llvm-6502/tools/llvm-upgrade/UpgradeParser.y.cvs
Duncan Sands dc024674ff Fix PR1146: parameter attributes are longer part of
the function type, instead they belong to functions
and function calls.  This is an updated and slightly
corrected version of Reid Spencer's original patch.
The only known problem is that auto-upgrading of
bitcode files doesn't seem to work properly (see
test/Bitcode/AutoUpgradeIntrinsics.ll).  Hopefully
a bitcode guru (who might that be? :) ) will fix it.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@44359 91177308-0d34-0410-b5e6-96231b3b80d8
2007-11-27 13:23:08 +00:00

3859 lines
133 KiB
C++

//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the bison parser for LLVM assembly languages files.
//
//===----------------------------------------------------------------------===//
%{
#include "UpgradeInternals.h"
#include "llvm/CallingConv.h"
#include "llvm/InlineAsm.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/ParameterAttributes.h"
#include "llvm/ValueSymbolTable.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
#include <algorithm>
#include <iostream>
#include <map>
#include <list>
#include <utility>
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
// relating to upreferences in the input stream.
//
//#define DEBUG_UPREFS 1
#ifdef DEBUG_UPREFS
#define UR_OUT(X) std::cerr << X
#else
#define UR_OUT(X)
#endif
#define YYERROR_VERBOSE 1
#define YYINCLUDED_STDLIB_H
#define YYDEBUG 1
int yylex();
int yyparse();
int yyerror(const char*);
static void warning(const std::string& WarningMsg);
namespace llvm {
std::istream* LexInput;
static std::string CurFilename;
// This bool controls whether attributes are ever added to function declarations
// definitions and calls.
static bool AddAttributes = false;
static Module *ParserResult;
static bool ObsoleteVarArgs;
static bool NewVarArgs;
static BasicBlock *CurBB;
static GlobalVariable *CurGV;
static unsigned lastCallingConv;
// This contains info used when building the body of a function. It is
// destroyed when the function is completed.
//
typedef std::vector<Value *> ValueList; // Numbered defs
typedef std::pair<std::string,TypeInfo> RenameMapKey;
typedef std::map<RenameMapKey,std::string> RenameMapType;
static void
ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
std::map<const Type *,ValueList> *FutureLateResolvers = 0);
static struct PerModuleInfo {
Module *CurrentModule;
std::map<const Type *, ValueList> Values; // Module level numbered definitions
std::map<const Type *,ValueList> LateResolveValues;
std::vector<PATypeHolder> Types;
std::vector<Signedness> TypeSigns;
std::map<std::string,Signedness> NamedTypeSigns;
std::map<std::string,Signedness> NamedValueSigns;
std::map<ValID, PATypeHolder> LateResolveTypes;
static Module::Endianness Endian;
static Module::PointerSize PointerSize;
RenameMapType RenameMap;
/// PlaceHolderInfo - When temporary placeholder objects are created, remember
/// how they were referenced and on which line of the input they came from so
/// that we can resolve them later and print error messages as appropriate.
std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
// GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
// references to global values. Global values may be referenced before they
// are defined, and if so, the temporary object that they represent is held
// here. This is used for forward references of GlobalValues.
//
typedef std::map<std::pair<const PointerType *, ValID>, GlobalValue*>
GlobalRefsType;
GlobalRefsType GlobalRefs;
void ModuleDone() {
// If we could not resolve some functions at function compilation time
// (calls to functions before they are defined), resolve them now... Types
// are resolved when the constant pool has been completely parsed.
//
ResolveDefinitions(LateResolveValues);
// Check to make sure that all global value forward references have been
// resolved!
//
if (!GlobalRefs.empty()) {
std::string UndefinedReferences = "Unresolved global references exist:\n";
for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
I != E; ++I) {
UndefinedReferences += " " + I->first.first->getDescription() + " " +
I->first.second.getName() + "\n";
}
error(UndefinedReferences);
return;
}
if (CurrentModule->getDataLayout().empty()) {
std::string dataLayout;
if (Endian != Module::AnyEndianness)
dataLayout.append(Endian == Module::BigEndian ? "E" : "e");
if (PointerSize != Module::AnyPointerSize) {
if (!dataLayout.empty())
dataLayout += "-";
dataLayout.append(PointerSize == Module::Pointer64 ?
"p:64:64" : "p:32:32");
}
CurrentModule->setDataLayout(dataLayout);
}
Values.clear(); // Clear out function local definitions
Types.clear();
TypeSigns.clear();
NamedTypeSigns.clear();
NamedValueSigns.clear();
CurrentModule = 0;
}
// GetForwardRefForGlobal - Check to see if there is a forward reference
// for this global. If so, remove it from the GlobalRefs map and return it.
// If not, just return null.
GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
// Check to see if there is a forward reference to this global variable...
// if there is, eliminate it and patch the reference to use the new def'n.
GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
GlobalValue *Ret = 0;
if (I != GlobalRefs.end()) {
Ret = I->second;
GlobalRefs.erase(I);
}
return Ret;
}
void setEndianness(Module::Endianness E) { Endian = E; }
void setPointerSize(Module::PointerSize sz) { PointerSize = sz; }
} CurModule;
Module::Endianness PerModuleInfo::Endian = Module::AnyEndianness;
Module::PointerSize PerModuleInfo::PointerSize = Module::AnyPointerSize;
static struct PerFunctionInfo {
Function *CurrentFunction; // Pointer to current function being created
std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
std::map<const Type*, ValueList> LateResolveValues;
bool isDeclare; // Is this function a forward declararation?
GlobalValue::LinkageTypes Linkage;// Linkage for forward declaration.
/// BBForwardRefs - When we see forward references to basic blocks, keep
/// track of them here.
std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
std::vector<BasicBlock*> NumberedBlocks;
RenameMapType RenameMap;
unsigned NextBBNum;
inline PerFunctionInfo() {
CurrentFunction = 0;
isDeclare = false;
Linkage = GlobalValue::ExternalLinkage;
}
inline void FunctionStart(Function *M) {
CurrentFunction = M;
NextBBNum = 0;
}
void FunctionDone() {
NumberedBlocks.clear();
// Any forward referenced blocks left?
if (!BBForwardRefs.empty()) {
error("Undefined reference to label " +
BBForwardRefs.begin()->first->getName());
return;
}
// Resolve all forward references now.
ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
Values.clear(); // Clear out function local definitions
RenameMap.clear();
CurrentFunction = 0;
isDeclare = false;
Linkage = GlobalValue::ExternalLinkage;
}
} CurFun; // Info for the current function...
static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
/// This function is just a utility to make a Key value for the rename map.
/// The Key is a combination of the name, type, Signedness of the original
/// value (global/function). This just constructs the key and ensures that
/// named Signedness values are resolved to the actual Signedness.
/// @brief Make a key for the RenameMaps
static RenameMapKey makeRenameMapKey(const std::string &Name, const Type* Ty,
const Signedness &Sign) {
TypeInfo TI;
TI.T = Ty;
if (Sign.isNamed())
// Don't allow Named Signedness nodes because they won't match. The actual
// Signedness must be looked up in the NamedTypeSigns map.
TI.S.copy(CurModule.NamedTypeSigns[Sign.getName()]);
else
TI.S.copy(Sign);
return std::make_pair(Name, TI);
}
//===----------------------------------------------------------------------===//
// Code to handle definitions of all the types
//===----------------------------------------------------------------------===//
static int InsertValue(Value *V,
std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
if (V->hasName()) return -1; // Is this a numbered definition?
// Yes, insert the value into the value table...
ValueList &List = ValueTab[V->getType()];
List.push_back(V);
return List.size()-1;
}
static const Type *getType(const ValID &D, bool DoNotImprovise = false) {
switch (D.Type) {
case ValID::NumberVal: // Is it a numbered definition?
// Module constants occupy the lowest numbered slots...
if ((unsigned)D.Num < CurModule.Types.size()) {
return CurModule.Types[(unsigned)D.Num];
}
break;
case ValID::NameVal: // Is it a named definition?
if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
return N;
}
break;
default:
error("Internal parser error: Invalid symbol type reference");
return 0;
}
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
//
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
if (inFunctionScope()) {
if (D.Type == ValID::NameVal) {
error("Reference to an undefined type: '" + D.getName() + "'");
return 0;
} else {
error("Reference to an undefined type: #" + itostr(D.Num));
return 0;
}
}
std::map<ValID, PATypeHolder>::iterator I =CurModule.LateResolveTypes.find(D);
if (I != CurModule.LateResolveTypes.end())
return I->second;
Type *Typ = OpaqueType::get();
CurModule.LateResolveTypes.insert(std::make_pair(D, Typ));
return Typ;
}
/// This is like the getType method except that instead of looking up the type
/// for a given ID, it looks up that type's sign.
/// @brief Get the signedness of a referenced type
static Signedness getTypeSign(const ValID &D) {
switch (D.Type) {
case ValID::NumberVal: // Is it a numbered definition?
// Module constants occupy the lowest numbered slots...
if ((unsigned)D.Num < CurModule.TypeSigns.size()) {
return CurModule.TypeSigns[(unsigned)D.Num];
}
break;
case ValID::NameVal: { // Is it a named definition?
std::map<std::string,Signedness>::const_iterator I =
CurModule.NamedTypeSigns.find(D.Name);
if (I != CurModule.NamedTypeSigns.end())
return I->second;
// Perhaps its a named forward .. just cache the name
Signedness S;
S.makeNamed(D.Name);
return S;
}
default:
break;
}
// If we don't find it, its signless
Signedness S;
S.makeSignless();
return S;
}
/// This function is analagous to getElementType in LLVM. It provides the same
/// function except that it looks up the Signedness instead of the type. This is
/// used when processing GEP instructions that need to extract the type of an
/// indexed struct/array/ptr member.
/// @brief Look up an element's sign.
static Signedness getElementSign(const ValueInfo& VI,
const std::vector<Value*> &Indices) {
const Type *Ptr = VI.V->getType();
assert(isa<PointerType>(Ptr) && "Need pointer type");
unsigned CurIdx = 0;
Signedness S(VI.S);
while (const CompositeType *CT = dyn_cast<CompositeType>(Ptr)) {
if (CurIdx == Indices.size())
break;
Value *Index = Indices[CurIdx++];
assert(!isa<PointerType>(CT) || CurIdx == 1 && "Invalid type");
Ptr = CT->getTypeAtIndex(Index);
if (const Type* Ty = Ptr->getForwardedType())
Ptr = Ty;
assert(S.isComposite() && "Bad Signedness type");
if (isa<StructType>(CT)) {
S = S.get(cast<ConstantInt>(Index)->getZExtValue());
} else {
S = S.get(0UL);
}
if (S.isNamed())
S = CurModule.NamedTypeSigns[S.getName()];
}
Signedness Result;
Result.makeComposite(S);
return Result;
}
/// This function just translates a ConstantInfo into a ValueInfo and calls
/// getElementSign(ValueInfo,...). Its just a convenience.
/// @brief ConstantInfo version of getElementSign.
static Signedness getElementSign(const ConstInfo& CI,
const std::vector<Constant*> &Indices) {
ValueInfo VI;
VI.V = CI.C;
VI.S.copy(CI.S);
std::vector<Value*> Idx;
for (unsigned i = 0; i < Indices.size(); ++i)
Idx.push_back(Indices[i]);
Signedness result = getElementSign(VI, Idx);
VI.destroy();
return result;
}
// getExistingValue - Look up the value specified by the provided type and
// the provided ValID. If the value exists and has already been defined, return
// it. Otherwise return null.
//
static Value *getExistingValue(const Type *Ty, const ValID &D) {
if (isa<FunctionType>(Ty)) {
error("Functions are not values and must be referenced as pointers");
}
switch (D.Type) {
case ValID::NumberVal: { // Is it a numbered definition?
unsigned Num = (unsigned)D.Num;
// Module constants occupy the lowest numbered slots...
std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
if (VI != CurModule.Values.end()) {
if (Num < VI->second.size())
return VI->second[Num];
Num -= VI->second.size();
}
// Make sure that our type is within bounds
VI = CurFun.Values.find(Ty);
if (VI == CurFun.Values.end()) return 0;
// Check that the number is within bounds...
if (VI->second.size() <= Num) return 0;
return VI->second[Num];
}
case ValID::NameVal: { // Is it a named definition?
// Get the name out of the ID
RenameMapKey Key = makeRenameMapKey(D.Name, Ty, D.S);
Value *V = 0;
if (inFunctionScope()) {
// See if the name was renamed
RenameMapType::const_iterator I = CurFun.RenameMap.find(Key);
std::string LookupName;
if (I != CurFun.RenameMap.end())
LookupName = I->second;
else
LookupName = D.Name;
ValueSymbolTable &SymTab = CurFun.CurrentFunction->getValueSymbolTable();
V = SymTab.lookup(LookupName);
if (V && V->getType() != Ty)
V = 0;
}
if (!V) {
RenameMapType::const_iterator I = CurModule.RenameMap.find(Key);
std::string LookupName;
if (I != CurModule.RenameMap.end())
LookupName = I->second;
else
LookupName = D.Name;
V = CurModule.CurrentModule->getValueSymbolTable().lookup(LookupName);
if (V && V->getType() != Ty)
V = 0;
}
if (!V)
return 0;
D.destroy(); // Free old strdup'd memory...
return V;
}
// Check to make sure that "Ty" is an integral type, and that our
// value will fit into the specified type...
case ValID::ConstSIntVal: // Is it a constant pool reference??
if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64)) {
error("Signed integral constant '" + itostr(D.ConstPool64) +
"' is invalid for type '" + Ty->getDescription() + "'");
}
return ConstantInt::get(Ty, D.ConstPool64);
case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
if (!ConstantInt::isValueValidForType(Ty, D.UConstPool64)) {
if (!ConstantInt::isValueValidForType(Ty, D.ConstPool64))
error("Integral constant '" + utostr(D.UConstPool64) +
"' is invalid or out of range");
else // This is really a signed reference. Transmogrify.
return ConstantInt::get(Ty, D.ConstPool64);
} else
return ConstantInt::get(Ty, D.UConstPool64);
case ValID::ConstFPVal: // Is it a floating point const pool reference?
if (!ConstantFP::isValueValidForType(Ty, *D.ConstPoolFP))
error("FP constant invalid for type");
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if (Ty==Type::FloatTy)
D.ConstPoolFP->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
return ConstantFP::get(Ty, *D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty))
error("Cannot create a a non pointer null");
return ConstantPointerNull::get(cast<PointerType>(Ty));
case ValID::ConstUndefVal: // Is it an undef value?
return UndefValue::get(Ty);
case ValID::ConstZeroVal: // Is it a zero value?
return Constant::getNullValue(Ty);
case ValID::ConstantVal: // Fully resolved constant?
if (D.ConstantValue->getType() != Ty)
error("Constant expression type different from required type");
return D.ConstantValue;
case ValID::InlineAsmVal: { // Inline asm expression
const PointerType *PTy = dyn_cast<PointerType>(Ty);
const FunctionType *FTy =
PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0;
if (!FTy || !InlineAsm::Verify(FTy, D.IAD->Constraints))
error("Invalid type for asm constraint string");
InlineAsm *IA = InlineAsm::get(FTy, D.IAD->AsmString, D.IAD->Constraints,
D.IAD->HasSideEffects);
D.destroy(); // Free InlineAsmDescriptor.
return IA;
}
default:
assert(0 && "Unhandled case");
return 0;
} // End of switch
assert(0 && "Unhandled case");
return 0;
}
// getVal - This function is identical to getExistingValue, except that if a
// value is not already defined, it "improvises" by creating a placeholder var
// that looks and acts just like the requested variable. When the value is
// defined later, all uses of the placeholder variable are replaced with the
// real thing.
//
static Value *getVal(const Type *Ty, const ValID &ID) {
if (Ty == Type::LabelTy)
error("Cannot use a basic block here");
// See if the value has already been defined.
Value *V = getExistingValue(Ty, ID);
if (V) return V;
if (!Ty->isFirstClassType() && !isa<OpaqueType>(Ty))
error("Invalid use of a composite type");
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
V = new Argument(Ty);
// Remember where this forward reference came from. FIXME, shouldn't we try
// to recycle these things??
CurModule.PlaceHolderInfo.insert(
std::make_pair(V, std::make_pair(ID, Upgradelineno)));
if (inFunctionScope())
InsertValue(V, CurFun.LateResolveValues);
else
InsertValue(V, CurModule.LateResolveValues);
return V;
}
/// @brief This just makes any name given to it unique, up to MAX_UINT times.
static std::string makeNameUnique(const std::string& Name) {
static unsigned UniqueNameCounter = 1;
std::string Result(Name);
Result += ".upgrd." + llvm::utostr(UniqueNameCounter++);
return Result;
}
/// getBBVal - This is used for two purposes:
/// * If isDefinition is true, a new basic block with the specified ID is being
/// defined.
/// * If isDefinition is true, this is a reference to a basic block, which may
/// or may not be a forward reference.
///
static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
assert(inFunctionScope() && "Can't get basic block at global scope");
std::string Name;
BasicBlock *BB = 0;
switch (ID.Type) {
default:
error("Illegal label reference " + ID.getName());
break;
case ValID::NumberVal: // Is it a numbered definition?
if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
CurFun.NumberedBlocks.resize(ID.Num+1);
BB = CurFun.NumberedBlocks[ID.Num];
break;
case ValID::NameVal: // Is it a named definition?
Name = ID.Name;
if (Value *N = CurFun.CurrentFunction->getValueSymbolTable().lookup(Name)) {
if (N->getType() != Type::LabelTy) {
// Register names didn't use to conflict with basic block names
// because of type planes. Now they all have to be unique. So, we just
// rename the register and treat this name as if no basic block
// had been found.
RenameMapKey Key = makeRenameMapKey(ID.Name, N->getType(), ID.S);
N->setName(makeNameUnique(N->getName()));
CurModule.RenameMap[Key] = N->getName();
BB = 0;
} else {
BB = cast<BasicBlock>(N);
}
}
break;
}
// See if the block has already been defined.
if (BB) {
// If this is the definition of the block, make sure the existing value was
// just a forward reference. If it was a forward reference, there will be
// an entry for it in the PlaceHolderInfo map.
if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
// The existing value was a definition, not a forward reference.
error("Redefinition of label " + ID.getName());
ID.destroy(); // Free strdup'd memory.
return BB;
}
// Otherwise this block has not been seen before.
BB = new BasicBlock("", CurFun.CurrentFunction);
if (ID.Type == ValID::NameVal) {
BB->setName(ID.Name);
} else {
CurFun.NumberedBlocks[ID.Num] = BB;
}
// If this is not a definition, keep track of it so we can use it as a forward
// reference.
if (!isDefinition) {
// Remember where this forward reference came from.
CurFun.BBForwardRefs[BB] = std::make_pair(ID, Upgradelineno);
} else {
// The forward declaration could have been inserted anywhere in the
// function: insert it into the correct place now.
CurFun.CurrentFunction->getBasicBlockList().remove(BB);
CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
}
ID.destroy();
return BB;
}
//===----------------------------------------------------------------------===//
// Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurFun.LateResolveValues) of all such forward references
// and back patchs after we are done.
//
// ResolveDefinitions - If we could not resolve some defs at parsing
// time (forward branches, phi functions for loops, etc...) resolve the
// defs now...
//
static void
ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
std::map<const Type*,ValueList> *FutureLateResolvers) {
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
E = LateResolvers.end(); LRI != E; ++LRI) {
const Type* Ty = LRI->first;
ValueList &List = LRI->second;
while (!List.empty()) {
Value *V = List.back();
List.pop_back();
std::map<Value*, std::pair<ValID, int> >::iterator PHI =
CurModule.PlaceHolderInfo.find(V);
assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error");
ValID &DID = PHI->second.first;
Value *TheRealValue = getExistingValue(Ty, DID);
if (TheRealValue) {
V->replaceAllUsesWith(TheRealValue);
delete V;
CurModule.PlaceHolderInfo.erase(PHI);
} else if (FutureLateResolvers) {
// Functions have their unresolved items forwarded to the module late
// resolver table
InsertValue(V, *FutureLateResolvers);
} else {
if (DID.Type == ValID::NameVal) {
error("Reference to an invalid definition: '" + DID.getName() +
"' of type '" + V->getType()->getDescription() + "'",
PHI->second.second);
return;
} else {
error("Reference to an invalid definition: #" +
itostr(DID.Num) + " of type '" +
V->getType()->getDescription() + "'", PHI->second.second);
return;
}
}
}
}
LateResolvers.clear();
}
/// This function is used for type resolution and upref handling. When a type
/// becomes concrete, this function is called to adjust the signedness for the
/// concrete type.
static void ResolveTypeSign(const Type* oldTy, const Signedness &Sign) {
std::string TyName = CurModule.CurrentModule->getTypeName(oldTy);
if (!TyName.empty())
CurModule.NamedTypeSigns[TyName] = Sign;
}
/// ResolveTypeTo - A brand new type was just declared. This means that (if
/// name is not null) things referencing Name can be resolved. Otherwise,
/// things refering to the number can be resolved. Do this now.
static void ResolveTypeTo(char *Name, const Type *ToTy, const Signedness& Sign){
ValID D;
if (Name)
D = ValID::create(Name);
else
D = ValID::create((int)CurModule.Types.size());
D.S.copy(Sign);
if (Name)
CurModule.NamedTypeSigns[Name] = Sign;
std::map<ValID, PATypeHolder>::iterator I =
CurModule.LateResolveTypes.find(D);
if (I != CurModule.LateResolveTypes.end()) {
const Type *OldTy = I->second.get();
((DerivedType*)OldTy)->refineAbstractTypeTo(ToTy);
CurModule.LateResolveTypes.erase(I);
}
}
/// This is the implementation portion of TypeHasInteger. It traverses the
/// type given, avoiding recursive types, and returns true as soon as it finds
/// an integer type. If no integer type is found, it returns false.
static bool TypeHasIntegerI(const Type *Ty, std::vector<const Type*> Stack) {
// Handle some easy cases
if (Ty->isPrimitiveType() || (Ty->getTypeID() == Type::OpaqueTyID))
return false;
if (Ty->isInteger())
return true;
if (const SequentialType *STy = dyn_cast<SequentialType>(Ty))
return STy->getElementType()->isInteger();
// Avoid type structure recursion
for (std::vector<const Type*>::iterator I = Stack.begin(), E = Stack.end();
I != E; ++I)
if (Ty == *I)
return false;
// Push us on the type stack
Stack.push_back(Ty);
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
if (TypeHasIntegerI(FTy->getReturnType(), Stack))
return true;
FunctionType::param_iterator I = FTy->param_begin();
FunctionType::param_iterator E = FTy->param_end();
for (; I != E; ++I)
if (TypeHasIntegerI(*I, Stack))
return true;
return false;
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
StructType::element_iterator I = STy->element_begin();
StructType::element_iterator E = STy->element_end();
for (; I != E; ++I) {
if (TypeHasIntegerI(*I, Stack))
return true;
}
return false;
}
// There shouldn't be anything else, but its definitely not integer
assert(0 && "What type is this?");
return false;
}
/// This is the interface to TypeHasIntegerI. It just provides the type stack,
/// to avoid recursion, and then calls TypeHasIntegerI.
static inline bool TypeHasInteger(const Type *Ty) {
std::vector<const Type*> TyStack;
return TypeHasIntegerI(Ty, TyStack);
}
// setValueName - Set the specified value to the name given. The name may be
// null potentially, in which case this is a noop. The string passed in is
// assumed to be a malloc'd string buffer, and is free'd by this function.
//
static void setValueName(const ValueInfo &V, char *NameStr) {
if (NameStr) {
std::string Name(NameStr); // Copy string
free(NameStr); // Free old string
if (V.V->getType() == Type::VoidTy) {
error("Can't assign name '" + Name + "' to value with void type");
return;
}
assert(inFunctionScope() && "Must be in function scope");
// Search the function's symbol table for an existing value of this name
ValueSymbolTable &ST = CurFun.CurrentFunction->getValueSymbolTable();
Value* Existing = ST.lookup(Name);
if (Existing) {
// An existing value of the same name was found. This might have happened
// because of the integer type planes collapsing in LLVM 2.0.
if (Existing->getType() == V.V->getType() &&
!TypeHasInteger(Existing->getType())) {
// If the type does not contain any integers in them then this can't be
// a type plane collapsing issue. It truly is a redefinition and we
// should error out as the assembly is invalid.
error("Redefinition of value named '" + Name + "' of type '" +
V.V->getType()->getDescription() + "'");
return;
}
// In LLVM 2.0 we don't allow names to be re-used for any values in a
// function, regardless of Type. Previously re-use of names was okay as
// long as they were distinct types. With type planes collapsing because
// of the signedness change and because of PR411, this can no longer be
// supported. We must search the entire symbol table for a conflicting
// name and make the name unique. No warning is needed as this can't
// cause a problem.
std::string NewName = makeNameUnique(Name);
// We're changing the name but it will probably be used by other
// instructions as operands later on. Consequently we have to retain
// a mapping of the renaming that we're doing.
RenameMapKey Key = makeRenameMapKey(Name, V.V->getType(), V.S);
CurFun.RenameMap[Key] = NewName;
Name = NewName;
}
// Set the name.
V.V->setName(Name);
}
}
/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
/// this is a declaration, otherwise it is a definition.
static GlobalVariable *
ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
bool isConstantGlobal, const Type *Ty,
Constant *Initializer,
const Signedness &Sign) {
if (isa<FunctionType>(Ty))
error("Cannot declare global vars of function type");
const PointerType *PTy = PointerType::get(Ty);
std::string Name;
if (NameStr) {
Name = NameStr; // Copy string
free(NameStr); // Free old string
}
// See if this global value was forward referenced. If so, recycle the
// object.
ValID ID;
if (!Name.empty()) {
ID = ValID::create((char*)Name.c_str());
} else {
ID = ValID::create((int)CurModule.Values[PTy].size());
}
ID.S.makeComposite(Sign);
if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
// Move the global to the end of the list, from whereever it was
// previously inserted.
GlobalVariable *GV = cast<GlobalVariable>(FWGV);
CurModule.CurrentModule->getGlobalList().remove(GV);
CurModule.CurrentModule->getGlobalList().push_back(GV);
GV->setInitializer(Initializer);
GV->setLinkage(Linkage);
GV->setConstant(isConstantGlobal);
InsertValue(GV, CurModule.Values);
return GV;
}
// If this global has a name, check to see if there is already a definition
// of this global in the module and emit warnings if there are conflicts.
if (!Name.empty()) {
// The global has a name. See if there's an existing one of the same name.
if (CurModule.CurrentModule->getNamedGlobal(Name) ||
CurModule.CurrentModule->getFunction(Name)) {
// We found an existing global of the same name. This isn't allowed
// in LLVM 2.0. Consequently, we must alter the name of the global so it
// can at least compile. This can happen because of type planes
// There is alread a global of the same name which means there is a
// conflict. Let's see what we can do about it.
std::string NewName(makeNameUnique(Name));
if (Linkage != GlobalValue::InternalLinkage) {
// The linkage of this gval is external so we can't reliably rename
// it because it could potentially create a linking problem.
// However, we can't leave the name conflict in the output either or
// it won't assemble with LLVM 2.0. So, all we can do is rename
// this one to something unique and emit a warning about the problem.
warning("Renaming global variable '" + Name + "' to '" + NewName +
"' may cause linkage errors");
}
// Put the renaming in the global rename map
RenameMapKey Key = makeRenameMapKey(Name, PointerType::get(Ty), ID.S);
CurModule.RenameMap[Key] = NewName;
// Rename it
Name = NewName;
}
}
// Otherwise there is no existing GV to use, create one now.
GlobalVariable *GV =
new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
CurModule.CurrentModule);
InsertValue(GV, CurModule.Values);
// Remember the sign of this global.
CurModule.NamedValueSigns[Name] = ID.S;
return GV;
}
// setTypeName - Set the specified type to the name given. The name may be
// null potentially, in which case this is a noop. The string passed in is
// assumed to be a malloc'd string buffer, and is freed by this function.
//
// This function returns true if the type has already been defined, but is
// allowed to be redefined in the specified context. If the name is a new name
// for the type plane, it is inserted and false is returned.
static bool setTypeName(const PATypeInfo& TI, char *NameStr) {
assert(!inFunctionScope() && "Can't give types function-local names");
if (NameStr == 0) return false;
std::string Name(NameStr); // Copy string
free(NameStr); // Free old string
const Type* Ty = TI.PAT->get();
// We don't allow assigning names to void type
if (Ty == Type::VoidTy) {
error("Can't assign name '" + Name + "' to the void type");
return false;
}
// Set the type name, checking for conflicts as we do so.
bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, Ty);
// Save the sign information for later use
CurModule.NamedTypeSigns[Name] = TI.S;
if (AlreadyExists) { // Inserting a name that is already defined???
const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
assert(Existing && "Conflict but no matching type?");
// There is only one case where this is allowed: when we are refining an
// opaque type. In this case, Existing will be an opaque type.
if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
// We ARE replacing an opaque type!
const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(Ty);
return true;
}
// Otherwise, this is an attempt to redefine a type. That's okay if
// the redefinition is identical to the original. This will be so if
// Existing and T point to the same Type object. In this one case we
// allow the equivalent redefinition.
if (Existing == Ty) return true; // Yes, it's equal.
// Any other kind of (non-equivalent) redefinition is an error.
error("Redefinition of type named '" + Name + "' in the '" +
Ty->getDescription() + "' type plane");
}
return false;
}
//===----------------------------------------------------------------------===//
// Code for handling upreferences in type names...
//
// TypeContains - Returns true if Ty directly contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
return std::find(Ty->subtype_begin(), Ty->subtype_end(),
E) != Ty->subtype_end();
}
namespace {
struct UpRefRecord {
// NestingLevel - The number of nesting levels that need to be popped before
// this type is resolved.
unsigned NestingLevel;
// LastContainedTy - This is the type at the current binding level for the
// type. Every time we reduce the nesting level, this gets updated.
const Type *LastContainedTy;
// UpRefTy - This is the actual opaque type that the upreference is
// represented with.
OpaqueType *UpRefTy;
UpRefRecord(unsigned NL, OpaqueType *URTy)
: NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) { }
};
}
// UpRefs - A list of the outstanding upreferences that need to be resolved.
static std::vector<UpRefRecord> UpRefs;
/// HandleUpRefs - Every time we finish a new layer of types, this function is
/// called. It loops through the UpRefs vector, which is a list of the
/// currently active types. For each type, if the up reference is contained in
/// the newly completed type, we decrement the level count. When the level
/// count reaches zero, the upreferenced type is the type that is passed in:
/// thus we can complete the cycle.
///
static PATypeHolder HandleUpRefs(const Type *ty, const Signedness& Sign) {
// If Ty isn't abstract, or if there are no up-references in it, then there is
// nothing to resolve here.
if (!ty->isAbstract() || UpRefs.empty()) return ty;
PATypeHolder Ty(ty);
UR_OUT("Type '" << Ty->getDescription() <<
"' newly formed. Resolving upreferences.\n" <<
UpRefs.size() << " upreferences active!\n");
// If we find any resolvable upreferences (i.e., those whose NestingLevel goes
// to zero), we resolve them all together before we resolve them to Ty. At
// the end of the loop, if there is anything to resolve to Ty, it will be in
// this variable.
OpaqueType *TypeToResolve = 0;
unsigned i = 0;
for (; i != UpRefs.size(); ++i) {
UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
<< UpRefs[i].UpRefTy->getDescription() << ") = "
<< (TypeContains(Ty, UpRefs[i].UpRefTy) ? "true" : "false") << "\n");
if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
// Decrement level of upreference
unsigned Level = --UpRefs[i].NestingLevel;
UpRefs[i].LastContainedTy = Ty;
UR_OUT(" Uplevel Ref Level = " << Level << "\n");
if (Level == 0) { // Upreference should be resolved!
if (!TypeToResolve) {
TypeToResolve = UpRefs[i].UpRefTy;
} else {
UR_OUT(" * Resolving upreference for "
<< UpRefs[i].UpRefTy->getDescription() << "\n";
std::string OldName = UpRefs[i].UpRefTy->getDescription());
ResolveTypeSign(UpRefs[i].UpRefTy, Sign);
UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
UR_OUT(" * Type '" << OldName << "' refined upreference to: "
<< (const void*)Ty << ", " << Ty->getDescription() << "\n");
}
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
--i; // Do not skip the next element...
}
}
}
if (TypeToResolve) {
UR_OUT(" * Resolving upreference for "
<< UpRefs[i].UpRefTy->getDescription() << "\n";
std::string OldName = TypeToResolve->getDescription());
ResolveTypeSign(TypeToResolve, Sign);
TypeToResolve->refineAbstractTypeTo(Ty);
}
return Ty;
}
bool Signedness::operator<(const Signedness &that) const {
if (isNamed()) {
if (that.isNamed())
return *(this->name) < *(that.name);
else
return CurModule.NamedTypeSigns[*name] < that;
} else if (that.isNamed()) {
return *this < CurModule.NamedTypeSigns[*that.name];
}
if (isComposite() && that.isComposite()) {
if (sv->size() == that.sv->size()) {
SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
SignVector::const_iterator thatI = that.sv->begin(),
thatE = that.sv->end();
for (; thisI != thisE; ++thisI, ++thatI) {
if (*thisI < *thatI)
return true;
else if (!(*thisI == *thatI))
return false;
}
return false;
}
return sv->size() < that.sv->size();
}
return kind < that.kind;
}
bool Signedness::operator==(const Signedness &that) const {
if (isNamed())
if (that.isNamed())
return *(this->name) == *(that.name);
else
return CurModule.NamedTypeSigns[*(this->name)] == that;
else if (that.isNamed())
return *this == CurModule.NamedTypeSigns[*(that.name)];
if (isComposite() && that.isComposite()) {
if (sv->size() == that.sv->size()) {
SignVector::const_iterator thisI = sv->begin(), thisE = sv->end();
SignVector::const_iterator thatI = that.sv->begin(),
thatE = that.sv->end();
for (; thisI != thisE; ++thisI, ++thatI) {
if (!(*thisI == *thatI))
return false;
}
return true;
}
return false;
}
return kind == that.kind;
}
void Signedness::copy(const Signedness &that) {
if (that.isNamed()) {
kind = Named;
name = new std::string(*that.name);
} else if (that.isComposite()) {
kind = Composite;
sv = new SignVector();
*sv = *that.sv;
} else {
kind = that.kind;
sv = 0;
}
}
void Signedness::destroy() {
if (isNamed()) {
delete name;
} else if (isComposite()) {
delete sv;
}
}
#ifndef NDEBUG
void Signedness::dump() const {
if (isComposite()) {
if (sv->size() == 1) {
(*sv)[0].dump();
std::cerr << "*";
} else {
std::cerr << "{ " ;
for (unsigned i = 0; i < sv->size(); ++i) {
if (i != 0)
std::cerr << ", ";
(*sv)[i].dump();
}
std::cerr << "} " ;
}
} else if (isNamed()) {
std::cerr << *name;
} else if (isSigned()) {
std::cerr << "S";
} else if (isUnsigned()) {
std::cerr << "U";
} else
std::cerr << ".";
}
#endif
static inline Instruction::TermOps
getTermOp(TermOps op) {
switch (op) {
default : assert(0 && "Invalid OldTermOp");
case RetOp : return Instruction::Ret;
case BrOp : return Instruction::Br;
case SwitchOp : return Instruction::Switch;
case InvokeOp : return Instruction::Invoke;
case UnwindOp : return Instruction::Unwind;
case UnreachableOp: return Instruction::Unreachable;
}
}
static inline Instruction::BinaryOps
getBinaryOp(BinaryOps op, const Type *Ty, const Signedness& Sign) {
switch (op) {
default : assert(0 && "Invalid OldBinaryOps");
case SetEQ :
case SetNE :
case SetLE :
case SetGE :
case SetLT :
case SetGT : assert(0 && "Should use getCompareOp");
case AddOp : return Instruction::Add;
case SubOp : return Instruction::Sub;
case MulOp : return Instruction::Mul;
case DivOp : {
// This is an obsolete instruction so we must upgrade it based on the
// types of its operands.
bool isFP = Ty->isFloatingPoint();
if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
// If its a vector type we want to use the element type
isFP = PTy->getElementType()->isFloatingPoint();
if (isFP)
return Instruction::FDiv;
else if (Sign.isSigned())
return Instruction::SDiv;
return Instruction::UDiv;
}
case UDivOp : return Instruction::UDiv;
case SDivOp : return Instruction::SDiv;
case FDivOp : return Instruction::FDiv;
case RemOp : {
// This is an obsolete instruction so we must upgrade it based on the
// types of its operands.
bool isFP = Ty->isFloatingPoint();
if (const VectorType* PTy = dyn_cast<VectorType>(Ty))
// If its a vector type we want to use the element type
isFP = PTy->getElementType()->isFloatingPoint();
// Select correct opcode
if (isFP)
return Instruction::FRem;
else if (Sign.isSigned())
return Instruction::SRem;
return Instruction::URem;
}
case URemOp : return Instruction::URem;
case SRemOp : return Instruction::SRem;
case FRemOp : return Instruction::FRem;
case LShrOp : return Instruction::LShr;
case AShrOp : return Instruction::AShr;
case ShlOp : return Instruction::Shl;
case ShrOp :
if (Sign.isSigned())
return Instruction::AShr;
return Instruction::LShr;
case AndOp : return Instruction::And;
case OrOp : return Instruction::Or;
case XorOp : return Instruction::Xor;
}
}
static inline Instruction::OtherOps
getCompareOp(BinaryOps op, unsigned short &predicate, const Type* &Ty,
const Signedness &Sign) {
bool isSigned = Sign.isSigned();
bool isFP = Ty->isFloatingPoint();
switch (op) {
default : assert(0 && "Invalid OldSetCC");
case SetEQ :
if (isFP) {
predicate = FCmpInst::FCMP_OEQ;
return Instruction::FCmp;
} else {
predicate = ICmpInst::ICMP_EQ;
return Instruction::ICmp;
}
case SetNE :
if (isFP) {
predicate = FCmpInst::FCMP_UNE;
return Instruction::FCmp;
} else {
predicate = ICmpInst::ICMP_NE;
return Instruction::ICmp;
}
case SetLE :
if (isFP) {
predicate = FCmpInst::FCMP_OLE;
return Instruction::FCmp;
} else {
if (isSigned)
predicate = ICmpInst::ICMP_SLE;
else
predicate = ICmpInst::ICMP_ULE;
return Instruction::ICmp;
}
case SetGE :
if (isFP) {
predicate = FCmpInst::FCMP_OGE;
return Instruction::FCmp;
} else {
if (isSigned)
predicate = ICmpInst::ICMP_SGE;
else
predicate = ICmpInst::ICMP_UGE;
return Instruction::ICmp;
}
case SetLT :
if (isFP) {
predicate = FCmpInst::FCMP_OLT;
return Instruction::FCmp;
} else {
if (isSigned)
predicate = ICmpInst::ICMP_SLT;
else
predicate = ICmpInst::ICMP_ULT;
return Instruction::ICmp;
}
case SetGT :
if (isFP) {
predicate = FCmpInst::FCMP_OGT;
return Instruction::FCmp;
} else {
if (isSigned)
predicate = ICmpInst::ICMP_SGT;
else
predicate = ICmpInst::ICMP_UGT;
return Instruction::ICmp;
}
}
}
static inline Instruction::MemoryOps getMemoryOp(MemoryOps op) {
switch (op) {
default : assert(0 && "Invalid OldMemoryOps");
case MallocOp : return Instruction::Malloc;
case FreeOp : return Instruction::Free;
case AllocaOp : return Instruction::Alloca;
case LoadOp : return Instruction::Load;
case StoreOp : return Instruction::Store;
case GetElementPtrOp : return Instruction::GetElementPtr;
}
}
static inline Instruction::OtherOps
getOtherOp(OtherOps op, const Signedness &Sign) {
switch (op) {
default : assert(0 && "Invalid OldOtherOps");
case PHIOp : return Instruction::PHI;
case CallOp : return Instruction::Call;
case SelectOp : return Instruction::Select;
case UserOp1 : return Instruction::UserOp1;
case UserOp2 : return Instruction::UserOp2;
case VAArg : return Instruction::VAArg;
case ExtractElementOp : return Instruction::ExtractElement;
case InsertElementOp : return Instruction::InsertElement;
case ShuffleVectorOp : return Instruction::ShuffleVector;
case ICmpOp : return Instruction::ICmp;
case FCmpOp : return Instruction::FCmp;
};
}
static inline Value*
getCast(CastOps op, Value *Src, const Signedness &SrcSign, const Type *DstTy,
const Signedness &DstSign, bool ForceInstruction = false) {
Instruction::CastOps Opcode;
const Type* SrcTy = Src->getType();
if (op == CastOp) {
if (SrcTy->isFloatingPoint() && isa<PointerType>(DstTy)) {
// fp -> ptr cast is no longer supported but we must upgrade this
// by doing a double cast: fp -> int -> ptr
SrcTy = Type::Int64Ty;
Opcode = Instruction::IntToPtr;
if (isa<Constant>(Src)) {
Src = ConstantExpr::getCast(Instruction::FPToUI,
cast<Constant>(Src), SrcTy);
} else {
std::string NewName(makeNameUnique(Src->getName()));
Src = new FPToUIInst(Src, SrcTy, NewName, CurBB);
}
} else if (isa<IntegerType>(DstTy) &&
cast<IntegerType>(DstTy)->getBitWidth() == 1) {
// cast type %x to bool was previously defined as setne type %x, null
// The cast semantic is now to truncate, not compare so we must retain
// the original intent by replacing the cast with a setne
Constant* Null = Constant::getNullValue(SrcTy);
Instruction::OtherOps Opcode = Instruction::ICmp;
unsigned short predicate = ICmpInst::ICMP_NE;
if (SrcTy->isFloatingPoint()) {
Opcode = Instruction::FCmp;
predicate = FCmpInst::FCMP_ONE;
} else if (!SrcTy->isInteger() && !isa<PointerType>(SrcTy)) {
error("Invalid cast to bool");
}
if (isa<Constant>(Src) && !ForceInstruction)
return ConstantExpr::getCompare(predicate, cast<Constant>(Src), Null);
else
return CmpInst::create(Opcode, predicate, Src, Null);
}
// Determine the opcode to use by calling CastInst::getCastOpcode
Opcode =
CastInst::getCastOpcode(Src, SrcSign.isSigned(), DstTy,
DstSign.isSigned());
} else switch (op) {
default: assert(0 && "Invalid cast token");
case TruncOp: Opcode = Instruction::Trunc; break;
case ZExtOp: Opcode = Instruction::ZExt; break;
case SExtOp: Opcode = Instruction::SExt; break;
case FPTruncOp: Opcode = Instruction::FPTrunc; break;
case FPExtOp: Opcode = Instruction::FPExt; break;
case FPToUIOp: Opcode = Instruction::FPToUI; break;
case FPToSIOp: Opcode = Instruction::FPToSI; break;
case UIToFPOp: Opcode = Instruction::UIToFP; break;
case SIToFPOp: Opcode = Instruction::SIToFP; break;
case PtrToIntOp: Opcode = Instruction::PtrToInt; break;
case IntToPtrOp: Opcode = Instruction::IntToPtr; break;
case BitCastOp: Opcode = Instruction::BitCast; break;
}
if (isa<Constant>(Src) && !ForceInstruction)
return ConstantExpr::getCast(Opcode, cast<Constant>(Src), DstTy);
return CastInst::create(Opcode, Src, DstTy);
}
static Instruction *
upgradeIntrinsicCall(const Type* RetTy, const ValID &ID,
std::vector<Value*>& Args) {
std::string Name = ID.Type == ValID::NameVal ? ID.Name : "";
if (Name.length() <= 5 || Name[0] != 'l' || Name[1] != 'l' ||
Name[2] != 'v' || Name[3] != 'm' || Name[4] != '.')
return 0;
switch (Name[5]) {
case 'i':
if (Name == "llvm.isunordered.f32" || Name == "llvm.isunordered.f64") {
if (Args.size() != 2)
error("Invalid prototype for " + Name);
return new FCmpInst(FCmpInst::FCMP_UNO, Args[0], Args[1]);
}
break;
case 'v' : {
const Type* PtrTy = PointerType::get(Type::Int8Ty);
std::vector<const Type*> Params;
if (Name == "llvm.va_start" || Name == "llvm.va_end") {
if (Args.size() != 1)
error("Invalid prototype for " + Name + " prototype");
Params.push_back(PtrTy);
const FunctionType *FTy =
FunctionType::get(Type::VoidTy, Params, false);
const PointerType *PFTy = PointerType::get(FTy);
Value* Func = getVal(PFTy, ID);
Args[0] = new BitCastInst(Args[0], PtrTy, makeNameUnique("va"), CurBB);
return new CallInst(Func, Args.begin(), Args.end());
} else if (Name == "llvm.va_copy") {
if (Args.size() != 2)
error("Invalid prototype for " + Name + " prototype");
Params.push_back(PtrTy);
Params.push_back(PtrTy);
const FunctionType *FTy =
FunctionType::get(Type::VoidTy, Params, false);
const PointerType *PFTy = PointerType::get(FTy);
Value* Func = getVal(PFTy, ID);
std::string InstName0(makeNameUnique("va0"));
std::string InstName1(makeNameUnique("va1"));
Args[0] = new BitCastInst(Args[0], PtrTy, InstName0, CurBB);
Args[1] = new BitCastInst(Args[1], PtrTy, InstName1, CurBB);
return new CallInst(Func, Args.begin(), Args.end());
}
}
}
return 0;
}
const Type* upgradeGEPCEIndices(const Type* PTy,
std::vector<ValueInfo> *Indices,
std::vector<Constant*> &Result) {
const Type *Ty = PTy;
Result.clear();
for (unsigned i = 0, e = Indices->size(); i != e ; ++i) {
Constant *Index = cast<Constant>((*Indices)[i].V);
if (ConstantInt *CI = dyn_cast<ConstantInt>(Index)) {
// LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte
// struct indices to i32 struct indices with ZExt for compatibility.
if (CI->getBitWidth() < 32)
Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty);
}
if (isa<SequentialType>(Ty)) {
// Make sure that unsigned SequentialType indices are zext'd to
// 64-bits if they were smaller than that because LLVM 2.0 will sext
// all indices for SequentialType elements. We must retain the same
// semantic (zext) for unsigned types.
if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType())) {
if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) {
Index = ConstantExpr::getCast(Instruction::ZExt, Index,Type::Int64Ty);
}
}
}
Result.push_back(Index);
Ty = GetElementPtrInst::getIndexedType(PTy, Result.begin(),
Result.end(),true);
if (!Ty)
error("Index list invalid for constant getelementptr");
}
return Ty;
}
const Type* upgradeGEPInstIndices(const Type* PTy,
std::vector<ValueInfo> *Indices,
std::vector<Value*> &Result) {
const Type *Ty = PTy;
Result.clear();
for (unsigned i = 0, e = Indices->size(); i != e ; ++i) {
Value *Index = (*Indices)[i].V;
if (ConstantInt *CI = dyn_cast<ConstantInt>(Index)) {
// LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte
// struct indices to i32 struct indices with ZExt for compatibility.
if (CI->getBitWidth() < 32)
Index = ConstantExpr::getCast(Instruction::ZExt, CI, Type::Int32Ty);
}
if (isa<StructType>(Ty)) { // Only change struct indices
if (!isa<Constant>(Index)) {
error("Invalid non-constant structure index");
return 0;
}
} else {
// Make sure that unsigned SequentialType indices are zext'd to
// 64-bits if they were smaller than that because LLVM 2.0 will sext
// all indices for SequentialType elements. We must retain the same
// semantic (zext) for unsigned types.
if (const IntegerType *Ity = dyn_cast<IntegerType>(Index->getType())) {
if (Ity->getBitWidth() < 64 && (*Indices)[i].S.isUnsigned()) {
if (isa<Constant>(Index))
Index = ConstantExpr::getCast(Instruction::ZExt,
cast<Constant>(Index), Type::Int64Ty);
else
Index = CastInst::create(Instruction::ZExt, Index, Type::Int64Ty,
makeNameUnique("gep"), CurBB);
}
}
}
Result.push_back(Index);
Ty = GetElementPtrInst::getIndexedType(PTy, Result.begin(),
Result.end(),true);
if (!Ty)
error("Index list invalid for constant getelementptr");
}
return Ty;
}
unsigned upgradeCallingConv(unsigned CC) {
switch (CC) {
case OldCallingConv::C : return CallingConv::C;
case OldCallingConv::CSRet : return CallingConv::C;
case OldCallingConv::Fast : return CallingConv::Fast;
case OldCallingConv::Cold : return CallingConv::Cold;
case OldCallingConv::X86_StdCall : return CallingConv::X86_StdCall;
case OldCallingConv::X86_FastCall: return CallingConv::X86_FastCall;
default:
return CC;
}
}
Module* UpgradeAssembly(const std::string &infile, std::istream& in,
bool debug, bool addAttrs)
{
Upgradelineno = 1;
CurFilename = infile;
LexInput = &in;
yydebug = debug;
AddAttributes = addAttrs;
ObsoleteVarArgs = false;
NewVarArgs = false;
CurModule.CurrentModule = new Module(CurFilename);
// Check to make sure the parser succeeded
if (yyparse()) {
if (ParserResult)
delete ParserResult;
std::cerr << "llvm-upgrade: parse failed.\n";
return 0;
}
// Check to make sure that parsing produced a result
if (!ParserResult) {
std::cerr << "llvm-upgrade: no parse result.\n";
return 0;
}
// Reset ParserResult variable while saving its value for the result.
Module *Result = ParserResult;
ParserResult = 0;
//Not all functions use vaarg, so make a second check for ObsoleteVarArgs
{
Function* F;
if ((F = Result->getFunction("llvm.va_start"))
&& F->getFunctionType()->getNumParams() == 0)
ObsoleteVarArgs = true;
if((F = Result->getFunction("llvm.va_copy"))
&& F->getFunctionType()->getNumParams() == 1)
ObsoleteVarArgs = true;
}
if (ObsoleteVarArgs && NewVarArgs) {
error("This file is corrupt: it uses both new and old style varargs");
return 0;
}
if(ObsoleteVarArgs) {
if(Function* F = Result->getFunction("llvm.va_start")) {
if (F->arg_size() != 0) {
error("Obsolete va_start takes 0 argument");
return 0;
}
//foo = va_start()
// ->
//bar = alloca typeof(foo)
//va_start(bar)
//foo = load bar
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
const Type* ArgTy = F->getFunctionType()->getReturnType();
const Type* ArgTyPtr = PointerType::get(ArgTy);
Function* NF = cast<Function>(Result->getOrInsertFunction(
"llvm.va_start", RetTy, ArgTyPtr, (Type *)0));
while (!F->use_empty()) {
CallInst* CI = cast<CallInst>(F->use_back());
AllocaInst* bar = new AllocaInst(ArgTy, 0, "vastart.fix.1", CI);
new CallInst(NF, bar, "", CI);
Value* foo = new LoadInst(bar, "vastart.fix.2", CI);
CI->replaceAllUsesWith(foo);
CI->getParent()->getInstList().erase(CI);
}
Result->getFunctionList().erase(F);
}
if(Function* F = Result->getFunction("llvm.va_end")) {
if(F->arg_size() != 1) {
error("Obsolete va_end takes 1 argument");
return 0;
}
//vaend foo
// ->
//bar = alloca 1 of typeof(foo)
//vaend bar
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
const Type* ArgTy = F->getFunctionType()->getParamType(0);
const Type* ArgTyPtr = PointerType::get(ArgTy);
Function* NF = cast<Function>(Result->getOrInsertFunction(
"llvm.va_end", RetTy, ArgTyPtr, (Type *)0));
while (!F->use_empty()) {
CallInst* CI = cast<CallInst>(F->use_back());
AllocaInst* bar = new AllocaInst(ArgTy, 0, "vaend.fix.1", CI);
new StoreInst(CI->getOperand(1), bar, CI);
new CallInst(NF, bar, "", CI);
CI->getParent()->getInstList().erase(CI);
}
Result->getFunctionList().erase(F);
}
if(Function* F = Result->getFunction("llvm.va_copy")) {
if(F->arg_size() != 1) {
error("Obsolete va_copy takes 1 argument");
return 0;
}
//foo = vacopy(bar)
// ->
//a = alloca 1 of typeof(foo)
//b = alloca 1 of typeof(foo)
//store bar -> b
//vacopy(a, b)
//foo = load a
const Type* RetTy = Type::getPrimitiveType(Type::VoidTyID);
const Type* ArgTy = F->getFunctionType()->getReturnType();
const Type* ArgTyPtr = PointerType::get(ArgTy);
Function* NF = cast<Function>(Result->getOrInsertFunction(
"llvm.va_copy", RetTy, ArgTyPtr, ArgTyPtr, (Type *)0));
while (!F->use_empty()) {
CallInst* CI = cast<CallInst>(F->use_back());
Value *Args[2] = {
new AllocaInst(ArgTy, 0, "vacopy.fix.1", CI),
new AllocaInst(ArgTy, 0, "vacopy.fix.2", CI)
};
new StoreInst(CI->getOperand(1), Args[1], CI);
new CallInst(NF, Args, Args + 2, "", CI);
Value* foo = new LoadInst(Args[0], "vacopy.fix.3", CI);
CI->replaceAllUsesWith(foo);
CI->getParent()->getInstList().erase(CI);
}
Result->getFunctionList().erase(F);
}
}
return Result;
}
} // end llvm namespace
using namespace llvm;
%}
%union {
llvm::Module *ModuleVal;
llvm::Function *FunctionVal;
std::pair<llvm::PATypeInfo, char*> *ArgVal;
llvm::BasicBlock *BasicBlockVal;
llvm::TermInstInfo TermInstVal;
llvm::InstrInfo InstVal;
llvm::ConstInfo ConstVal;
llvm::ValueInfo ValueVal;
llvm::PATypeInfo TypeVal;
llvm::TypeInfo PrimType;
llvm::PHIListInfo PHIList;
std::list<llvm::PATypeInfo> *TypeList;
std::vector<llvm::ValueInfo> *ValueList;
std::vector<llvm::ConstInfo> *ConstVector;
std::vector<std::pair<llvm::PATypeInfo,char*> > *ArgList;
// Represent the RHS of PHI node
std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
llvm::GlobalValue::LinkageTypes Linkage;
int64_t SInt64Val;
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
llvm::APFloat *FPVal;
bool BoolVal;
char *StrVal; // This memory is strdup'd!
llvm::ValID ValIDVal; // strdup'd memory maybe!
llvm::BinaryOps BinaryOpVal;
llvm::TermOps TermOpVal;
llvm::MemoryOps MemOpVal;
llvm::OtherOps OtherOpVal;
llvm::CastOps CastOpVal;
llvm::ICmpInst::Predicate IPred;
llvm::FCmpInst::Predicate FPred;
llvm::Module::Endianness Endianness;
}
%type <ModuleVal> Module FunctionList
%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal> BBTerminatorInst
%type <InstVal> Inst InstVal MemoryInst
%type <ConstVal> ConstVal ConstExpr
%type <ConstVector> ConstVector
%type <ArgList> ArgList ArgListH
%type <ArgVal> ArgVal
%type <PHIList> PHIList
%type <ValueList> ValueRefList ValueRefListE // For call param lists
%type <ValueList> IndexList // For GEP derived indices
%type <TypeList> TypeListI ArgTypeListI
%type <JumpTable> JumpTable
%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
%type <BoolVal> OptVolatile // 'volatile' or not
%type <BoolVal> OptTailCall // TAIL CALL or plain CALL.
%type <BoolVal> OptSideEffect // 'sideeffect' or not.
%type <Linkage> OptLinkage FnDeclareLinkage
%type <Endianness> BigOrLittle
// ValueRef - Unresolved reference to a definition or BB
%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
%type <ValueVal> ResolvedVal // <type> <valref> pair
// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL
// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type <SInt64Val> EINT64VAL
%token <SIntVal> SINTVAL // Signed 32 bit ints...
%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
%type <SIntVal> INTVAL
%token <FPVal> FPVAL // Float or Double constant
// Built in types...
%type <TypeVal> Types TypesV UpRTypes UpRTypesV
%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <PrimType> FLOAT DOUBLE TYPE LABEL
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
%type <StrVal> Name OptName OptAssign
%type <UIntVal> OptAlign OptCAlign
%type <StrVal> OptSection SectionString
%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
%token DECLARE GLOBAL CONSTANT SECTION VOLATILE
%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
%token DLLIMPORT DLLEXPORT EXTERN_WEAK
%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG ALIGN
%token DEPLIBS CALL TAIL ASM_TOK MODULE SIDEEFFECT
%token CC_TOK CCC_TOK CSRETCC_TOK FASTCC_TOK COLDCC_TOK
%token X86_STDCALLCC_TOK X86_FASTCALLCC_TOK
%token DATALAYOUT
%type <UIntVal> OptCallingConv
// Basic Block Terminating Operators
%token <TermOpVal> RET BR SWITCH INVOKE UNREACHABLE
%token UNWIND EXCEPT
// Binary Operators
%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
%type <BinaryOpVal> ShiftOps
%token <BinaryOpVal> ADD SUB MUL DIV UDIV SDIV FDIV REM UREM SREM FREM
%token <BinaryOpVal> AND OR XOR SHL SHR ASHR LSHR
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comparators
%token <OtherOpVal> ICMP FCMP
// Memory Instructions
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
// Other Operators
%token <OtherOpVal> PHI_TOK SELECT VAARG
%token <OtherOpVal> EXTRACTELEMENT INSERTELEMENT SHUFFLEVECTOR
%token VAARG_old VANEXT_old //OBSOLETE
// Support for ICmp/FCmp Predicates, which is 1.9++ but not 2.0
%type <IPred> IPredicates
%type <FPred> FPredicates
%token EQ NE SLT SGT SLE SGE ULT UGT ULE UGE
%token OEQ ONE OLT OGT OLE OGE ORD UNO UEQ UNE
%token <CastOpVal> CAST TRUNC ZEXT SEXT FPTRUNC FPEXT FPTOUI FPTOSI
%token <CastOpVal> UITOFP SITOFP PTRTOINT INTTOPTR BITCAST
%type <CastOpVal> CastOps
%start Module
%%
// Handle constant integer size restriction and conversion...
//
INTVAL
: SINTVAL
| UINTVAL {
if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
error("Value too large for type");
$$ = (int32_t)$1;
}
;
EINT64VAL
: ESINT64VAL // These have same type and can't cause problems...
| EUINT64VAL {
if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
error("Value too large for type");
$$ = (int64_t)$1;
};
// Operations that are notably excluded from this list include:
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
ArithmeticOps
: ADD | SUB | MUL | DIV | UDIV | SDIV | FDIV | REM | UREM | SREM | FREM
;
LogicalOps
: AND | OR | XOR
;
SetCondOps
: SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE
;
IPredicates
: EQ { $$ = ICmpInst::ICMP_EQ; } | NE { $$ = ICmpInst::ICMP_NE; }
| SLT { $$ = ICmpInst::ICMP_SLT; } | SGT { $$ = ICmpInst::ICMP_SGT; }
| SLE { $$ = ICmpInst::ICMP_SLE; } | SGE { $$ = ICmpInst::ICMP_SGE; }
| ULT { $$ = ICmpInst::ICMP_ULT; } | UGT { $$ = ICmpInst::ICMP_UGT; }
| ULE { $$ = ICmpInst::ICMP_ULE; } | UGE { $$ = ICmpInst::ICMP_UGE; }
;
FPredicates
: OEQ { $$ = FCmpInst::FCMP_OEQ; } | ONE { $$ = FCmpInst::FCMP_ONE; }
| OLT { $$ = FCmpInst::FCMP_OLT; } | OGT { $$ = FCmpInst::FCMP_OGT; }
| OLE { $$ = FCmpInst::FCMP_OLE; } | OGE { $$ = FCmpInst::FCMP_OGE; }
| ORD { $$ = FCmpInst::FCMP_ORD; } | UNO { $$ = FCmpInst::FCMP_UNO; }
| UEQ { $$ = FCmpInst::FCMP_UEQ; } | UNE { $$ = FCmpInst::FCMP_UNE; }
| ULT { $$ = FCmpInst::FCMP_ULT; } | UGT { $$ = FCmpInst::FCMP_UGT; }
| ULE { $$ = FCmpInst::FCMP_ULE; } | UGE { $$ = FCmpInst::FCMP_UGE; }
| TRUETOK { $$ = FCmpInst::FCMP_TRUE; }
| FALSETOK { $$ = FCmpInst::FCMP_FALSE; }
;
ShiftOps
: SHL | SHR | ASHR | LSHR
;
CastOps
: TRUNC | ZEXT | SEXT | FPTRUNC | FPEXT | FPTOUI | FPTOSI
| UITOFP | SITOFP | PTRTOINT | INTTOPTR | BITCAST | CAST
;
// These are some types that allow classification if we only want a particular
// thing... for example, only a signed, unsigned, or integral type.
SIntType
: LONG | INT | SHORT | SBYTE
;
UIntType
: ULONG | UINT | USHORT | UBYTE
;
IntType
: SIntType | UIntType
;
FPType
: FLOAT | DOUBLE
;
// OptAssign - Value producing statements have an optional assignment component
OptAssign
: Name '=' {
$$ = $1;
}
| /*empty*/ {
$$ = 0;
};
OptLinkage
: INTERNAL { $$ = GlobalValue::InternalLinkage; }
| LINKONCE { $$ = GlobalValue::LinkOnceLinkage; }
| WEAK { $$ = GlobalValue::WeakLinkage; }
| APPENDING { $$ = GlobalValue::AppendingLinkage; }
| DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
| DLLEXPORT { $$ = GlobalValue::DLLExportLinkage; }
| EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
| /*empty*/ { $$ = GlobalValue::ExternalLinkage; }
;
OptCallingConv
: /*empty*/ { $$ = lastCallingConv = OldCallingConv::C; }
| CCC_TOK { $$ = lastCallingConv = OldCallingConv::C; }
| CSRETCC_TOK { $$ = lastCallingConv = OldCallingConv::CSRet; }
| FASTCC_TOK { $$ = lastCallingConv = OldCallingConv::Fast; }
| COLDCC_TOK { $$ = lastCallingConv = OldCallingConv::Cold; }
| X86_STDCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_StdCall; }
| X86_FASTCALLCC_TOK { $$ = lastCallingConv = OldCallingConv::X86_FastCall; }
| CC_TOK EUINT64VAL {
if ((unsigned)$2 != $2)
error("Calling conv too large");
$$ = lastCallingConv = $2;
}
;
// OptAlign/OptCAlign - An optional alignment, and an optional alignment with
// a comma before it.
OptAlign
: /*empty*/ { $$ = 0; }
| ALIGN EUINT64VAL {
$$ = $2;
if ($$ != 0 && !isPowerOf2_32($$))
error("Alignment must be a power of two");
}
;
OptCAlign
: /*empty*/ { $$ = 0; }
| ',' ALIGN EUINT64VAL {
$$ = $3;
if ($$ != 0 && !isPowerOf2_32($$))
error("Alignment must be a power of two");
}
;
SectionString
: SECTION STRINGCONSTANT {
for (unsigned i = 0, e = strlen($2); i != e; ++i)
if ($2[i] == '"' || $2[i] == '\\')
error("Invalid character in section name");
$$ = $2;
}
;
OptSection
: /*empty*/ { $$ = 0; }
| SectionString { $$ = $1; }
;
// GlobalVarAttributes - Used to pass the attributes string on a global. CurGV
// is set to be the global we are processing.
//
GlobalVarAttributes
: /* empty */ {}
| ',' GlobalVarAttribute GlobalVarAttributes {}
;
GlobalVarAttribute
: SectionString {
CurGV->setSection($1);
free($1);
}
| ALIGN EUINT64VAL {
if ($2 != 0 && !isPowerOf2_32($2))
error("Alignment must be a power of two");
CurGV->setAlignment($2);
}
;
//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (function returning void for example). To have
// access to it, a user must explicitly use TypesV.
//
// TypesV includes all of 'Types', but it also includes the void type.
TypesV
: Types
| VOID {
$$.PAT = new PATypeHolder($1.T);
$$.S.makeSignless();
}
;
UpRTypesV
: UpRTypes
| VOID {
$$.PAT = new PATypeHolder($1.T);
$$.S.makeSignless();
}
;
Types
: UpRTypes {
if (!UpRefs.empty())
error("Invalid upreference in type: " + (*$1.PAT)->getDescription());
$$ = $1;
}
;
PrimType
: BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT
| LONG | ULONG | FLOAT | DOUBLE | LABEL
;
// Derived types are added later...
UpRTypes
: PrimType {
$$.PAT = new PATypeHolder($1.T);
$$.S.copy($1.S);
}
| OPAQUE {
$$.PAT = new PATypeHolder(OpaqueType::get());
$$.S.makeSignless();
}
| SymbolicValueRef { // Named types are also simple types...
$$.S.copy(getTypeSign($1));
const Type* tmp = getType($1);
$$.PAT = new PATypeHolder(tmp);
}
| '\\' EUINT64VAL { // Type UpReference
if ($2 > (uint64_t)~0U)
error("Value out of range");
OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
$$.PAT = new PATypeHolder(OT);
$$.S.makeSignless();
UR_OUT("New Upreference!\n");
}
| UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
$$.S.makeComposite($1.S);
std::vector<const Type*> Params;
for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
E = $3->end(); I != E; ++I) {
Params.push_back(I->PAT->get());
$$.S.add(I->S);
}
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
if (isVarArg) Params.pop_back();
ParamAttrsList *PAL = 0;
if (lastCallingConv == OldCallingConv::CSRet) {
ParamAttrsVector Attrs;
ParamAttrsWithIndex PAWI;
PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg
Attrs.push_back(PAWI);
PAL = ParamAttrsList::get(Attrs);
}
const FunctionType *FTy =
FunctionType::get($1.PAT->get(), Params, isVarArg);
$$.PAT = new PATypeHolder( HandleUpRefs(FTy, $$.S) );
delete $1.PAT; // Delete the return type handle
delete $3; // Delete the argument list
}
| '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
$$.S.makeComposite($4.S);
$$.PAT = new PATypeHolder(HandleUpRefs(ArrayType::get($4.PAT->get(),
(unsigned)$2), $$.S));
delete $4.PAT;
}
| '<' EUINT64VAL 'x' UpRTypes '>' { // Vector type?
const llvm::Type* ElemTy = $4.PAT->get();
if ((unsigned)$2 != $2)
error("Unsigned result not equal to signed result");
if (!(ElemTy->isInteger() || ElemTy->isFloatingPoint()))
error("Elements of a VectorType must be integer or floating point");
if (!isPowerOf2_32($2))
error("VectorType length should be a power of 2");
$$.S.makeComposite($4.S);
$$.PAT = new PATypeHolder(HandleUpRefs(VectorType::get(ElemTy,
(unsigned)$2), $$.S));
delete $4.PAT;
}
| '{' TypeListI '}' { // Structure type?
std::vector<const Type*> Elements;
$$.S.makeComposite();
for (std::list<llvm::PATypeInfo>::iterator I = $2->begin(),
E = $2->end(); I != E; ++I) {
Elements.push_back(I->PAT->get());
$$.S.add(I->S);
}
$$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements), $$.S));
delete $2;
}
| '{' '}' { // Empty structure type?
$$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>()));
$$.S.makeComposite();
}
| '<' '{' TypeListI '}' '>' { // Packed Structure type?
$$.S.makeComposite();
std::vector<const Type*> Elements;
for (std::list<llvm::PATypeInfo>::iterator I = $3->begin(),
E = $3->end(); I != E; ++I) {
Elements.push_back(I->PAT->get());
$$.S.add(I->S);
delete I->PAT;
}
$$.PAT = new PATypeHolder(HandleUpRefs(StructType::get(Elements, true),
$$.S));
delete $3;
}
| '<' '{' '}' '>' { // Empty packed structure type?
$$.PAT = new PATypeHolder(StructType::get(std::vector<const Type*>(),true));
$$.S.makeComposite();
}
| UpRTypes '*' { // Pointer type?
if ($1.PAT->get() == Type::LabelTy)
error("Cannot form a pointer to a basic block");
$$.S.makeComposite($1.S);
$$.PAT = new PATypeHolder(HandleUpRefs(PointerType::get($1.PAT->get()),
$$.S));
delete $1.PAT;
}
;
// TypeList - Used for struct declarations and as a basis for function type
// declaration type lists
//
TypeListI
: UpRTypes {
$$ = new std::list<PATypeInfo>();
$$->push_back($1);
}
| TypeListI ',' UpRTypes {
($$=$1)->push_back($3);
}
;
// ArgTypeList - List of types for a function type declaration...
ArgTypeListI
: TypeListI
| TypeListI ',' DOTDOTDOT {
PATypeInfo VoidTI;
VoidTI.PAT = new PATypeHolder(Type::VoidTy);
VoidTI.S.makeSignless();
($$=$1)->push_back(VoidTI);
}
| DOTDOTDOT {
$$ = new std::list<PATypeInfo>();
PATypeInfo VoidTI;
VoidTI.PAT = new PATypeHolder(Type::VoidTy);
VoidTI.S.makeSignless();
$$->push_back(VoidTI);
}
| /*empty*/ {
$$ = new std::list<PATypeInfo>();
}
;
// ConstVal - The various declarations that go into the constant pool. This
// production is used ONLY to represent constants that show up AFTER a 'const',
// 'constant' or 'global' token at global scope. Constants that can be inlined
// into other expressions (such as integers and constexprs) are handled by the
// ResolvedVal, ValueRef and ConstValueRef productions.
//
ConstVal
: Types '[' ConstVector ']' { // Nonempty unsized arr
const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
if (ATy == 0)
error("Cannot make array constant with type: '" +
$1.PAT->get()->getDescription() + "'");
const Type *ETy = ATy->getElementType();
int NumElements = ATy->getNumElements();
// Verify that we have the correct size...
if (NumElements != -1 && NumElements != (int)$3->size())
error("Type mismatch: constant sized array initialized with " +
utostr($3->size()) + " arguments, but has size of " +
itostr(NumElements) + "");
// Verify all elements are correct type!
std::vector<Constant*> Elems;
for (unsigned i = 0; i < $3->size(); i++) {
Constant *C = (*$3)[i].C;
const Type* ValTy = C->getType();
if (ETy != ValTy)
error("Element #" + utostr(i) + " is not of type '" +
ETy->getDescription() +"' as required!\nIt is of type '"+
ValTy->getDescription() + "'");
Elems.push_back(C);
}
$$.C = ConstantArray::get(ATy, Elems);
$$.S.copy($1.S);
delete $1.PAT;
delete $3;
}
| Types '[' ']' {
const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
if (ATy == 0)
error("Cannot make array constant with type: '" +
$1.PAT->get()->getDescription() + "'");
int NumElements = ATy->getNumElements();
if (NumElements != -1 && NumElements != 0)
error("Type mismatch: constant sized array initialized with 0"
" arguments, but has size of " + itostr(NumElements) +"");
$$.C = ConstantArray::get(ATy, std::vector<Constant*>());
$$.S.copy($1.S);
delete $1.PAT;
}
| Types 'c' STRINGCONSTANT {
const ArrayType *ATy = dyn_cast<ArrayType>($1.PAT->get());
if (ATy == 0)
error("Cannot make array constant with type: '" +
$1.PAT->get()->getDescription() + "'");
int NumElements = ATy->getNumElements();
const Type *ETy = dyn_cast<IntegerType>(ATy->getElementType());
if (!ETy || cast<IntegerType>(ETy)->getBitWidth() != 8)
error("String arrays require type i8, not '" + ETy->getDescription() +
"'");
char *EndStr = UnEscapeLexed($3, true);
if (NumElements != -1 && NumElements != (EndStr-$3))
error("Can't build string constant of size " +
itostr((int)(EndStr-$3)) + " when array has size " +
itostr(NumElements) + "");
std::vector<Constant*> Vals;
for (char *C = (char *)$3; C != (char *)EndStr; ++C)
Vals.push_back(ConstantInt::get(ETy, *C));
free($3);
$$.C = ConstantArray::get(ATy, Vals);
$$.S.copy($1.S);
delete $1.PAT;
}
| Types '<' ConstVector '>' { // Nonempty unsized arr
const VectorType *PTy = dyn_cast<VectorType>($1.PAT->get());
if (PTy == 0)
error("Cannot make packed constant with type: '" +
$1.PAT->get()->getDescription() + "'");
const Type *ETy = PTy->getElementType();
int NumElements = PTy->getNumElements();
// Verify that we have the correct size...
if (NumElements != -1 && NumElements != (int)$3->size())
error("Type mismatch: constant sized packed initialized with " +
utostr($3->size()) + " arguments, but has size of " +
itostr(NumElements) + "");
// Verify all elements are correct type!
std::vector<Constant*> Elems;
for (unsigned i = 0; i < $3->size(); i++) {
Constant *C = (*$3)[i].C;
const Type* ValTy = C->getType();
if (ETy != ValTy)
error("Element #" + utostr(i) + " is not of type '" +
ETy->getDescription() +"' as required!\nIt is of type '"+
ValTy->getDescription() + "'");
Elems.push_back(C);
}
$$.C = ConstantVector::get(PTy, Elems);
$$.S.copy($1.S);
delete $1.PAT;
delete $3;
}
| Types '{' ConstVector '}' {
const StructType *STy = dyn_cast<StructType>($1.PAT->get());
if (STy == 0)
error("Cannot make struct constant with type: '" +
$1.PAT->get()->getDescription() + "'");
if ($3->size() != STy->getNumContainedTypes())
error("Illegal number of initializers for structure type");
// Check to ensure that constants are compatible with the type initializer!
std::vector<Constant*> Fields;
for (unsigned i = 0, e = $3->size(); i != e; ++i) {
Constant *C = (*$3)[i].C;
if (C->getType() != STy->getElementType(i))
error("Expected type '" + STy->getElementType(i)->getDescription() +
"' for element #" + utostr(i) + " of structure initializer");
Fields.push_back(C);
}
$$.C = ConstantStruct::get(STy, Fields);
$$.S.copy($1.S);
delete $1.PAT;
delete $3;
}
| Types '{' '}' {
const StructType *STy = dyn_cast<StructType>($1.PAT->get());
if (STy == 0)
error("Cannot make struct constant with type: '" +
$1.PAT->get()->getDescription() + "'");
if (STy->getNumContainedTypes() != 0)
error("Illegal number of initializers for structure type");
$$.C = ConstantStruct::get(STy, std::vector<Constant*>());
$$.S.copy($1.S);
delete $1.PAT;
}
| Types '<' '{' ConstVector '}' '>' {
const StructType *STy = dyn_cast<StructType>($1.PAT->get());
if (STy == 0)
error("Cannot make packed struct constant with type: '" +
$1.PAT->get()->getDescription() + "'");
if ($4->size() != STy->getNumContainedTypes())
error("Illegal number of initializers for packed structure type");
// Check to ensure that constants are compatible with the type initializer!
std::vector<Constant*> Fields;
for (unsigned i = 0, e = $4->size(); i != e; ++i) {
Constant *C = (*$4)[i].C;
if (C->getType() != STy->getElementType(i))
error("Expected type '" + STy->getElementType(i)->getDescription() +
"' for element #" + utostr(i) + " of packed struct initializer");
Fields.push_back(C);
}
$$.C = ConstantStruct::get(STy, Fields);
$$.S.copy($1.S);
delete $1.PAT;
delete $4;
}
| Types '<' '{' '}' '>' {
const StructType *STy = dyn_cast<StructType>($1.PAT->get());
if (STy == 0)
error("Cannot make packed struct constant with type: '" +
$1.PAT->get()->getDescription() + "'");
if (STy->getNumContainedTypes() != 0)
error("Illegal number of initializers for packed structure type");
$$.C = ConstantStruct::get(STy, std::vector<Constant*>());
$$.S.copy($1.S);
delete $1.PAT;
}
| Types NULL_TOK {
const PointerType *PTy = dyn_cast<PointerType>($1.PAT->get());
if (PTy == 0)
error("Cannot make null pointer constant with type: '" +
$1.PAT->get()->getDescription() + "'");
$$.C = ConstantPointerNull::get(PTy);
$$.S.copy($1.S);
delete $1.PAT;
}
| Types UNDEF {
$$.C = UndefValue::get($1.PAT->get());
$$.S.copy($1.S);
delete $1.PAT;
}
| Types SymbolicValueRef {
const PointerType *Ty = dyn_cast<PointerType>($1.PAT->get());
if (Ty == 0)
error("Global const reference must be a pointer type, not" +
$1.PAT->get()->getDescription());
// ConstExprs can exist in the body of a function, thus creating
// GlobalValues whenever they refer to a variable. Because we are in
// the context of a function, getExistingValue will search the functions
// symbol table instead of the module symbol table for the global symbol,
// which throws things all off. To get around this, we just tell
// getExistingValue that we are at global scope here.
//
Function *SavedCurFn = CurFun.CurrentFunction;
CurFun.CurrentFunction = 0;
$2.S.copy($1.S);
Value *V = getExistingValue(Ty, $2);
CurFun.CurrentFunction = SavedCurFn;
// If this is an initializer for a constant pointer, which is referencing a
// (currently) undefined variable, create a stub now that shall be replaced
// in the future with the right type of variable.
//
if (V == 0) {
assert(isa<PointerType>(Ty) && "Globals may only be used as pointers");
const PointerType *PT = cast<PointerType>(Ty);
// First check to see if the forward references value is already created!
PerModuleInfo::GlobalRefsType::iterator I =
CurModule.GlobalRefs.find(std::make_pair(PT, $2));
if (I != CurModule.GlobalRefs.end()) {
V = I->second; // Placeholder already exists, use it...
$2.destroy();
} else {
std::string Name;
if ($2.Type == ValID::NameVal) Name = $2.Name;
// Create the forward referenced global.
GlobalValue *GV;
if (const FunctionType *FTy =
dyn_cast<FunctionType>(PT->getElementType())) {
GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
CurModule.CurrentModule);
} else {
GV = new GlobalVariable(PT->getElementType(), false,
GlobalValue::ExternalLinkage, 0,
Name, CurModule.CurrentModule);
}
// Keep track of the fact that we have a forward ref to recycle it
CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
V = GV;
}
}
$$.C = cast<GlobalValue>(V);
$$.S.copy($1.S);
delete $1.PAT; // Free the type handle
}
| Types ConstExpr {
if ($1.PAT->get() != $2.C->getType())
error("Mismatched types for constant expression");
$$ = $2;
$$.S.copy($1.S);
delete $1.PAT;
}
| Types ZEROINITIALIZER {
const Type *Ty = $1.PAT->get();
if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
error("Cannot create a null initialized value of this type");
$$.C = Constant::getNullValue(Ty);
$$.S.copy($1.S);
delete $1.PAT;
}
| SIntType EINT64VAL { // integral constants
const Type *Ty = $1.T;
if (!ConstantInt::isValueValidForType(Ty, $2))
error("Constant value doesn't fit in type");
$$.C = ConstantInt::get(Ty, $2);
$$.S.makeSigned();
}
| UIntType EUINT64VAL { // integral constants
const Type *Ty = $1.T;
if (!ConstantInt::isValueValidForType(Ty, $2))
error("Constant value doesn't fit in type");
$$.C = ConstantInt::get(Ty, $2);
$$.S.makeUnsigned();
}
| BOOL TRUETOK { // Boolean constants
$$.C = ConstantInt::get(Type::Int1Ty, true);
$$.S.makeUnsigned();
}
| BOOL FALSETOK { // Boolean constants
$$.C = ConstantInt::get(Type::Int1Ty, false);
$$.S.makeUnsigned();
}
| FPType FPVAL { // Float & Double constants
if (!ConstantFP::isValueValidForType($1.T, *$2))
error("Floating point constant invalid for type");
// Lexer has no type info, so builds all FP constants as double.
// Fix this here.
if ($1.T==Type::FloatTy)
$2->convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven);
$$.C = ConstantFP::get($1.T, *$2);
delete $2;
$$.S.makeSignless();
}
;
ConstExpr
: CastOps '(' ConstVal TO Types ')' {
const Type* SrcTy = $3.C->getType();
const Type* DstTy = $5.PAT->get();
Signedness SrcSign($3.S);
Signedness DstSign($5.S);
if (!SrcTy->isFirstClassType())
error("cast constant expression from a non-primitive type: '" +
SrcTy->getDescription() + "'");
if (!DstTy->isFirstClassType())
error("cast constant expression to a non-primitive type: '" +
DstTy->getDescription() + "'");
$$.C = cast<Constant>(getCast($1, $3.C, SrcSign, DstTy, DstSign));
$$.S.copy(DstSign);
delete $5.PAT;
}
| GETELEMENTPTR '(' ConstVal IndexList ')' {
const Type *Ty = $3.C->getType();
if (!isa<PointerType>(Ty))
error("GetElementPtr requires a pointer operand");
std::vector<Constant*> CIndices;
upgradeGEPCEIndices($3.C->getType(), $4, CIndices);
delete $4;
$$.C = ConstantExpr::getGetElementPtr($3.C, &CIndices[0], CIndices.size());
$$.S.copy(getElementSign($3, CIndices));
}
| SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
if (!$3.C->getType()->isInteger() ||
cast<IntegerType>($3.C->getType())->getBitWidth() != 1)
error("Select condition must be bool type");
if ($5.C->getType() != $7.C->getType())
error("Select operand types must match");
$$.C = ConstantExpr::getSelect($3.C, $5.C, $7.C);
$$.S.copy($5.S);
}
| ArithmeticOps '(' ConstVal ',' ConstVal ')' {
const Type *Ty = $3.C->getType();
if (Ty != $5.C->getType())
error("Binary operator types must match");
// First, make sure we're dealing with the right opcode by upgrading from
// obsolete versions.
Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
// HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
// To retain backward compatibility with these early compilers, we emit a
// cast to the appropriate integer type automatically if we are in the
// broken case. See PR424 for more information.
if (!isa<PointerType>(Ty)) {
$$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
} else {
const Type *IntPtrTy = 0;
switch (CurModule.CurrentModule->getPointerSize()) {
case Module::Pointer32: IntPtrTy = Type::Int32Ty; break;
case Module::Pointer64: IntPtrTy = Type::Int64Ty; break;
default: error("invalid pointer binary constant expr");
}
$$.C = ConstantExpr::get(Opcode,
ConstantExpr::getCast(Instruction::PtrToInt, $3.C, IntPtrTy),
ConstantExpr::getCast(Instruction::PtrToInt, $5.C, IntPtrTy));
$$.C = ConstantExpr::getCast(Instruction::IntToPtr, $$.C, Ty);
}
$$.S.copy($3.S);
}
| LogicalOps '(' ConstVal ',' ConstVal ')' {
const Type* Ty = $3.C->getType();
if (Ty != $5.C->getType())
error("Logical operator types must match");
if (!Ty->isInteger()) {
if (!isa<VectorType>(Ty) ||
!cast<VectorType>(Ty)->getElementType()->isInteger())
error("Logical operator requires integer operands");
}
Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $3.S);
$$.C = ConstantExpr::get(Opcode, $3.C, $5.C);
$$.S.copy($3.S);
}
| SetCondOps '(' ConstVal ',' ConstVal ')' {
const Type* Ty = $3.C->getType();
if (Ty != $5.C->getType())
error("setcc operand types must match");
unsigned short pred;
Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $3.S);
$$.C = ConstantExpr::getCompare(Opcode, $3.C, $5.C);
$$.S.makeUnsigned();
}
| ICMP IPredicates '(' ConstVal ',' ConstVal ')' {
if ($4.C->getType() != $6.C->getType())
error("icmp operand types must match");
$$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
$$.S.makeUnsigned();
}
| FCMP FPredicates '(' ConstVal ',' ConstVal ')' {
if ($4.C->getType() != $6.C->getType())
error("fcmp operand types must match");
$$.C = ConstantExpr::getCompare($2, $4.C, $6.C);
$$.S.makeUnsigned();
}
| ShiftOps '(' ConstVal ',' ConstVal ')' {
if (!$5.C->getType()->isInteger() ||
cast<IntegerType>($5.C->getType())->getBitWidth() != 8)
error("Shift count for shift constant must be unsigned byte");
const Type* Ty = $3.C->getType();
if (!$3.C->getType()->isInteger())
error("Shift constant expression requires integer operand");
Constant *ShiftAmt = ConstantExpr::getZExt($5.C, Ty);
$$.C = ConstantExpr::get(getBinaryOp($1, Ty, $3.S), $3.C, ShiftAmt);
$$.S.copy($3.S);
}
| EXTRACTELEMENT '(' ConstVal ',' ConstVal ')' {
if (!ExtractElementInst::isValidOperands($3.C, $5.C))
error("Invalid extractelement operands");
$$.C = ConstantExpr::getExtractElement($3.C, $5.C);
$$.S.copy($3.S.get(0));
}
| INSERTELEMENT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
if (!InsertElementInst::isValidOperands($3.C, $5.C, $7.C))
error("Invalid insertelement operands");
$$.C = ConstantExpr::getInsertElement($3.C, $5.C, $7.C);
$$.S.copy($3.S);
}
| SHUFFLEVECTOR '(' ConstVal ',' ConstVal ',' ConstVal ')' {
if (!ShuffleVectorInst::isValidOperands($3.C, $5.C, $7.C))
error("Invalid shufflevector operands");
$$.C = ConstantExpr::getShuffleVector($3.C, $5.C, $7.C);
$$.S.copy($3.S);
}
;
// ConstVector - A list of comma separated constants.
ConstVector
: ConstVector ',' ConstVal { ($$ = $1)->push_back($3); }
| ConstVal {
$$ = new std::vector<ConstInfo>();
$$->push_back($1);
}
;
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
GlobalType
: GLOBAL { $$ = false; }
| CONSTANT { $$ = true; }
;
//===----------------------------------------------------------------------===//
// Rules to match Modules
//===----------------------------------------------------------------------===//
// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module
: FunctionList {
$$ = ParserResult = $1;
CurModule.ModuleDone();
}
;
// FunctionList - A list of functions, preceeded by a constant pool.
//
FunctionList
: FunctionList Function { $$ = $1; CurFun.FunctionDone(); }
| FunctionList FunctionProto { $$ = $1; }
| FunctionList MODULE ASM_TOK AsmBlock { $$ = $1; }
| FunctionList IMPLEMENTATION { $$ = $1; }
| ConstPool {
$$ = CurModule.CurrentModule;
// Emit an error if there are any unresolved types left.
if (!CurModule.LateResolveTypes.empty()) {
const ValID &DID = CurModule.LateResolveTypes.begin()->first;
if (DID.Type == ValID::NameVal) {
error("Reference to an undefined type: '"+DID.getName() + "'");
} else {
error("Reference to an undefined type: #" + itostr(DID.Num));
}
}
}
;
// ConstPool - Constants with optional names assigned to them.
ConstPool
: ConstPool OptAssign TYPE TypesV {
// Eagerly resolve types. This is not an optimization, this is a
// requirement that is due to the fact that we could have this:
//
// %list = type { %list * }
// %list = type { %list * } ; repeated type decl
//
// If types are not resolved eagerly, then the two types will not be
// determined to be the same type!
//
ResolveTypeTo($2, $4.PAT->get(), $4.S);
if (!setTypeName($4, $2) && !$2) {
// If this is a numbered type that is not a redefinition, add it to the
// slot table.
CurModule.Types.push_back($4.PAT->get());
CurModule.TypeSigns.push_back($4.S);
}
delete $4.PAT;
}
| ConstPool FunctionProto { // Function prototypes can be in const pool
}
| ConstPool MODULE ASM_TOK AsmBlock { // Asm blocks can be in the const pool
}
| ConstPool OptAssign OptLinkage GlobalType ConstVal {
if ($5.C == 0)
error("Global value initializer is not a constant");
CurGV = ParseGlobalVariable($2, $3, $4, $5.C->getType(), $5.C, $5.S);
} GlobalVarAttributes {
CurGV = 0;
}
| ConstPool OptAssign EXTERNAL GlobalType Types {
const Type *Ty = $5.PAT->get();
CurGV = ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, Ty, 0,
$5.S);
delete $5.PAT;
} GlobalVarAttributes {
CurGV = 0;
}
| ConstPool OptAssign DLLIMPORT GlobalType Types {
const Type *Ty = $5.PAT->get();
CurGV = ParseGlobalVariable($2, GlobalValue::DLLImportLinkage, $4, Ty, 0,
$5.S);
delete $5.PAT;
} GlobalVarAttributes {
CurGV = 0;
}
| ConstPool OptAssign EXTERN_WEAK GlobalType Types {
const Type *Ty = $5.PAT->get();
CurGV =
ParseGlobalVariable($2, GlobalValue::ExternalWeakLinkage, $4, Ty, 0,
$5.S);
delete $5.PAT;
} GlobalVarAttributes {
CurGV = 0;
}
| ConstPool TARGET TargetDefinition {
}
| ConstPool DEPLIBS '=' LibrariesDefinition {
}
| /* empty: end of list */ {
}
;
AsmBlock
: STRINGCONSTANT {
const std::string &AsmSoFar = CurModule.CurrentModule->getModuleInlineAsm();
char *EndStr = UnEscapeLexed($1, true);
std::string NewAsm($1, EndStr);
free($1);
if (AsmSoFar.empty())
CurModule.CurrentModule->setModuleInlineAsm(NewAsm);
else
CurModule.CurrentModule->setModuleInlineAsm(AsmSoFar+"\n"+NewAsm);
}
;
BigOrLittle
: BIG { $$ = Module::BigEndian; }
| LITTLE { $$ = Module::LittleEndian; }
;
TargetDefinition
: ENDIAN '=' BigOrLittle {
CurModule.setEndianness($3);
}
| POINTERSIZE '=' EUINT64VAL {
if ($3 == 32)
CurModule.setPointerSize(Module::Pointer32);
else if ($3 == 64)
CurModule.setPointerSize(Module::Pointer64);
else
error("Invalid pointer size: '" + utostr($3) + "'");
}
| TRIPLE '=' STRINGCONSTANT {
CurModule.CurrentModule->setTargetTriple($3);
free($3);
}
| DATALAYOUT '=' STRINGCONSTANT {
CurModule.CurrentModule->setDataLayout($3);
free($3);
}
;
LibrariesDefinition
: '[' LibList ']'
;
LibList
: LibList ',' STRINGCONSTANT {
CurModule.CurrentModule->addLibrary($3);
free($3);
}
| STRINGCONSTANT {
CurModule.CurrentModule->addLibrary($1);
free($1);
}
| /* empty: end of list */ { }
;
//===----------------------------------------------------------------------===//
// Rules to match Function Headers
//===----------------------------------------------------------------------===//
Name
: VAR_ID | STRINGCONSTANT
;
OptName
: Name
| /*empty*/ { $$ = 0; }
;
ArgVal
: Types OptName {
if ($1.PAT->get() == Type::VoidTy)
error("void typed arguments are invalid");
$$ = new std::pair<PATypeInfo, char*>($1, $2);
}
;
ArgListH
: ArgListH ',' ArgVal {
$$ = $1;
$$->push_back(*$3);
delete $3;
}
| ArgVal {
$$ = new std::vector<std::pair<PATypeInfo,char*> >();
$$->push_back(*$1);
delete $1;
}
;
ArgList
: ArgListH { $$ = $1; }
| ArgListH ',' DOTDOTDOT {
$$ = $1;
PATypeInfo VoidTI;
VoidTI.PAT = new PATypeHolder(Type::VoidTy);
VoidTI.S.makeSignless();
$$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
}
| DOTDOTDOT {
$$ = new std::vector<std::pair<PATypeInfo,char*> >();
PATypeInfo VoidTI;
VoidTI.PAT = new PATypeHolder(Type::VoidTy);
VoidTI.S.makeSignless();
$$->push_back(std::pair<PATypeInfo, char*>(VoidTI, 0));
}
| /* empty */ { $$ = 0; }
;
FunctionHeaderH
: OptCallingConv TypesV Name '(' ArgList ')' OptSection OptAlign {
UnEscapeLexed($3);
std::string FunctionName($3);
free($3); // Free strdup'd memory!
const Type* RetTy = $2.PAT->get();
if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
error("LLVM functions cannot return aggregate types");
Signedness FTySign;
FTySign.makeComposite($2.S);
std::vector<const Type*> ParamTyList;
// In LLVM 2.0 the signatures of three varargs intrinsics changed to take
// i8*. We check here for those names and override the parameter list
// types to ensure the prototype is correct.
if (FunctionName == "llvm.va_start" || FunctionName == "llvm.va_end") {
ParamTyList.push_back(PointerType::get(Type::Int8Ty));
} else if (FunctionName == "llvm.va_copy") {
ParamTyList.push_back(PointerType::get(Type::Int8Ty));
ParamTyList.push_back(PointerType::get(Type::Int8Ty));
} else if ($5) { // If there are arguments...
for (std::vector<std::pair<PATypeInfo,char*> >::iterator
I = $5->begin(), E = $5->end(); I != E; ++I) {
const Type *Ty = I->first.PAT->get();
ParamTyList.push_back(Ty);
FTySign.add(I->first.S);
}
}
bool isVarArg = ParamTyList.size() && ParamTyList.back() == Type::VoidTy;
if (isVarArg)
ParamTyList.pop_back();
const FunctionType *FT = FunctionType::get(RetTy, ParamTyList, isVarArg);
const PointerType *PFT = PointerType::get(FT);
delete $2.PAT;
ValID ID;
if (!FunctionName.empty()) {
ID = ValID::create((char*)FunctionName.c_str());
} else {
ID = ValID::create((int)CurModule.Values[PFT].size());
}
ID.S.makeComposite(FTySign);
Function *Fn = 0;
Module* M = CurModule.CurrentModule;
// See if this function was forward referenced. If so, recycle the object.
if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
// Move the function to the end of the list, from whereever it was
// previously inserted.
Fn = cast<Function>(FWRef);
M->getFunctionList().remove(Fn);
M->getFunctionList().push_back(Fn);
} else if (!FunctionName.empty()) {
GlobalValue *Conflict = M->getFunction(FunctionName);
if (!Conflict)
Conflict = M->getNamedGlobal(FunctionName);
if (Conflict && PFT == Conflict->getType()) {
if (!CurFun.isDeclare && !Conflict->isDeclaration()) {
// We have two function definitions that conflict, same type, same
// name. We should really check to make sure that this is the result
// of integer type planes collapsing and generate an error if it is
// not, but we'll just rename on the assumption that it is. However,
// let's do it intelligently and rename the internal linkage one
// if there is one.
std::string NewName(makeNameUnique(FunctionName));
if (Conflict->hasInternalLinkage()) {
Conflict->setName(NewName);
RenameMapKey Key =
makeRenameMapKey(FunctionName, Conflict->getType(), ID.S);
CurModule.RenameMap[Key] = NewName;
Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
InsertValue(Fn, CurModule.Values);
} else {
Fn = new Function(FT, CurFun.Linkage, NewName, M);
InsertValue(Fn, CurModule.Values);
RenameMapKey Key =
makeRenameMapKey(FunctionName, PFT, ID.S);
CurModule.RenameMap[Key] = NewName;
}
} else {
// If they are not both definitions, then just use the function we
// found since the types are the same.
Fn = cast<Function>(Conflict);
// Make sure to strip off any argument names so we can't get
// conflicts.
if (Fn->isDeclaration())
for (Function::arg_iterator AI = Fn->arg_begin(),
AE = Fn->arg_end(); AI != AE; ++AI)
AI->setName("");
}
} else if (Conflict) {
// We have two globals with the same name and different types.
// Previously, this was permitted because the symbol table had
// "type planes" and names only needed to be distinct within a
// type plane. After PR411 was fixed, this is no loner the case.
// To resolve this we must rename one of the two.
if (Conflict->hasInternalLinkage()) {
// We can safely rename the Conflict.
RenameMapKey Key =
makeRenameMapKey(Conflict->getName(), Conflict->getType(),
CurModule.NamedValueSigns[Conflict->getName()]);
Conflict->setName(makeNameUnique(Conflict->getName()));
CurModule.RenameMap[Key] = Conflict->getName();
Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
InsertValue(Fn, CurModule.Values);
} else {
// We can't quietly rename either of these things, but we must
// rename one of them. Only if the function's linkage is internal can
// we forgo a warning message about the renamed function.
std::string NewName = makeNameUnique(FunctionName);
if (CurFun.Linkage != GlobalValue::InternalLinkage) {
warning("Renaming function '" + FunctionName + "' as '" + NewName +
"' may cause linkage errors");
}
// Elect to rename the thing we're now defining.
Fn = new Function(FT, CurFun.Linkage, NewName, M);
InsertValue(Fn, CurModule.Values);
RenameMapKey Key = makeRenameMapKey(FunctionName, PFT, ID.S);
CurModule.RenameMap[Key] = NewName;
}
} else {
// There's no conflict, just define the function
Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
InsertValue(Fn, CurModule.Values);
}
} else {
// There's no conflict, just define the function
Fn = new Function(FT, CurFun.Linkage, FunctionName, M);
InsertValue(Fn, CurModule.Values);
}
CurFun.FunctionStart(Fn);
if (CurFun.isDeclare) {
// If we have declaration, always overwrite linkage. This will allow us
// to correctly handle cases, when pointer to function is passed as
// argument to another function.
Fn->setLinkage(CurFun.Linkage);
}
Fn->setCallingConv(upgradeCallingConv($1));
Fn->setAlignment($8);
if ($7) {
Fn->setSection($7);
free($7);
}
// Convert the CSRet calling convention into the corresponding parameter
// attribute.
if ($1 == OldCallingConv::CSRet) {
ParamAttrsVector Attrs;
ParamAttrsWithIndex PAWI;
PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg
Attrs.push_back(PAWI);
Fn->setParamAttrs(ParamAttrsList::get(Attrs));
}
// Add all of the arguments we parsed to the function...
if ($5) { // Is null if empty...
if (isVarArg) { // Nuke the last entry
assert($5->back().first.PAT->get() == Type::VoidTy &&
$5->back().second == 0 && "Not a varargs marker");
delete $5->back().first.PAT;
$5->pop_back(); // Delete the last entry
}
Function::arg_iterator ArgIt = Fn->arg_begin();
Function::arg_iterator ArgEnd = Fn->arg_end();
std::vector<std::pair<PATypeInfo,char*> >::iterator I = $5->begin();
std::vector<std::pair<PATypeInfo,char*> >::iterator E = $5->end();
for ( ; I != E && ArgIt != ArgEnd; ++I, ++ArgIt) {
delete I->first.PAT; // Delete the typeholder...
ValueInfo VI; VI.V = ArgIt; VI.S.copy(I->first.S);
setValueName(VI, I->second); // Insert arg into symtab...
InsertValue(ArgIt);
}
delete $5; // We're now done with the argument list
}
lastCallingConv = OldCallingConv::C;
}
;
BEGIN
: BEGINTOK | '{' // Allow BEGIN or '{' to start a function
;
FunctionHeader
: OptLinkage { CurFun.Linkage = $1; } FunctionHeaderH BEGIN {
$$ = CurFun.CurrentFunction;
// Make sure that we keep track of the linkage type even if there was a
// previous "declare".
$$->setLinkage($1);
}
;
END
: ENDTOK | '}' // Allow end of '}' to end a function
;
Function
: BasicBlockList END {
$$ = $1;
};
FnDeclareLinkage
: /*default*/ { $$ = GlobalValue::ExternalLinkage; }
| DLLIMPORT { $$ = GlobalValue::DLLImportLinkage; }
| EXTERN_WEAK { $$ = GlobalValue::ExternalWeakLinkage; }
;
FunctionProto
: DECLARE { CurFun.isDeclare = true; }
FnDeclareLinkage { CurFun.Linkage = $3; } FunctionHeaderH {
$$ = CurFun.CurrentFunction;
CurFun.FunctionDone();
}
;
//===----------------------------------------------------------------------===//
// Rules to match Basic Blocks
//===----------------------------------------------------------------------===//
OptSideEffect
: /* empty */ { $$ = false; }
| SIDEEFFECT { $$ = true; }
;
ConstValueRef
// A reference to a direct constant
: ESINT64VAL { $$ = ValID::create($1); }
| EUINT64VAL { $$ = ValID::create($1); }
| FPVAL { $$ = ValID::create($1); }
| TRUETOK {
$$ = ValID::create(ConstantInt::get(Type::Int1Ty, true));
$$.S.makeUnsigned();
}
| FALSETOK {
$$ = ValID::create(ConstantInt::get(Type::Int1Ty, false));
$$.S.makeUnsigned();
}
| NULL_TOK { $$ = ValID::createNull(); }
| UNDEF { $$ = ValID::createUndef(); }
| ZEROINITIALIZER { $$ = ValID::createZeroInit(); }
| '<' ConstVector '>' { // Nonempty unsized packed vector
const Type *ETy = (*$2)[0].C->getType();
int NumElements = $2->size();
VectorType* pt = VectorType::get(ETy, NumElements);
$$.S.makeComposite((*$2)[0].S);
PATypeHolder* PTy = new PATypeHolder(HandleUpRefs(pt, $$.S));
// Verify all elements are correct type!
std::vector<Constant*> Elems;
for (unsigned i = 0; i < $2->size(); i++) {
Constant *C = (*$2)[i].C;
const Type *CTy = C->getType();
if (ETy != CTy)
error("Element #" + utostr(i) + " is not of type '" +
ETy->getDescription() +"' as required!\nIt is of type '" +
CTy->getDescription() + "'");
Elems.push_back(C);
}
$$ = ValID::create(ConstantVector::get(pt, Elems));
delete PTy; delete $2;
}
| ConstExpr {
$$ = ValID::create($1.C);
$$.S.copy($1.S);
}
| ASM_TOK OptSideEffect STRINGCONSTANT ',' STRINGCONSTANT {
char *End = UnEscapeLexed($3, true);
std::string AsmStr = std::string($3, End);
End = UnEscapeLexed($5, true);
std::string Constraints = std::string($5, End);
$$ = ValID::createInlineAsm(AsmStr, Constraints, $2);
free($3);
free($5);
}
;
// SymbolicValueRef - Reference to one of two ways of symbolically refering to // another value.
//
SymbolicValueRef
: INTVAL { $$ = ValID::create($1); $$.S.makeSignless(); }
| Name { $$ = ValID::create($1); $$.S.makeSignless(); }
;
// ValueRef - A reference to a definition... either constant or symbolic
ValueRef
: SymbolicValueRef | ConstValueRef
;
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal
: Types ValueRef {
const Type *Ty = $1.PAT->get();
$2.S.copy($1.S);
$$.V = getVal(Ty, $2);
$$.S.copy($1.S);
delete $1.PAT;
}
;
BasicBlockList
: BasicBlockList BasicBlock {
$$ = $1;
}
| FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
$$ = $1;
};
// Basic blocks are terminated by branching instructions:
// br, br/cc, switch, ret
//
BasicBlock
: InstructionList OptAssign BBTerminatorInst {
ValueInfo VI; VI.V = $3.TI; VI.S.copy($3.S);
setValueName(VI, $2);
InsertValue($3.TI);
$1->getInstList().push_back($3.TI);
InsertValue($1);
$$ = $1;
}
;
InstructionList
: InstructionList Inst {
if ($2.I)
$1->getInstList().push_back($2.I);
$$ = $1;
}
| /* empty */ {
$$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++),true);
// Make sure to move the basic block to the correct location in the
// function, instead of leaving it inserted wherever it was first
// referenced.
Function::BasicBlockListType &BBL =
CurFun.CurrentFunction->getBasicBlockList();
BBL.splice(BBL.end(), BBL, $$);
}
| LABELSTR {
$$ = CurBB = getBBVal(ValID::create($1), true);
// Make sure to move the basic block to the correct location in the
// function, instead of leaving it inserted wherever it was first
// referenced.
Function::BasicBlockListType &BBL =
CurFun.CurrentFunction->getBasicBlockList();
BBL.splice(BBL.end(), BBL, $$);
}
;
Unwind : UNWIND | EXCEPT;
BBTerminatorInst
: RET ResolvedVal { // Return with a result...
$$.TI = new ReturnInst($2.V);
$$.S.makeSignless();
}
| RET VOID { // Return with no result...
$$.TI = new ReturnInst();
$$.S.makeSignless();
}
| BR LABEL ValueRef { // Unconditional Branch...
BasicBlock* tmpBB = getBBVal($3);
$$.TI = new BranchInst(tmpBB);
$$.S.makeSignless();
} // Conditional Branch...
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
$6.S.makeSignless();
$9.S.makeSignless();
BasicBlock* tmpBBA = getBBVal($6);
BasicBlock* tmpBBB = getBBVal($9);
$3.S.makeUnsigned();
Value* tmpVal = getVal(Type::Int1Ty, $3);
$$.TI = new BranchInst(tmpBBA, tmpBBB, tmpVal);
$$.S.makeSignless();
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
$3.S.copy($2.S);
Value* tmpVal = getVal($2.T, $3);
$6.S.makeSignless();
BasicBlock* tmpBB = getBBVal($6);
SwitchInst *S = new SwitchInst(tmpVal, tmpBB, $8->size());
$$.TI = S;
$$.S.makeSignless();
std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
E = $8->end();
for (; I != E; ++I) {
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->first))
S->addCase(CI, I->second);
else
error("Switch case is constant, but not a simple integer");
}
delete $8;
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
$3.S.copy($2.S);
Value* tmpVal = getVal($2.T, $3);
$6.S.makeSignless();
BasicBlock* tmpBB = getBBVal($6);
SwitchInst *S = new SwitchInst(tmpVal, tmpBB, 0);
$$.TI = S;
$$.S.makeSignless();
}
| INVOKE OptCallingConv TypesV ValueRef '(' ValueRefListE ')'
TO LABEL ValueRef Unwind LABEL ValueRef {
const PointerType *PFTy;
const FunctionType *Ty;
Signedness FTySign;
if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
std::vector<const Type*> ParamTypes;
FTySign.makeComposite($3.S);
if ($6) {
for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
I != E; ++I) {
ParamTypes.push_back((*I).V->getType());
FTySign.add(I->S);
}
}
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
if (isVarArg) ParamTypes.pop_back();
Ty = FunctionType::get($3.PAT->get(), ParamTypes, isVarArg);
PFTy = PointerType::get(Ty);
$$.S.copy($3.S);
} else {
FTySign = $3.S;
// Get the signedness of the result type. $3 is the pointer to the
// function type so we get the 0th element to extract the function type,
// and then the 0th element again to get the result type.
$$.S.copy($3.S.get(0).get(0));
}
$4.S.makeComposite(FTySign);
Value *V = getVal(PFTy, $4); // Get the function we're calling...
BasicBlock *Normal = getBBVal($10);
BasicBlock *Except = getBBVal($13);
// Create the call node...
if (!$6) { // Has no arguments?
std::vector<Value*> Args;
$$.TI = new InvokeInst(V, Normal, Except, Args.begin(), Args.end());
} else { // Has arguments?
// Loop through FunctionType's arguments and ensure they are specified
// correctly!
//
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
std::vector<Value*> Args;
for (; ArgI != ArgE && I != E; ++ArgI, ++I) {
if ((*ArgI).V->getType() != *I)
error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
(*I)->getDescription() + "'");
Args.push_back((*ArgI).V);
}
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
error("Invalid number of parameters detected");
$$.TI = new InvokeInst(V, Normal, Except, Args.begin(), Args.end());
}
cast<InvokeInst>($$.TI)->setCallingConv(upgradeCallingConv($2));
if ($2 == OldCallingConv::CSRet) {
ParamAttrsVector Attrs;
ParamAttrsWithIndex PAWI;
PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg
Attrs.push_back(PAWI);
cast<InvokeInst>($$.TI)->setParamAttrs(ParamAttrsList::get(Attrs));
}
delete $3.PAT;
delete $6;
lastCallingConv = OldCallingConv::C;
}
| Unwind {
$$.TI = new UnwindInst();
$$.S.makeSignless();
}
| UNREACHABLE {
$$.TI = new UnreachableInst();
$$.S.makeSignless();
}
;
JumpTable
: JumpTable IntType ConstValueRef ',' LABEL ValueRef {
$$ = $1;
$3.S.copy($2.S);
Constant *V = cast<Constant>(getExistingValue($2.T, $3));
if (V == 0)
error("May only switch on a constant pool value");
$6.S.makeSignless();
BasicBlock* tmpBB = getBBVal($6);
$$->push_back(std::make_pair(V, tmpBB));
}
| IntType ConstValueRef ',' LABEL ValueRef {
$$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
$2.S.copy($1.S);
Constant *V = cast<Constant>(getExistingValue($1.T, $2));
if (V == 0)
error("May only switch on a constant pool value");
$5.S.makeSignless();
BasicBlock* tmpBB = getBBVal($5);
$$->push_back(std::make_pair(V, tmpBB));
}
;
Inst
: OptAssign InstVal {
bool omit = false;
if ($1)
if (BitCastInst *BCI = dyn_cast<BitCastInst>($2.I))
if (BCI->getSrcTy() == BCI->getDestTy() &&
BCI->getOperand(0)->getName() == $1)
// This is a useless bit cast causing a name redefinition. It is
// a bit cast from a type to the same type of an operand with the
// same name as the name we would give this instruction. Since this
// instruction results in no code generation, it is safe to omit
// the instruction. This situation can occur because of collapsed
// type planes. For example:
// %X = add int %Y, %Z
// %X = cast int %Y to uint
// After upgrade, this looks like:
// %X = add i32 %Y, %Z
// %X = bitcast i32 to i32
// The bitcast is clearly useless so we omit it.
omit = true;
if (omit) {
$$.I = 0;
$$.S.makeSignless();
} else {
ValueInfo VI; VI.V = $2.I; VI.S.copy($2.S);
setValueName(VI, $1);
InsertValue($2.I);
$$ = $2;
}
};
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
$$.P = new std::list<std::pair<Value*, BasicBlock*> >();
$$.S.copy($1.S);
$3.S.copy($1.S);
Value* tmpVal = getVal($1.PAT->get(), $3);
$5.S.makeSignless();
BasicBlock* tmpBB = getBBVal($5);
$$.P->push_back(std::make_pair(tmpVal, tmpBB));
delete $1.PAT;
}
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
$$ = $1;
$4.S.copy($1.S);
Value* tmpVal = getVal($1.P->front().first->getType(), $4);
$6.S.makeSignless();
BasicBlock* tmpBB = getBBVal($6);
$1.P->push_back(std::make_pair(tmpVal, tmpBB));
}
;
ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
$$ = new std::vector<ValueInfo>();
$$->push_back($1);
}
| ValueRefList ',' ResolvedVal {
$$ = $1;
$1->push_back($3);
};
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE
: ValueRefList
| /*empty*/ { $$ = 0; }
;
OptTailCall
: TAIL CALL {
$$ = true;
}
| CALL {
$$ = false;
}
;
InstVal
: ArithmeticOps Types ValueRef ',' ValueRef {
$3.S.copy($2.S);
$5.S.copy($2.S);
const Type* Ty = $2.PAT->get();
if (!Ty->isInteger() && !Ty->isFloatingPoint() && !isa<VectorType>(Ty))
error("Arithmetic operator requires integer, FP, or packed operands");
if (isa<VectorType>(Ty) &&
($1 == URemOp || $1 == SRemOp || $1 == FRemOp || $1 == RemOp))
error("Remainder not supported on vector types");
// Upgrade the opcode from obsolete versions before we do anything with it.
Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
Value* val1 = getVal(Ty, $3);
Value* val2 = getVal(Ty, $5);
$$.I = BinaryOperator::create(Opcode, val1, val2);
if ($$.I == 0)
error("binary operator returned null");
$$.S.copy($2.S);
delete $2.PAT;
}
| LogicalOps Types ValueRef ',' ValueRef {
$3.S.copy($2.S);
$5.S.copy($2.S);
const Type *Ty = $2.PAT->get();
if (!Ty->isInteger()) {
if (!isa<VectorType>(Ty) ||
!cast<VectorType>(Ty)->getElementType()->isInteger())
error("Logical operator requires integral operands");
}
Instruction::BinaryOps Opcode = getBinaryOp($1, Ty, $2.S);
Value* tmpVal1 = getVal(Ty, $3);
Value* tmpVal2 = getVal(Ty, $5);
$$.I = BinaryOperator::create(Opcode, tmpVal1, tmpVal2);
if ($$.I == 0)
error("binary operator returned null");
$$.S.copy($2.S);
delete $2.PAT;
}
| SetCondOps Types ValueRef ',' ValueRef {
$3.S.copy($2.S);
$5.S.copy($2.S);
const Type* Ty = $2.PAT->get();
if(isa<VectorType>(Ty))
error("VectorTypes currently not supported in setcc instructions");
unsigned short pred;
Instruction::OtherOps Opcode = getCompareOp($1, pred, Ty, $2.S);
Value* tmpVal1 = getVal(Ty, $3);
Value* tmpVal2 = getVal(Ty, $5);
$$.I = CmpInst::create(Opcode, pred, tmpVal1, tmpVal2);
if ($$.I == 0)
error("binary operator returned null");
$$.S.makeUnsigned();
delete $2.PAT;
}
| ICMP IPredicates Types ValueRef ',' ValueRef {
$4.S.copy($3.S);
$6.S.copy($3.S);
const Type *Ty = $3.PAT->get();
if (isa<VectorType>(Ty))
error("VectorTypes currently not supported in icmp instructions");
else if (!Ty->isInteger() && !isa<PointerType>(Ty))
error("icmp requires integer or pointer typed operands");
Value* tmpVal1 = getVal(Ty, $4);
Value* tmpVal2 = getVal(Ty, $6);
$$.I = new ICmpInst($2, tmpVal1, tmpVal2);
$$.S.makeUnsigned();
delete $3.PAT;
}
| FCMP FPredicates Types ValueRef ',' ValueRef {
$4.S.copy($3.S);
$6.S.copy($3.S);
const Type *Ty = $3.PAT->get();
if (isa<VectorType>(Ty))
error("VectorTypes currently not supported in fcmp instructions");
else if (!Ty->isFloatingPoint())
error("fcmp instruction requires floating point operands");
Value* tmpVal1 = getVal(Ty, $4);
Value* tmpVal2 = getVal(Ty, $6);
$$.I = new FCmpInst($2, tmpVal1, tmpVal2);
$$.S.makeUnsigned();
delete $3.PAT;
}
| NOT ResolvedVal {
warning("Use of obsolete 'not' instruction: Replacing with 'xor");
const Type *Ty = $2.V->getType();
Value *Ones = ConstantInt::getAllOnesValue(Ty);
if (Ones == 0)
error("Expected integral type for not instruction");
$$.I = BinaryOperator::create(Instruction::Xor, $2.V, Ones);
if ($$.I == 0)
error("Could not create a xor instruction");
$$.S.copy($2.S);
}
| ShiftOps ResolvedVal ',' ResolvedVal {
if (!$4.V->getType()->isInteger() ||
cast<IntegerType>($4.V->getType())->getBitWidth() != 8)
error("Shift amount must be int8");
const Type* Ty = $2.V->getType();
if (!Ty->isInteger())
error("Shift constant expression requires integer operand");
Value* ShiftAmt = 0;
if (cast<IntegerType>(Ty)->getBitWidth() > Type::Int8Ty->getBitWidth())
if (Constant *C = dyn_cast<Constant>($4.V))
ShiftAmt = ConstantExpr::getZExt(C, Ty);
else
ShiftAmt = new ZExtInst($4.V, Ty, makeNameUnique("shift"), CurBB);
else
ShiftAmt = $4.V;
$$.I = BinaryOperator::create(getBinaryOp($1, Ty, $2.S), $2.V, ShiftAmt);
$$.S.copy($2.S);
}
| CastOps ResolvedVal TO Types {
const Type *DstTy = $4.PAT->get();
if (!DstTy->isFirstClassType())
error("cast instruction to a non-primitive type: '" +
DstTy->getDescription() + "'");
$$.I = cast<Instruction>(getCast($1, $2.V, $2.S, DstTy, $4.S, true));
$$.S.copy($4.S);
delete $4.PAT;
}
| SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
if (!$2.V->getType()->isInteger() ||
cast<IntegerType>($2.V->getType())->getBitWidth() != 1)
error("select condition must be bool");
if ($4.V->getType() != $6.V->getType())
error("select value types should match");
$$.I = new SelectInst($2.V, $4.V, $6.V);
$$.S.copy($4.S);
}
| VAARG ResolvedVal ',' Types {
const Type *Ty = $4.PAT->get();
NewVarArgs = true;
$$.I = new VAArgInst($2.V, Ty);
$$.S.copy($4.S);
delete $4.PAT;
}
| VAARG_old ResolvedVal ',' Types {
const Type* ArgTy = $2.V->getType();
const Type* DstTy = $4.PAT->get();
ObsoleteVarArgs = true;
Function* NF = cast<Function>(CurModule.CurrentModule->
getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
//b = vaarg a, t ->
//foo = alloca 1 of t
//bar = vacopy a
//store bar -> foo
//b = vaarg foo, t
AllocaInst* foo = new AllocaInst(ArgTy, 0, "vaarg.fix");
CurBB->getInstList().push_back(foo);
CallInst* bar = new CallInst(NF, $2.V);
CurBB->getInstList().push_back(bar);
CurBB->getInstList().push_back(new StoreInst(bar, foo));
$$.I = new VAArgInst(foo, DstTy);
$$.S.copy($4.S);
delete $4.PAT;
}
| VANEXT_old ResolvedVal ',' Types {
const Type* ArgTy = $2.V->getType();
const Type* DstTy = $4.PAT->get();
ObsoleteVarArgs = true;
Function* NF = cast<Function>(CurModule.CurrentModule->
getOrInsertFunction("llvm.va_copy", ArgTy, ArgTy, (Type *)0));
//b = vanext a, t ->
//foo = alloca 1 of t
//bar = vacopy a
//store bar -> foo
//tmp = vaarg foo, t
//b = load foo
AllocaInst* foo = new AllocaInst(ArgTy, 0, "vanext.fix");
CurBB->getInstList().push_back(foo);
CallInst* bar = new CallInst(NF, $2.V);
CurBB->getInstList().push_back(bar);
CurBB->getInstList().push_back(new StoreInst(bar, foo));
Instruction* tmp = new VAArgInst(foo, DstTy);
CurBB->getInstList().push_back(tmp);
$$.I = new LoadInst(foo);
$$.S.copy($4.S);
delete $4.PAT;
}
| EXTRACTELEMENT ResolvedVal ',' ResolvedVal {
if (!ExtractElementInst::isValidOperands($2.V, $4.V))
error("Invalid extractelement operands");
$$.I = new ExtractElementInst($2.V, $4.V);
$$.S.copy($2.S.get(0));
}
| INSERTELEMENT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
if (!InsertElementInst::isValidOperands($2.V, $4.V, $6.V))
error("Invalid insertelement operands");
$$.I = new InsertElementInst($2.V, $4.V, $6.V);
$$.S.copy($2.S);
}
| SHUFFLEVECTOR ResolvedVal ',' ResolvedVal ',' ResolvedVal {
if (!ShuffleVectorInst::isValidOperands($2.V, $4.V, $6.V))
error("Invalid shufflevector operands");
$$.I = new ShuffleVectorInst($2.V, $4.V, $6.V);
$$.S.copy($2.S);
}
| PHI_TOK PHIList {
const Type *Ty = $2.P->front().first->getType();
if (!Ty->isFirstClassType())
error("PHI node operands must be of first class type");
PHINode *PHI = new PHINode(Ty);
PHI->reserveOperandSpace($2.P->size());
while ($2.P->begin() != $2.P->end()) {
if ($2.P->front().first->getType() != Ty)
error("All elements of a PHI node must be of the same type");
PHI->addIncoming($2.P->front().first, $2.P->front().second);
$2.P->pop_front();
}
$$.I = PHI;
$$.S.copy($2.S);
delete $2.P; // Free the list...
}
| OptTailCall OptCallingConv TypesV ValueRef '(' ValueRefListE ')' {
// Handle the short call syntax
const PointerType *PFTy;
const FunctionType *FTy;
Signedness FTySign;
if (!(PFTy = dyn_cast<PointerType>($3.PAT->get())) ||
!(FTy = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
std::vector<const Type*> ParamTypes;
FTySign.makeComposite($3.S);
if ($6) {
for (std::vector<ValueInfo>::iterator I = $6->begin(), E = $6->end();
I != E; ++I) {
ParamTypes.push_back((*I).V->getType());
FTySign.add(I->S);
}
}
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
if (isVarArg) ParamTypes.pop_back();
const Type *RetTy = $3.PAT->get();
if (!RetTy->isFirstClassType() && RetTy != Type::VoidTy)
error("Functions cannot return aggregate types");
FTy = FunctionType::get(RetTy, ParamTypes, isVarArg);
PFTy = PointerType::get(FTy);
$$.S.copy($3.S);
} else {
FTySign = $3.S;
// Get the signedness of the result type. $3 is the pointer to the
// function type so we get the 0th element to extract the function type,
// and then the 0th element again to get the result type.
$$.S.copy($3.S.get(0).get(0));
}
$4.S.makeComposite(FTySign);
// First upgrade any intrinsic calls.
std::vector<Value*> Args;
if ($6)
for (unsigned i = 0, e = $6->size(); i < e; ++i)
Args.push_back((*$6)[i].V);
Instruction *Inst = upgradeIntrinsicCall(FTy->getReturnType(), $4, Args);
// If we got an upgraded intrinsic
if (Inst) {
$$.I = Inst;
} else {
// Get the function we're calling
Value *V = getVal(PFTy, $4);
// Check the argument values match
if (!$6) { // Has no arguments?
// Make sure no arguments is a good thing!
if (FTy->getNumParams() != 0)
error("No arguments passed to a function that expects arguments");
} else { // Has arguments?
// Loop through FunctionType's arguments and ensure they are specified
// correctly!
//
FunctionType::param_iterator I = FTy->param_begin();
FunctionType::param_iterator E = FTy->param_end();
std::vector<ValueInfo>::iterator ArgI = $6->begin(), ArgE = $6->end();
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
if ((*ArgI).V->getType() != *I)
error("Parameter " +(*ArgI).V->getName()+ " is not of type '" +
(*I)->getDescription() + "'");
if (I != E || (ArgI != ArgE && !FTy->isVarArg()))
error("Invalid number of parameters detected");
}
// Create the call instruction
CallInst *CI = new CallInst(V, Args.begin(), Args.end());
CI->setTailCall($1);
CI->setCallingConv(upgradeCallingConv($2));
$$.I = CI;
}
// Deal with CSRetCC
if ($2 == OldCallingConv::CSRet) {
ParamAttrsVector Attrs;
ParamAttrsWithIndex PAWI;
PAWI.index = 1; PAWI.attrs = ParamAttr::StructRet; // first arg
Attrs.push_back(PAWI);
cast<CallInst>($$.I)->setParamAttrs(ParamAttrsList::get(Attrs));
}
delete $3.PAT;
delete $6;
lastCallingConv = OldCallingConv::C;
}
| MemoryInst {
$$ = $1;
}
;
// IndexList - List of indices for GEP based instructions...
IndexList
: ',' ValueRefList { $$ = $2; }
| /* empty */ { $$ = new std::vector<ValueInfo>(); }
;
OptVolatile
: VOLATILE { $$ = true; }
| /* empty */ { $$ = false; }
;
MemoryInst
: MALLOC Types OptCAlign {
const Type *Ty = $2.PAT->get();
$$.S.makeComposite($2.S);
$$.I = new MallocInst(Ty, 0, $3);
delete $2.PAT;
}
| MALLOC Types ',' UINT ValueRef OptCAlign {
const Type *Ty = $2.PAT->get();
$5.S.makeUnsigned();
$$.S.makeComposite($2.S);
$$.I = new MallocInst(Ty, getVal($4.T, $5), $6);
delete $2.PAT;
}
| ALLOCA Types OptCAlign {
const Type *Ty = $2.PAT->get();
$$.S.makeComposite($2.S);
$$.I = new AllocaInst(Ty, 0, $3);
delete $2.PAT;
}
| ALLOCA Types ',' UINT ValueRef OptCAlign {
const Type *Ty = $2.PAT->get();
$5.S.makeUnsigned();
$$.S.makeComposite($4.S);
$$.I = new AllocaInst(Ty, getVal($4.T, $5), $6);
delete $2.PAT;
}
| FREE ResolvedVal {
const Type *PTy = $2.V->getType();
if (!isa<PointerType>(PTy))
error("Trying to free nonpointer type '" + PTy->getDescription() + "'");
$$.I = new FreeInst($2.V);
$$.S.makeSignless();
}
| OptVolatile LOAD Types ValueRef {
const Type* Ty = $3.PAT->get();
$4.S.copy($3.S);
if (!isa<PointerType>(Ty))
error("Can't load from nonpointer type: " + Ty->getDescription());
if (!cast<PointerType>(Ty)->getElementType()->isFirstClassType())
error("Can't load from pointer of non-first-class type: " +
Ty->getDescription());
Value* tmpVal = getVal(Ty, $4);
$$.I = new LoadInst(tmpVal, "", $1);
$$.S.copy($3.S.get(0));
delete $3.PAT;
}
| OptVolatile STORE ResolvedVal ',' Types ValueRef {
$6.S.copy($5.S);
const PointerType *PTy = dyn_cast<PointerType>($5.PAT->get());
if (!PTy)
error("Can't store to a nonpointer type: " +
$5.PAT->get()->getDescription());
const Type *ElTy = PTy->getElementType();
Value *StoreVal = $3.V;
Value* tmpVal = getVal(PTy, $6);
if (ElTy != $3.V->getType()) {
PTy = PointerType::get(StoreVal->getType());
if (Constant *C = dyn_cast<Constant>(tmpVal))
tmpVal = ConstantExpr::getBitCast(C, PTy);
else
tmpVal = new BitCastInst(tmpVal, PTy, "upgrd.cast", CurBB);
}
$$.I = new StoreInst(StoreVal, tmpVal, $1);
$$.S.makeSignless();
delete $5.PAT;
}
| GETELEMENTPTR Types ValueRef IndexList {
$3.S.copy($2.S);
const Type* Ty = $2.PAT->get();
if (!isa<PointerType>(Ty))
error("getelementptr insn requires pointer operand");
std::vector<Value*> VIndices;
upgradeGEPInstIndices(Ty, $4, VIndices);
Value* tmpVal = getVal(Ty, $3);
$$.I = new GetElementPtrInst(tmpVal, VIndices.begin(), VIndices.end());
ValueInfo VI; VI.V = tmpVal; VI.S.copy($2.S);
$$.S.copy(getElementSign(VI, VIndices));
delete $2.PAT;
delete $4;
};
%%
int yyerror(const char *ErrorMsg) {
std::string where
= std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
+ ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
std::string errMsg = where + "error: " + std::string(ErrorMsg);
if (yychar != YYEMPTY && yychar != 0)
errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
"'.";
std::cerr << "llvm-upgrade: " << errMsg << '\n';
std::cout << "llvm-upgrade: parse failed.\n";
exit(1);
}
void warning(const std::string& ErrorMsg) {
std::string where
= std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
+ ":" + llvm::utostr((unsigned) Upgradelineno) + ": ";
std::string errMsg = where + "warning: " + std::string(ErrorMsg);
if (yychar != YYEMPTY && yychar != 0)
errMsg += " while reading token '" + std::string(Upgradetext, Upgradeleng) +
"'.";
std::cerr << "llvm-upgrade: " << errMsg << '\n';
}
void error(const std::string& ErrorMsg, int LineNo) {
if (LineNo == -1) LineNo = Upgradelineno;
Upgradelineno = LineNo;
yyerror(ErrorMsg.c_str());
}