGen/MachineCodeForMethod.h"
#include "llvm/CodeGen/MachineCodeForInstruction.h"
#include "llvm/Function.h"
#include "llvm/BasicBlock.h"
#include "llvm/Instruction.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
using std::vector;
//************************ Internal Functions ******************************/
static inline void
CreateIntSetInstruction(const TargetMachine& target, Function* F,
int64_t C, Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi)
{
assert(dest->getType()->isSigned() && "Use CreateUIntSetInstruction()");
MachineInstr* M;
uint64_t absC = (C >= 0)? C : -C;
if (absC > (unsigned int) ~0)
{ // C does not fit in 32 bits
TmpInstruction* tmpReg = new TmpInstruction(Type::IntTy);
mcfi.addTemp(tmpReg);
M = new MachineInstr(SETX);
M->SetMachineOperandConst(0,MachineOperand::MO_SignExtendedImmed,C);
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, tmpReg,
/*isdef*/ true);
M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister,dest);
mvec.push_back(M);
}
else
{
M = Create2OperandInstr_SImmed(SETSW, C, dest);
mvec.push_back(M);
}
}
static inline void
CreateUIntSetInstruction(const TargetMachine& target, Function* F,
uint64_t C, Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi)
{
assert(! dest->getType()->isSigned() && "Use CreateIntSetInstruction()");
unsigned destSize = target.DataLayout.getTypeSize(dest->getType());
MachineInstr* M;
if (C > (unsigned int) ~0)
{ // C does not fit in 32 bits
assert(dest->getType() == Type::ULongTy && "Sign extension problems");
TmpInstruction *tmpReg = new TmpInstruction(Type::IntTy);
mcfi.addTemp(tmpReg);
M = new MachineInstr(SETX);
M->SetMachineOperandConst(0, MachineOperand::MO_UnextendedImmed, C);
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, tmpReg,
/*isdef*/ true);
M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, dest);
mvec.push_back(M);
}
else
{
// If the destination is smaller than the standard integer reg. size,
// we have to extend the sign-bit into upper bits of dest, so we
// need to put the result of the SETUW into a temporary.
//
Value* setuwDest = dest;
if (destSize < target.DataLayout.getIntegerRegize())
{
setuwDest = new TmpInstruction(dest, NULL, "setTmp");
mcfi.addTemp(setuwDest);
}
M = Create2OperandInstr_UImmed(SETUW, C, setuwDest);
mvec.push_back(M);
if (setuwDest != dest)
{ // extend the sign-bit of the result into all upper bits of dest
assert(8*destSize <= 32 &&
"Unexpected type size > 4 and < IntRegSize?");
target.getInstrInfo().
CreateSignExtensionInstructions(target, F,
setuwDest, 8*destSize, dest,
mvec, mcfi);
}
}
#define USE_DIRECT_SIGN_EXTENSION_INSTRS
#ifndef USE_DIRECT_SIGN_EXTENSION_INSTRS
else
{ // cast to signed type of the right length and use signed op (SETSW)
// to get correct sign extension
//
minstr = new MachineInstr(SETSW);
minstr->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister,dest);
switch (dest->getType()->getPrimitiveID())
{
case Type::UIntTyID:
minstr->SetMachineOperandConst(0,
MachineOperand::MO_SignExtendedImmed,
(int) C);
break;
case Type::UShortTyID:
minstr->SetMachineOperandConst(0,
MachineOperand::MO_SignExtendedImmed,
(short) C);
break;
case Type::UByteTyID:
minstr->SetMachineOperandConst(0,
MachineOperand::MO_SignExtendedImmed,
(char) C);
break;
default:
assert(0 && "Unexpected unsigned type");
break;
}
}
#endif USE_DIRECT_SIGN_EXTENSION_INSTRS
}
//************************* External Classes *******************************/
//---------------------------------------------------------------------------
// class UltraSparcInstrInfo
//
// Purpose:
// Information about individual instructions.
// Most information is stored in the SparcMachineInstrDesc array above.
// Other information is computed on demand, and most such functions
// default to member functions in base class MachineInstrInfo.
//---------------------------------------------------------------------------
/*ctor*/
UltraSparcInstrInfo::UltraSparcInstrInfo(const TargetMachine& tgt)
: MachineInstrInfo(tgt, SparcMachineInstrDesc,
/*descSize = */ NUM_TOTAL_OPCODES,
/*numRealOpCodes = */ NUM_REAL_OPCODES)
{
}
//
// Create an instruction sequence to put the constant `val' into
// the virtual register `dest'. `val' may be a Constant or a
// GlobalValue, viz., the constant address of a global variable or function.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineCodeForMethod.
//
void
UltraSparcInstrInfo::CreateCodeToLoadConst(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const
{
assert(isa<Constant>(val) || isa<GlobalValue>(val) &&
"I only know about constant values and global addresses");
// Use a "set" instruction for known constants that can go in an integer reg.
// Use a "load" instruction for all other constants, in particular,
// floating point constants and addresses of globals.
//
const Type* valType = val->getType();
if (valType->isIntegral() || valType == Type::BoolTy)
{
if (! val->getType()->isSigned())
{
uint64_t C = cast<ConstantUInt>(val)->getValue();
CreateUIntSetInstruction(target, F, C, dest, mvec, mcfi);
}
else
{
bool isValidConstant;
int64_t C = GetConstantValueAsSignedInt(val, isValidConstant);
assert(isValidConstant && "Unrecognized constant");
CreateIntSetInstruction(target, F, C, dest, mvec, mcfi);
}
}
else
{
// Make an instruction sequence to load the constant, viz:
// SETX <addr-of-constant>, tmpReg, addrReg
// LOAD /*addr*/ addrReg, /*offset*/ 0, dest
// Only the SETX is needed if `val' is a GlobalValue, i.e,. it is
// itself a constant address. Otherwise, both are needed.
Value* addrVal;
int64_t zeroOffset = 0; // to avoid ambiguity with (Value*) 0
TmpInstruction* tmpReg =
new TmpInstruction(PointerType::get(val->getType()), val);
mcfi.addTemp(tmpReg);
if (isa<Constant>(val))
{
// Create another TmpInstruction for the hidden integer register
TmpInstruction* addrReg =
new TmpInstruction(PointerType::get(val->getType()), val);
mcfi.addTemp(addrReg);
addrVal = addrReg;
}
else
addrVal = dest;
MachineInstr* M = new MachineInstr(SETX);
M->SetMachineOperandVal(0, MachineOperand::MO_PCRelativeDisp, val);
M->SetMachineOperandVal(1, MachineOperand::MO_VirtualRegister, tmpReg,
/*isdef*/ true);
M->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, addrVal);
mvec.push_back(M);
if (isa<Constant>(val))
{
// Make sure constant is emitted to constant pool in assembly code.
MachineCodeForMethod::get(F).addToConstantPool(cast<Constant>(val));
// Generate the load instruction
M = Create3OperandInstr_SImmed(ChooseLoadInstruction(val->getType()),
addrVal, zeroOffset, dest);
mvec.push_back(M);
}
}
}
// Create an instruction sequence to copy an integer value `val'
// to a floating point value `dest' by copying to memory and back.
// val must be an integral type. dest must be a Float or Double.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineCodeForMethod.
//
void
UltraSparcInstrInfo::CreateCodeToCopyIntToFloat(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const
{
assert((val->getType()->isIntegral() || isa<PointerType>(val->getType()))
&& "Source type must be integral");
assert(dest->getType()->isFloatingPoint()
&& "Dest type must be float/double");
int offset = MachineCodeForMethod::get(F).allocateLocalVar(target, val);
// Store instruction stores `val' to [%fp+offset].
// The store and load opCodes are based on the value being copied, and
// they use integer and float types that accomodate the
// larger of the source type and the destination type:
// On SparcV9: int for float, long for double.
//
Type* tmpType = (dest->getType() == Type::FloatTy)? Type::IntTy
: Type::LongTy;
MachineInstr* store = new MachineInstr(ChooseStoreInstruction(tmpType));
store->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, val);
store->SetMachineOperandReg(1, target.getRegInfo().getFramePointer());
store->SetMachineOperandConst(2,MachineOperand::MO_SignExtendedImmed,offset);
mvec.push_back(store);
// Load instruction loads [%fp+offset] to `dest'.
//
MachineInstr* load =new MachineInstr(ChooseLoadInstruction(dest->getType()));
load->SetMachineOperandReg(0, target.getRegInfo().getFramePointer());
load->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,offset);
load->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, dest);
mvec.push_back(load);
}
// Similarly, create an instruction sequence to copy an FP value
// `val' to an integer value `dest' by copying to memory and back.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineCodeForMethod.
//
void
UltraSparcInstrInfo::CreateCodeToCopyFloatToInt(const TargetMachine& target,
Function* F,
Value* val,
Instruction* dest,
std::vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const
{
assert(val->getType()->isFloatingPoint()
&& "Source type must be float/double");
assert((dest->getType()->isIntegral() || isa<PointerType>(dest->getType()))
&& "Dest type must be integral");
int offset = MachineCodeForMethod::get(F).allocateLocalVar(target, val);
// Store instruction stores `val' to [%fp+offset].
// The store and load opCodes are based on the value being copied, and
// they use the integer type that matches the source type in size:
// On SparcV9: int for float, long for double.
//
Type* tmpType = (val->getType() == Type::FloatTy)? Type::IntTy
: Type::LongTy;
MachineInstr* store=new MachineInstr(ChooseStoreInstruction(val->getType()));
store->SetMachineOperandVal(0, MachineOperand::MO_VirtualRegister, val);
store->SetMachineOperandReg(1, target.getRegInfo().getFramePointer());
store->SetMachineOperandConst(2,MachineOperand::MO_SignExtendedImmed,offset);
mvec.push_back(store);
// Load instruction loads [%fp+offset] to `dest'.
//
MachineInstr* load = new MachineInstr(ChooseLoadInstruction(tmpType));
load->SetMachineOperandReg(0, target.getRegInfo().getFramePointer());
load->SetMachineOperandConst(1, MachineOperand::MO_SignExtendedImmed,offset);
load->SetMachineOperandVal(2, MachineOperand::MO_VirtualRegister, dest);
mvec.push_back(load);
}
// Create instruction(s) to copy src to dest, for arbitrary types
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineCodeForMethod.
//
void
UltraSparcInstrInfo::CreateCopyInstructionsByType(const TargetMachine& target,
Function *F,
Value* src,
Instruction* dest,
vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const
{
bool loadConstantToReg = false;
const Type* resultType = dest->getType();
MachineOpCode opCode = ChooseAddInstructionByType(resultType);
if (opCode == INVALID_OPCODE)
{
assert(0 && "Unsupported result type in CreateCopyInstructionsByType()");
return;
}
// if `src' is a constant that doesn't fit in the immed field or if it is
// a global variable (i.e., a constant address), generate a load
// instruction instead of an add
//
if (isa<Constant>(src))
{
unsigned int machineRegNum;
int64_t immedValue;
MachineOperand::MachineOperandType opType =
ChooseRegOrImmed(src, opCode, target, /*canUseImmed*/ true,
machineRegNum, immedValue);
if (opType == MachineOperand::MO_VirtualRegister)
loadConstantToReg = true;
}
else if (isa<GlobalValue>(src))
loadConstantToReg = true;
if (loadConstantToReg)
{ // `src' is constant and cannot fit in immed field for the ADD
// Insert instructions to "load" the constant into a register
target.getInstrInfo().CreateCodeToLoadConst(target, F, src, dest,
mvec, mcfi);
}
else
{ // Create an add-with-0 instruction of the appropriate type.
// Make `src' the second operand, in case it is a constant
// Use (unsigned long) 0 for a NULL pointer value.
//
const Type* zeroValueType =
isa<PointerType>(resultType) ? Type::ULongTy : resultType;
MachineInstr* minstr =
Create3OperandInstr(opCode, Constant::getNullValue(zeroValueType),
src, dest);
mvec.push_back(minstr);
}
}
// Create instruction sequence to produce a sign-extended register value
// from an arbitrary sized value (sized in bits, not bytes).
// For SPARC v9, we sign-extend the given unsigned operand using SLL; SRA.
// The generated instructions are returned in `mvec'.
// Any temp. registers (TmpInstruction) created are recorded in mcfi.
// Any stack space required is allocated via MachineCodeForMethod.
//
void
UltraSparcInstrInfo::CreateSignExtensionInstructions(
const TargetMachine& target,
Function* F,
Value* unsignedSrcVal,
unsigned int srcSizeInBits,
Value* dest,
vector<MachineInstr*>& mvec,
MachineCodeForInstruction& mcfi) const
{
MachineInstr* M;
assert(srcSizeInBits > 0 && srcSizeInBits <= 32
&& "Hmmm... srcSizeInBits > 32 unexpected but could be handled here.");
if (srcSizeInBits < 32)
{ // SLL is needed since operand size is < 32 bits.
TmpInstruction *tmpI = new TmpInstruction(dest->getType(),
unsignedSrcVal, dest,"make32");
mcfi.addTemp(tmpI);
M = Create3OperandInstr_UImmed(SLL,unsignedSrcVal,32-srcSizeInBits,tmpI);
mvec.push_back(M);
unsignedSrcVal = tmpI;
}
M = Create3OperandInstr_UImmed(SRA, unsignedSrcVal, 32-srcSizeInBits, dest);
mvec.push_back(M);
}