llvm-6502/lib/Target/R600/SIFoldOperands.cpp
Tom Stellard edcd88ce1a R600/SI: Add SIFoldOperands pass
This pass attempts to fold the source operands of mov and copy
instructions into their uses.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@222581 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-21 22:06:37 +00:00

203 lines
6.0 KiB
C++

//===-- SIFoldOperands.cpp - Fold operands --- ----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// \file
//===----------------------------------------------------------------------===//
//
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "si-fold-operands"
using namespace llvm;
namespace {
class SIFoldOperands : public MachineFunctionPass {
public:
static char ID;
public:
SIFoldOperands() : MachineFunctionPass(ID) {
initializeSIFoldOperandsPass(*PassRegistry::getPassRegistry());
}
bool runOnMachineFunction(MachineFunction &MF) override;
const char *getPassName() const override {
return "SI Fold Operands";
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.addRequired<MachineDominatorTree>();
AU.setPreservesCFG();
MachineFunctionPass::getAnalysisUsage(AU);
}
};
} // End anonymous namespace.
INITIALIZE_PASS_BEGIN(SIFoldOperands, DEBUG_TYPE,
"SI Fold Operands", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
INITIALIZE_PASS_END(SIFoldOperands, DEBUG_TYPE,
"SI Fold Operands", false, false)
char SIFoldOperands::ID = 0;
char &llvm::SIFoldOperandsID = SIFoldOperands::ID;
FunctionPass *llvm::createSIFoldOperandsPass() {
return new SIFoldOperands();
}
static bool isSafeToFold(unsigned Opcode) {
switch(Opcode) {
case AMDGPU::V_MOV_B32_e32:
case AMDGPU::V_MOV_B32_e64:
case AMDGPU::S_MOV_B32:
case AMDGPU::S_MOV_B64:
case AMDGPU::COPY:
return true;
default:
return false;
}
}
static bool updateOperand(MachineInstr *MI, unsigned OpNo,
const MachineOperand &New,
const TargetRegisterInfo &TRI) {
MachineOperand &Old = MI->getOperand(OpNo);
assert(Old.isReg());
if (New.isImm()) {
Old.ChangeToImmediate(New.getImm());
return true;
}
if (New.isFPImm()) {
Old.ChangeToFPImmediate(New.getFPImm());
return true;
}
if (New.isReg()) {
if (TargetRegisterInfo::isVirtualRegister(Old.getReg()) &&
TargetRegisterInfo::isVirtualRegister(New.getReg())) {
Old.substVirtReg(New.getReg(), New.getSubReg(), TRI);
return true;
}
}
// FIXME: Handle physical registers.
return false;
}
bool SIFoldOperands::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo *>(MF.getSubtarget().getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
MachineBasicBlock::iterator I, Next;
for (I = MBB.begin(); I != MBB.end(); I = Next) {
Next = std::next(I);
MachineInstr &MI = *I;
if (!isSafeToFold(MI.getOpcode()))
continue;
MachineOperand &OpToFold = MI.getOperand(1);
// FIXME: Fold operands with subregs.
if (OpToFold.isReg() &&
(!TargetRegisterInfo::isVirtualRegister(OpToFold.getReg()) ||
OpToFold.getSubReg()))
continue;
std::vector<std::pair<MachineInstr *, unsigned>> FoldList;
for (MachineRegisterInfo::use_iterator
Use = MRI.use_begin(MI.getOperand(0).getReg()), E = MRI.use_end();
Use != E; ++Use) {
MachineInstr *UseMI = Use->getParent();
const MachineOperand &UseOp = UseMI->getOperand(Use.getOperandNo());
// FIXME: Fold operands with subregs.
if (UseOp.isReg() && UseOp.getSubReg()) {
continue;
}
// In order to fold immediates into copies, we need to change the
// copy to a MOV.
if ((OpToFold.isImm() || OpToFold.isFPImm()) &&
UseMI->getOpcode() == AMDGPU::COPY) {
const TargetRegisterClass *TRC =
MRI.getRegClass(UseMI->getOperand(0).getReg());
if (TRC->getSize() == 4) {
if (TRI.isSGPRClass(TRC))
UseMI->setDesc(TII->get(AMDGPU::S_MOV_B32));
else
UseMI->setDesc(TII->get(AMDGPU::V_MOV_B32_e32));
} else if (TRC->getSize() == 8 && TRI.isSGPRClass(TRC)) {
UseMI->setDesc(TII->get(AMDGPU::S_MOV_B64));
} else {
continue;
}
}
const MCInstrDesc &UseDesc = UseMI->getDesc();
// Don't fold into target independent nodes. Target independent opcodes
// don't have defined register classes.
if (UseDesc.isVariadic() ||
UseDesc.OpInfo[Use.getOperandNo()].RegClass == -1)
continue;
// Normal substitution
if (TII->isOperandLegal(UseMI, Use.getOperandNo(), &OpToFold)) {
FoldList.push_back(std::make_pair(UseMI, Use.getOperandNo()));
continue;
}
// FIXME: We could commute the instruction to create more opportunites
// for folding. This will only be useful if we have 32-bit instructions.
// FIXME: We could try to change the instruction from 64-bit to 32-bit
// to enable more folding opportunites. The shrink operands pass
// already does this.
}
for (std::pair<MachineInstr *, unsigned> Fold : FoldList) {
if (updateOperand(Fold.first, Fold.second, OpToFold, TRI)) {
// Clear kill flags.
if (OpToFold.isReg())
OpToFold.setIsKill(false);
DEBUG(dbgs() << "Folded source from " << MI << " into OpNo " <<
Fold.second << " of " << *Fold.first << '\n');
}
}
}
}
return false;
}