llvm-6502/lib/Target/PowerPC/PPCISelLowering.h
Hal Finkel ff56d1a201 Enable early if conversion on PPC
On cores for which we know the misprediction penalty, and we have
the isel instruction, we can profitably perform early if conversion.
This enables us to replace some small branch sequences with selects
and avoid the potential stalls from mispredicting the branches.

Enabling this feature required implementing canInsertSelect and
insertSelect in PPCInstrInfo; isel code in PPCISelLowering was
refactored to use these functions as well.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@178926 91177308-0d34-0410-b5e6-96231b3b80d8
2013-04-05 23:29:01 +00:00

635 lines
28 KiB
C++

//===-- PPCISelLowering.h - PPC32 DAG Lowering Interface --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the interfaces that PPC uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
#define LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H
#include "PPC.h"
#include "PPCInstrInfo.h"
#include "PPCRegisterInfo.h"
#include "PPCSubtarget.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
namespace llvm {
namespace PPCISD {
enum NodeType {
// Start the numbering where the builtin ops and target ops leave off.
FIRST_NUMBER = ISD::BUILTIN_OP_END,
/// FSEL - Traditional three-operand fsel node.
///
FSEL,
/// FCFID - The FCFID instruction, taking an f64 operand and producing
/// and f64 value containing the FP representation of the integer that
/// was temporarily in the f64 operand.
FCFID,
/// Newer FCFID[US] integer-to-floating-point conversion instructions for
/// unsigned integers and single-precision outputs.
FCFIDU, FCFIDS, FCFIDUS,
/// FCTI[D,W]Z - The FCTIDZ and FCTIWZ instructions, taking an f32 or f64
/// operand, producing an f64 value containing the integer representation
/// of that FP value.
FCTIDZ, FCTIWZ,
/// Newer FCTI[D,W]UZ floating-point-to-integer conversion instructions for
/// unsigned integers.
FCTIDUZ, FCTIWUZ,
/// Reciprocal estimate instructions (unary FP ops).
FRE, FRSQRTE,
// VMADDFP, VNMSUBFP - The VMADDFP and VNMSUBFP instructions, taking
// three v4f32 operands and producing a v4f32 result.
VMADDFP, VNMSUBFP,
/// VPERM - The PPC VPERM Instruction.
///
VPERM,
/// Hi/Lo - These represent the high and low 16-bit parts of a global
/// address respectively. These nodes have two operands, the first of
/// which must be a TargetGlobalAddress, and the second of which must be a
/// Constant. Selected naively, these turn into 'lis G+C' and 'li G+C',
/// though these are usually folded into other nodes.
Hi, Lo,
TOC_ENTRY,
/// The following three target-specific nodes are used for calls through
/// function pointers in the 64-bit SVR4 ABI.
/// Restore the TOC from the TOC save area of the current stack frame.
/// This is basically a hard coded load instruction which additionally
/// takes/produces a flag.
TOC_RESTORE,
/// Like a regular LOAD but additionally taking/producing a flag.
LOAD,
/// LOAD into r2 (also taking/producing a flag). Like TOC_RESTORE, this is
/// a hard coded load instruction.
LOAD_TOC,
/// OPRC, CHAIN = DYNALLOC(CHAIN, NEGSIZE, FRAME_INDEX)
/// This instruction is lowered in PPCRegisterInfo::eliminateFrameIndex to
/// compute an allocation on the stack.
DYNALLOC,
/// GlobalBaseReg - On Darwin, this node represents the result of the mflr
/// at function entry, used for PIC code.
GlobalBaseReg,
/// These nodes represent the 32-bit PPC shifts that operate on 6-bit
/// shift amounts. These nodes are generated by the multi-precision shift
/// code.
SRL, SRA, SHL,
/// CALL - A direct function call.
/// CALL_NOP is a call with the special NOP which follows 64-bit
/// SVR4 calls.
CALL, CALL_NOP,
/// CHAIN,FLAG = MTCTR(VAL, CHAIN[, INFLAG]) - Directly corresponds to a
/// MTCTR instruction.
MTCTR,
/// CHAIN,FLAG = BCTRL(CHAIN, INFLAG) - Directly corresponds to a
/// BCTRL instruction.
BCTRL,
/// Return with a flag operand, matched by 'blr'
RET_FLAG,
/// R32 = MFCR(CRREG, INFLAG) - Represents the MFCRpseud/MFOCRF
/// instructions. This copies the bits corresponding to the specified
/// CRREG into the resultant GPR. Bits corresponding to other CR regs
/// are undefined.
MFCR,
// EH_SJLJ_SETJMP - SjLj exception handling setjmp.
EH_SJLJ_SETJMP,
// EH_SJLJ_LONGJMP - SjLj exception handling longjmp.
EH_SJLJ_LONGJMP,
/// RESVEC = VCMP(LHS, RHS, OPC) - Represents one of the altivec VCMP*
/// instructions. For lack of better number, we use the opcode number
/// encoding for the OPC field to identify the compare. For example, 838
/// is VCMPGTSH.
VCMP,
/// RESVEC, OUTFLAG = VCMPo(LHS, RHS, OPC) - Represents one of the
/// altivec VCMP*o instructions. For lack of better number, we use the
/// opcode number encoding for the OPC field to identify the compare. For
/// example, 838 is VCMPGTSH.
VCMPo,
/// CHAIN = COND_BRANCH CHAIN, CRRC, OPC, DESTBB [, INFLAG] - This
/// corresponds to the COND_BRANCH pseudo instruction. CRRC is the
/// condition register to branch on, OPC is the branch opcode to use (e.g.
/// PPC::BLE), DESTBB is the destination block to branch to, and INFLAG is
/// an optional input flag argument.
COND_BRANCH,
/// F8RC = FADDRTZ F8RC, F8RC - This is an FADD done with rounding
/// towards zero. Used only as part of the long double-to-int
/// conversion sequence.
FADDRTZ,
/// F8RC = MFFS - This moves the FPSCR (not modeled) into the register.
MFFS,
/// LARX = This corresponds to PPC l{w|d}arx instrcution: load and
/// reserve indexed. This is used to implement atomic operations.
LARX,
/// STCX = This corresponds to PPC stcx. instrcution: store conditional
/// indexed. This is used to implement atomic operations.
STCX,
/// TC_RETURN - A tail call return.
/// operand #0 chain
/// operand #1 callee (register or absolute)
/// operand #2 stack adjustment
/// operand #3 optional in flag
TC_RETURN,
/// ch, gl = CR6[UN]SET ch, inglue - Toggle CR bit 6 for SVR4 vararg calls
CR6SET,
CR6UNSET,
/// G8RC = ADDIS_GOT_TPREL_HA %X2, Symbol - Used by the initial-exec
/// TLS model, produces an ADDIS8 instruction that adds the GOT
/// base to sym@got@tprel@ha.
ADDIS_GOT_TPREL_HA,
/// G8RC = LD_GOT_TPREL_L Symbol, G8RReg - Used by the initial-exec
/// TLS model, produces a LD instruction with base register G8RReg
/// and offset sym@got@tprel@l. This completes the addition that
/// finds the offset of "sym" relative to the thread pointer.
LD_GOT_TPREL_L,
/// G8RC = ADD_TLS G8RReg, Symbol - Used by the initial-exec TLS
/// model, produces an ADD instruction that adds the contents of
/// G8RReg to the thread pointer. Symbol contains a relocation
/// sym@tls which is to be replaced by the thread pointer and
/// identifies to the linker that the instruction is part of a
/// TLS sequence.
ADD_TLS,
/// G8RC = ADDIS_TLSGD_HA %X2, Symbol - For the general-dynamic TLS
/// model, produces an ADDIS8 instruction that adds the GOT base
/// register to sym@got@tlsgd@ha.
ADDIS_TLSGD_HA,
/// G8RC = ADDI_TLSGD_L G8RReg, Symbol - For the general-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym@got@tlsgd@l.
ADDI_TLSGD_L,
/// G8RC = GET_TLS_ADDR %X3, Symbol - For the general-dynamic TLS
/// model, produces a call to __tls_get_addr(sym@tlsgd).
GET_TLS_ADDR,
/// G8RC = ADDIS_TLSLD_HA %X2, Symbol - For the local-dynamic TLS
/// model, produces an ADDIS8 instruction that adds the GOT base
/// register to sym@got@tlsld@ha.
ADDIS_TLSLD_HA,
/// G8RC = ADDI_TLSLD_L G8RReg, Symbol - For the local-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym@got@tlsld@l.
ADDI_TLSLD_L,
/// G8RC = GET_TLSLD_ADDR %X3, Symbol - For the local-dynamic TLS
/// model, produces a call to __tls_get_addr(sym@tlsld).
GET_TLSLD_ADDR,
/// G8RC = ADDIS_DTPREL_HA %X3, Symbol, Chain - For the
/// local-dynamic TLS model, produces an ADDIS8 instruction
/// that adds X3 to sym@dtprel@ha. The Chain operand is needed
/// to tie this in place following a copy to %X3 from the result
/// of a GET_TLSLD_ADDR.
ADDIS_DTPREL_HA,
/// G8RC = ADDI_DTPREL_L G8RReg, Symbol - For the local-dynamic TLS
/// model, produces an ADDI8 instruction that adds G8RReg to
/// sym@got@dtprel@l.
ADDI_DTPREL_L,
/// VRRC = VADD_SPLAT Elt, EltSize - Temporary node to be expanded
/// during instruction selection to optimize a BUILD_VECTOR into
/// operations on splats. This is necessary to avoid losing these
/// optimizations due to constant folding.
VADD_SPLAT,
/// CHAIN = STBRX CHAIN, GPRC, Ptr, Type - This is a
/// byte-swapping store instruction. It byte-swaps the low "Type" bits of
/// the GPRC input, then stores it through Ptr. Type can be either i16 or
/// i32.
STBRX = ISD::FIRST_TARGET_MEMORY_OPCODE,
/// GPRC, CHAIN = LBRX CHAIN, Ptr, Type - This is a
/// byte-swapping load instruction. It loads "Type" bits, byte swaps it,
/// then puts it in the bottom bits of the GPRC. TYPE can be either i16
/// or i32.
LBRX,
/// STFIWX - The STFIWX instruction. The first operand is an input token
/// chain, then an f64 value to store, then an address to store it to.
STFIWX,
/// GPRC, CHAIN = LFIWAX CHAIN, Ptr - This is a floating-point
/// load which sign-extends from a 32-bit integer value into the
/// destination 64-bit register.
LFIWAX,
/// GPRC, CHAIN = LFIWZX CHAIN, Ptr - This is a floating-point
/// load which zero-extends from a 32-bit integer value into the
/// destination 64-bit register.
LFIWZX,
/// G8RC = ADDIS_TOC_HA %X2, Symbol - For medium and large code model,
/// produces an ADDIS8 instruction that adds the TOC base register to
/// sym@toc@ha.
ADDIS_TOC_HA,
/// G8RC = LD_TOC_L Symbol, G8RReg - For medium and large code model,
/// produces a LD instruction with base register G8RReg and offset
/// sym@toc@l. Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
LD_TOC_L,
/// G8RC = ADDI_TOC_L G8RReg, Symbol - For medium code model, produces
/// an ADDI8 instruction that adds G8RReg to sym@toc@l.
/// Preceded by an ADDIS_TOC_HA to form a full 32-bit offset.
ADDI_TOC_L
};
}
/// Define some predicates that are used for node matching.
namespace PPC {
/// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUHUM instruction.
bool isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
/// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
/// VPKUWUM instruction.
bool isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary);
/// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
bool isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
bool isUnary);
/// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
/// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
bool isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
bool isUnary);
/// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
/// amount, otherwise return -1.
int isVSLDOIShuffleMask(SDNode *N, bool isUnary);
/// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
/// specifies a splat of a single element that is suitable for input to
/// VSPLTB/VSPLTH/VSPLTW.
bool isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize);
/// isAllNegativeZeroVector - Returns true if all elements of build_vector
/// are -0.0.
bool isAllNegativeZeroVector(SDNode *N);
/// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
/// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
unsigned getVSPLTImmediate(SDNode *N, unsigned EltSize);
/// get_VSPLTI_elt - If this is a build_vector of constants which can be
/// formed by using a vspltis[bhw] instruction of the specified element
/// size, return the constant being splatted. The ByteSize field indicates
/// the number of bytes of each element [124] -> [bhw].
SDValue get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG);
}
class PPCTargetLowering : public TargetLowering {
const PPCSubtarget &PPCSubTarget;
const PPCRegisterInfo *PPCRegInfo;
const PPCInstrInfo *PPCII;
public:
explicit PPCTargetLowering(PPCTargetMachine &TM);
/// getTargetNodeName() - This method returns the name of a target specific
/// DAG node.
virtual const char *getTargetNodeName(unsigned Opcode) const;
virtual MVT getScalarShiftAmountTy(EVT LHSTy) const { return MVT::i32; }
/// getSetCCResultType - Return the ISD::SETCC ValueType
virtual EVT getSetCCResultType(EVT VT) const;
/// getPreIndexedAddressParts - returns true by value, base pointer and
/// offset pointer and addressing mode by reference if the node's address
/// can be legally represented as pre-indexed load / store address.
virtual bool getPreIndexedAddressParts(SDNode *N, SDValue &Base,
SDValue &Offset,
ISD::MemIndexedMode &AM,
SelectionDAG &DAG) const;
/// SelectAddressRegReg - Given the specified addressed, check to see if it
/// can be represented as an indexed [r+r] operation. Returns false if it
/// can be more efficiently represented with [r+imm].
bool SelectAddressRegReg(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG) const;
/// SelectAddressRegImm - Returns true if the address N can be represented
/// by a base register plus a signed 16-bit displacement [r+imm], and if it
/// is not better represented as reg+reg.
bool SelectAddressRegImm(SDValue N, SDValue &Disp, SDValue &Base,
SelectionDAG &DAG) const;
/// SelectAddressRegRegOnly - Given the specified addressed, force it to be
/// represented as an indexed [r+r] operation.
bool SelectAddressRegRegOnly(SDValue N, SDValue &Base, SDValue &Index,
SelectionDAG &DAG) const;
/// SelectAddressRegImmShift - Returns true if the address N can be
/// represented by a base register plus a signed 14-bit displacement
/// [r+imm*4]. Suitable for use by STD and friends.
bool SelectAddressRegImmShift(SDValue N, SDValue &Disp, SDValue &Base,
SelectionDAG &DAG) const;
Sched::Preference getSchedulingPreference(SDNode *N) const;
/// LowerOperation - Provide custom lowering hooks for some operations.
///
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
/// ReplaceNodeResults - Replace the results of node with an illegal result
/// type with new values built out of custom code.
///
virtual void ReplaceNodeResults(SDNode *N, SmallVectorImpl<SDValue>&Results,
SelectionDAG &DAG) const;
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
virtual void computeMaskedBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth = 0) const;
virtual MachineBasicBlock *
EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *EmitAtomicBinary(MachineInstr *MI,
MachineBasicBlock *MBB, bool is64Bit,
unsigned BinOpcode) const;
MachineBasicBlock *EmitPartwordAtomicBinary(MachineInstr *MI,
MachineBasicBlock *MBB,
bool is8bit, unsigned Opcode) const;
MachineBasicBlock *emitEHSjLjSetJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const;
MachineBasicBlock *emitEHSjLjLongJmp(MachineInstr *MI,
MachineBasicBlock *MBB) const;
ConstraintType getConstraintType(const std::string &Constraint) const;
/// Examine constraint string and operand type and determine a weight value.
/// The operand object must already have been set up with the operand type.
ConstraintWeight getSingleConstraintMatchWeight(
AsmOperandInfo &info, const char *constraint) const;
std::pair<unsigned, const TargetRegisterClass*>
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const;
/// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
/// function arguments in the caller parameter area. This is the actual
/// alignment, not its logarithm.
unsigned getByValTypeAlignment(Type *Ty) const;
/// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
/// vector. If it is invalid, don't add anything to Ops.
virtual void LowerAsmOperandForConstraint(SDValue Op,
std::string &Constraint,
std::vector<SDValue> &Ops,
SelectionDAG &DAG) const;
/// isLegalAddressingMode - Return true if the addressing mode represented
/// by AM is legal for this target, for a load/store of the specified type.
virtual bool isLegalAddressingMode(const AddrMode &AM, Type *Ty)const;
/// isLegalAddressImmediate - Return true if the integer value can be used
/// as the offset of the target addressing mode for load / store of the
/// given type.
virtual bool isLegalAddressImmediate(int64_t V, Type *Ty) const;
/// isLegalAddressImmediate - Return true if the GlobalValue can be used as
/// the offset of the target addressing mode.
virtual bool isLegalAddressImmediate(GlobalValue *GV) const;
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove
/// lowering. If DstAlign is zero that means it's safe to destination
/// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
/// means there isn't a need to check it against alignment requirement,
/// probably because the source does not need to be loaded. If 'IsMemset' is
/// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
/// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
/// source is constant so it does not need to be loaded.
/// It returns EVT::Other if the type should be determined using generic
/// target-independent logic.
virtual EVT
getOptimalMemOpType(uint64_t Size, unsigned DstAlign, unsigned SrcAlign,
bool IsMemset, bool ZeroMemset, bool MemcpyStrSrc,
MachineFunction &MF) const;
/// Is unaligned memory access allowed for the given type, and is it fast
/// relative to software emulation.
virtual bool allowsUnalignedMemoryAccesses(EVT VT, bool *Fast = 0) const;
/// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
/// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
/// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
/// is expanded to mul + add.
virtual bool isFMAFasterThanMulAndAdd(EVT VT) const;
private:
SDValue getFramePointerFrameIndex(SelectionDAG & DAG) const;
SDValue getReturnAddrFrameIndex(SelectionDAG & DAG) const;
bool
IsEligibleForTailCallOptimization(SDValue Callee,
CallingConv::ID CalleeCC,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SelectionDAG& DAG) const;
SDValue EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
int SPDiff,
SDValue Chain,
SDValue &LROpOut,
SDValue &FPOpOut,
bool isDarwinABI,
DebugLoc dl) const;
SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerJumpTable(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSETCC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINIT_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerADJUST_TRAMPOLINE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const;
SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const;
SDValue LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const;
SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG,
const PPCSubtarget &Subtarget) const;
SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG, DebugLoc dl) const;
SDValue LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerFLT_ROUNDS_(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerSCALAR_TO_VECTOR(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue FinishCall(CallingConv::ID CallConv, DebugLoc dl, bool isTailCall,
bool isVarArg,
SelectionDAG &DAG,
SmallVector<std::pair<unsigned, SDValue>, 8>
&RegsToPass,
SDValue InFlag, SDValue Chain,
SDValue &Callee,
int SPDiff, unsigned NumBytes,
const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
virtual SDValue
LowerCall(TargetLowering::CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const;
virtual bool
CanLowerReturn(CallingConv::ID CallConv, MachineFunction &MF,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
LLVMContext &Context) const;
virtual SDValue
LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const;
SDValue
extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT, SelectionDAG &DAG,
SDValue ArgVal, DebugLoc dl) const;
void
setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
unsigned nAltivecParamsAtEnd,
unsigned MinReservedArea, bool isPPC64) const;
SDValue
LowerFormalArguments_Darwin(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerFormalArguments_64SVR4(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerFormalArguments_32SVR4(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
SDValue CallSeqStart, ISD::ArgFlagsTy Flags,
SelectionDAG &DAG, DebugLoc dl) const;
SDValue
LowerCall_Darwin(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv,
bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerCall_64SVR4(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv,
bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue
LowerCall_32SVR4(SDValue Chain, SDValue Callee, CallingConv::ID CallConv,
bool isVarArg, bool isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const;
SDValue lowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue lowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const;
SDValue DAGCombineFastRecip(SDValue Op, DAGCombinerInfo &DCI) const;
SDValue DAGCombineFastRecipFSQRT(SDValue Op, DAGCombinerInfo &DCI) const;
};
}
#endif // LLVM_TARGET_POWERPC_PPC32ISELLOWERING_H