mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-10-31 09:11:13 +00:00
3dec1f2722
the command line git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2601 91177308-0d34-0410-b5e6-96231b3b80d8
295 lines
10 KiB
C++
295 lines
10 KiB
C++
//===- PromoteMemoryToRegister.cpp - Convert memory refs to regs ----------===//
|
|
//
|
|
// This pass is used to promote memory references to be register references. A
|
|
// simple example of the transformation performed by this pass is:
|
|
//
|
|
// FROM CODE TO CODE
|
|
// %X = alloca int, uint 1 ret int 42
|
|
// store int 42, int *%X
|
|
// %Y = load int* %X
|
|
// ret int %Y
|
|
//
|
|
// To do this transformation, a simple analysis is done to ensure it is safe.
|
|
// Currently this just loops over all alloca instructions, looking for
|
|
// instructions that are only used in simple load and stores.
|
|
//
|
|
// After this, the code is transformed by...something magical :)
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/iPHINode.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Constant.h"
|
|
#include "llvm/Type.h"
|
|
#include "Support/StatisticReporter.h"
|
|
|
|
static Statistic<> NumPromoted("mem2reg\t\t- Number of alloca's promoted");
|
|
|
|
using std::vector;
|
|
using std::map;
|
|
using std::set;
|
|
|
|
namespace {
|
|
struct PromotePass : public FunctionPass {
|
|
vector<AllocaInst*> Allocas; // the alloca instruction..
|
|
map<Instruction*, unsigned> AllocaLookup; // reverse mapping of above
|
|
|
|
vector<vector<BasicBlock*> > PhiNodes; // index corresponds to Allocas
|
|
|
|
// List of instructions to remove at end of pass
|
|
vector<Instruction *> KillList;
|
|
|
|
map<BasicBlock*,vector<PHINode*> > NewPhiNodes; // the PhiNodes we're adding
|
|
|
|
public:
|
|
const char *getPassName() const { return "Promote Memory to Register"; }
|
|
|
|
// runOnFunction - To run this pass, first we calculate the alloca
|
|
// instructions that are safe for promotion, then we promote each one.
|
|
//
|
|
virtual bool runOnFunction(Function *F);
|
|
|
|
// getAnalysisUsage - We need dominance frontiers
|
|
//
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired(DominanceFrontier::ID);
|
|
AU.preservesCFG();
|
|
}
|
|
|
|
private:
|
|
void Traverse(BasicBlock *BB, BasicBlock *Pred, vector<Value*> &IncVals,
|
|
set<BasicBlock*> &Visited);
|
|
bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx);
|
|
void FindSafeAllocas(Function *F);
|
|
};
|
|
|
|
} // end of anonymous namespace
|
|
|
|
|
|
// isSafeAlloca - This predicate controls what types of alloca instructions are
|
|
// allowed to be promoted...
|
|
//
|
|
static inline bool isSafeAlloca(const AllocaInst *AI) {
|
|
if (AI->isArrayAllocation()) return false;
|
|
|
|
for (Value::use_const_iterator UI = AI->use_begin(), UE = AI->use_end();
|
|
UI != UE; ++UI) { // Loop over all of the uses of the alloca
|
|
|
|
// Only allow nonindexed memory access instructions...
|
|
if (MemAccessInst *MAI = dyn_cast<MemAccessInst>(*UI)) {
|
|
if (MAI->getPointerOperand() != (Value*)AI)
|
|
return false; // Reject stores of alloca pointer into some other loc.
|
|
|
|
if (MAI->hasIndices()) { // indexed?
|
|
// Allow the access if there is only one index and the index is
|
|
// zero.
|
|
if (*MAI->idx_begin() != Constant::getNullValue(Type::UIntTy) ||
|
|
MAI->idx_begin()+1 != MAI->idx_end())
|
|
return false;
|
|
}
|
|
} else {
|
|
return false; // Not a load or store?
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// FindSafeAllocas - Find allocas that are safe to promote
|
|
//
|
|
void PromotePass::FindSafeAllocas(Function *F) {
|
|
BasicBlock *BB = F->getEntryNode(); // Get the entry node for the function
|
|
|
|
// Look at all instructions in the entry node
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(*I)) // Is it an alloca?
|
|
if (isSafeAlloca(AI)) { // If safe alloca, add alloca to safe list
|
|
AllocaLookup[AI] = Allocas.size(); // Keep reverse mapping
|
|
Allocas.push_back(AI);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
bool PromotePass::runOnFunction(Function *F) {
|
|
// Calculate the set of safe allocas
|
|
FindSafeAllocas(F);
|
|
|
|
// If there is nothing to do, bail out...
|
|
if (Allocas.empty()) return false;
|
|
|
|
// Add each alloca to the KillList. Note: KillList is destroyed MOST recently
|
|
// added to least recently.
|
|
KillList.assign(Allocas.begin(), Allocas.end());
|
|
|
|
// Calculate the set of write-locations for each alloca. This is analogous to
|
|
// counting the number of 'redefinitions' of each variable.
|
|
vector<vector<BasicBlock*> > WriteSets; // index corresponds to Allocas
|
|
WriteSets.resize(Allocas.size());
|
|
for (unsigned i = 0; i != Allocas.size(); ++i) {
|
|
AllocaInst *AI = Allocas[i];
|
|
for (Value::use_iterator U =AI->use_begin(), E = AI->use_end(); U != E; ++U)
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(*U))
|
|
// jot down the basic-block it came from
|
|
WriteSets[i].push_back(SI->getParent());
|
|
}
|
|
|
|
// Get dominance frontier information...
|
|
DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
|
|
|
|
// Compute the locations where PhiNodes need to be inserted. Look at the
|
|
// dominance frontier of EACH basic-block we have a write in
|
|
//
|
|
PhiNodes.resize(Allocas.size());
|
|
for (unsigned i = 0; i != Allocas.size(); ++i) {
|
|
for (unsigned j = 0; j != WriteSets[i].size(); j++) {
|
|
// Look up the DF for this write, add it to PhiNodes
|
|
DominanceFrontier::const_iterator it = DF.find(WriteSets[i][j]);
|
|
DominanceFrontier::DomSetType S = it->second;
|
|
for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
|
|
P != PE; ++P)
|
|
QueuePhiNode(*P, i);
|
|
}
|
|
|
|
// Perform iterative step
|
|
for (unsigned k = 0; k != PhiNodes[i].size(); k++) {
|
|
DominanceFrontier::const_iterator it = DF.find(PhiNodes[i][k]);
|
|
DominanceFrontier::DomSetType S = it->second;
|
|
for (DominanceFrontier::DomSetType::iterator P = S.begin(), PE = S.end();
|
|
P != PE; ++P)
|
|
QueuePhiNode(*P, i);
|
|
}
|
|
}
|
|
|
|
// Set the incoming values for the basic block to be null values for all of
|
|
// the alloca's. We do this in case there is a load of a value that has not
|
|
// been stored yet. In this case, it will get this null value.
|
|
//
|
|
vector<Value *> Values(Allocas.size());
|
|
for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
|
|
Values[i] = Constant::getNullValue(Allocas[i]->getAllocatedType());
|
|
|
|
// Walks all basic blocks in the function performing the SSA rename algorithm
|
|
// and inserting the phi nodes we marked as necessary
|
|
//
|
|
set<BasicBlock*> Visited; // The basic blocks we've already visited
|
|
Traverse(F->front(), 0, Values, Visited);
|
|
|
|
// Remove all instructions marked by being placed in the KillList...
|
|
//
|
|
while (!KillList.empty()) {
|
|
Instruction *I = KillList.back();
|
|
KillList.pop_back();
|
|
|
|
I->getParent()->getInstList().remove(I);
|
|
delete I;
|
|
}
|
|
|
|
NumPromoted += Allocas.size();
|
|
|
|
// Purge data structurse so they are available the next iteration...
|
|
Allocas.clear();
|
|
AllocaLookup.clear();
|
|
PhiNodes.clear();
|
|
NewPhiNodes.clear();
|
|
return true;
|
|
}
|
|
|
|
|
|
// QueuePhiNode - queues a phi-node to be added to a basic-block for a specific
|
|
// Alloca returns true if there wasn't already a phi-node for that variable
|
|
//
|
|
bool PromotePass::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo) {
|
|
// Look up the basic-block in question
|
|
vector<PHINode*> &BBPNs = NewPhiNodes[BB];
|
|
if (BBPNs.empty()) BBPNs.resize(Allocas.size());
|
|
|
|
// If the BB already has a phi node added for the i'th alloca then we're done!
|
|
if (BBPNs[AllocaNo]) return false;
|
|
|
|
// Create a PhiNode using the dereferenced type...
|
|
PHINode *PN = new PHINode(Allocas[AllocaNo]->getAllocatedType(),
|
|
Allocas[AllocaNo]->getName()+".mem2reg");
|
|
BBPNs[AllocaNo] = PN;
|
|
|
|
// Add the phi-node to the basic-block
|
|
BB->getInstList().push_front(PN);
|
|
|
|
PhiNodes[AllocaNo].push_back(BB);
|
|
return true;
|
|
}
|
|
|
|
void PromotePass::Traverse(BasicBlock *BB, BasicBlock *Pred,
|
|
vector<Value*> &IncomingVals,
|
|
set<BasicBlock*> &Visited) {
|
|
// If this is a BB needing a phi node, lookup/create the phinode for each
|
|
// variable we need phinodes for.
|
|
vector<PHINode *> &BBPNs = NewPhiNodes[BB];
|
|
for (unsigned k = 0; k != BBPNs.size(); ++k)
|
|
if (PHINode *PN = BBPNs[k]) {
|
|
// at this point we can assume that the array has phi nodes.. let's add
|
|
// the incoming data
|
|
PN->addIncoming(IncomingVals[k], Pred);
|
|
|
|
// also note that the active variable IS designated by the phi node
|
|
IncomingVals[k] = PN;
|
|
}
|
|
|
|
// don't revisit nodes
|
|
if (Visited.count(BB)) return;
|
|
|
|
// mark as visited
|
|
Visited.insert(BB);
|
|
|
|
// keep track of the value of each variable we're watching.. how?
|
|
for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) {
|
|
Instruction *I = *II; //get the instruction
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
|
|
Value *Ptr = LI->getPointerOperand();
|
|
|
|
if (AllocaInst *Src = dyn_cast<AllocaInst>(Ptr)) {
|
|
map<Instruction*, unsigned>::iterator AI = AllocaLookup.find(Src);
|
|
if (AI != AllocaLookup.end()) {
|
|
Value *V = IncomingVals[AI->second];
|
|
|
|
// walk the use list of this load and replace all uses with r
|
|
LI->replaceAllUsesWith(V);
|
|
KillList.push_back(LI); // Mark the load to be deleted
|
|
}
|
|
}
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
// delete this instruction and mark the name as the current holder of the
|
|
// value
|
|
Value *Ptr = SI->getPointerOperand();
|
|
if (AllocaInst *Dest = dyn_cast<AllocaInst>(Ptr)) {
|
|
map<Instruction *, unsigned>::iterator ai = AllocaLookup.find(Dest);
|
|
if (ai != AllocaLookup.end()) {
|
|
// what value were we writing?
|
|
IncomingVals[ai->second] = SI->getOperand(0);
|
|
KillList.push_back(SI); // Mark the store to be deleted
|
|
}
|
|
}
|
|
|
|
} else if (TerminatorInst *TI = dyn_cast<TerminatorInst>(I)) {
|
|
// Recurse across our successors
|
|
for (unsigned i = 0; i != TI->getNumSuccessors(); i++) {
|
|
vector<Value*> OutgoingVals(IncomingVals);
|
|
Traverse(TI->getSuccessor(i), BB, OutgoingVals, Visited);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// createPromoteMemoryToRegister - Provide an entry point to create this pass.
|
|
//
|
|
Pass *createPromoteMemoryToRegister() {
|
|
return new PromotePass();
|
|
}
|