llvm-6502/lib/Target/Sparc/SparcAsmPrinter.cpp
2006-02-27 20:09:23 +00:00

304 lines
10 KiB
C++

//===-- SparcAsmPrinter.cpp - Sparc LLVM assembly writer ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format SPARC assembly language.
//
//===----------------------------------------------------------------------===//
#include "Sparc.h"
#include "SparcInstrInfo.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Mangler.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/MathExtras.h"
#include <cctype>
#include <iostream>
using namespace llvm;
namespace {
Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
struct SparcAsmPrinter : public AsmPrinter {
SparcAsmPrinter(std::ostream &O, TargetMachine &TM) : AsmPrinter(O, TM) {
Data16bitsDirective = "\t.half\t";
Data32bitsDirective = "\t.word\t";
Data64bitsDirective = 0; // .xword is only supported by V9.
ZeroDirective = "\t.skip\t";
CommentString = "!";
ConstantPoolSection = "\t.section \".rodata\",#alloc\n";
}
/// We name each basic block in a Function with a unique number, so
/// that we can consistently refer to them later. This is cleared
/// at the beginning of each call to runOnMachineFunction().
///
typedef std::map<const Value *, unsigned> ValueMapTy;
ValueMapTy NumberForBB;
virtual const char *getPassName() const {
return "Sparc Assembly Printer";
}
void printOperand(const MachineInstr *MI, int opNum);
void printMemOperand(const MachineInstr *MI, int opNum,
const char *Modifier = 0);
void printCCOperand(const MachineInstr *MI, int opNum);
bool printInstruction(const MachineInstr *MI); // autogenerated.
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
};
} // end of anonymous namespace
#include "SparcGenAsmWriter.inc"
/// createSparcCodePrinterPass - Returns a pass that prints the SPARC
/// assembly code for a MachineFunction to the given output stream,
/// using the given target machine description. This should work
/// regardless of whether the function is in SSA form.
///
FunctionPass *llvm::createSparcCodePrinterPass(std::ostream &o,
TargetMachine &tm) {
return new SparcAsmPrinter(o, tm);
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool SparcAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
SetupMachineFunction(MF);
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
// BBNumber is used here so that a given Printer will never give two
// BBs the same name. (If you have a better way, please let me know!)
static unsigned BBNumber = 0;
O << "\n\n";
// What's my mangled name?
CurrentFnName = Mang->getValueName(MF.getFunction());
// Print out labels for the function.
O << "\t.text\n";
O << "\t.align 16\n";
O << "\t.globl\t" << CurrentFnName << "\n";
O << "\t.type\t" << CurrentFnName << ", #function\n";
O << CurrentFnName << ":\n";
// Number each basic block so that we can consistently refer to them
// in PC-relative references.
NumberForBB.clear();
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
NumberForBB[I->getBasicBlock()] = BBNumber++;
}
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin())
O << ".LBB" << Mang->getValueName(MF.getFunction ())
<< "_" << I->getNumber () << ":\t! "
<< I->getBasicBlock ()->getName () << "\n";
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
O << "\t";
printInstruction(II);
++EmittedInsts;
}
}
// We didn't modify anything.
return false;
}
void SparcAsmPrinter::printOperand(const MachineInstr *MI, int opNum) {
const MachineOperand &MO = MI->getOperand (opNum);
const MRegisterInfo &RI = *TM.getRegisterInfo();
bool CloseParen = false;
if (MI->getOpcode() == SP::SETHIi && !MO.isRegister() && !MO.isImmediate()) {
O << "%hi(";
CloseParen = true;
} else if ((MI->getOpcode() == SP::ORri || MI->getOpcode() == SP::ADDri)
&& !MO.isRegister() && !MO.isImmediate()) {
O << "%lo(";
CloseParen = true;
}
switch (MO.getType()) {
case MachineOperand::MO_VirtualRegister:
if (Value *V = MO.getVRegValueOrNull()) {
O << "<" << V->getName() << ">";
break;
}
// FALLTHROUGH
case MachineOperand::MO_MachineRegister:
if (MRegisterInfo::isPhysicalRegister(MO.getReg()))
O << "%" << LowercaseString (RI.get(MO.getReg()).Name);
else
O << "%reg" << MO.getReg();
break;
case MachineOperand::MO_SignExtendedImmed:
case MachineOperand::MO_UnextendedImmed:
O << (int)MO.getImmedValue();
break;
case MachineOperand::MO_MachineBasicBlock: {
MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
<< "_" << MBBOp->getNumber () << "\t! "
<< MBBOp->getBasicBlock ()->getName ();
return;
}
case MachineOperand::MO_PCRelativeDisp:
std::cerr << "Shouldn't use addPCDisp() when building Sparc MachineInstrs";
abort ();
return;
case MachineOperand::MO_GlobalAddress:
O << Mang->getValueName(MO.getGlobal());
break;
case MachineOperand::MO_ExternalSymbol:
O << MO.getSymbolName();
break;
case MachineOperand::MO_ConstantPoolIndex:
O << PrivateGlobalPrefix << "CPI" << getFunctionNumber() << "_"
<< MO.getConstantPoolIndex();
break;
default:
O << "<unknown operand type>"; abort (); break;
}
if (CloseParen) O << ")";
}
void SparcAsmPrinter::printMemOperand(const MachineInstr *MI, int opNum,
const char *Modifier) {
printOperand(MI, opNum);
// If this is an ADD operand, emit it like normal operands.
if (Modifier && !strcmp(Modifier, "arith")) {
O << ", ";
printOperand(MI, opNum+1);
return;
}
MachineOperand::MachineOperandType OpTy = MI->getOperand(opNum+1).getType();
if ((OpTy == MachineOperand::MO_VirtualRegister ||
OpTy == MachineOperand::MO_MachineRegister) &&
MI->getOperand(opNum+1).getReg() == SP::G0)
return; // don't print "+%g0"
if ((OpTy == MachineOperand::MO_SignExtendedImmed ||
OpTy == MachineOperand::MO_UnextendedImmed) &&
MI->getOperand(opNum+1).getImmedValue() == 0)
return; // don't print "+0"
O << "+";
if (OpTy == MachineOperand::MO_GlobalAddress ||
OpTy == MachineOperand::MO_ConstantPoolIndex) {
O << "%lo(";
printOperand(MI, opNum+1);
O << ")";
} else {
printOperand(MI, opNum+1);
}
}
void SparcAsmPrinter::printCCOperand(const MachineInstr *MI, int opNum) {
int CC = (int)MI->getOperand(opNum).getImmedValue();
O << SPARCCondCodeToString((SPCC::CondCodes)CC);
}
bool SparcAsmPrinter::doInitialization(Module &M) {
Mang = new Mangler(M);
return false; // success
}
bool SparcAsmPrinter::doFinalization(Module &M) {
const TargetData &TD = TM.getTargetData();
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I)
if (I->hasInitializer()) { // External global require no code
O << "\n\n";
std::string name = Mang->getValueName(I);
Constant *C = I->getInitializer();
unsigned Size = TD.getTypeSize(C->getType());
unsigned Align = TD.getTypeAlignment(C->getType());
if (C->isNullValue() &&
(I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
I->hasWeakLinkage() /* FIXME: Verify correct */)) {
SwitchSection(".data", I);
if (I->hasInternalLinkage())
O << "\t.local " << name << "\n";
O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
<< "," << (unsigned)TD.getTypeAlignment(C->getType());
O << "\t\t! ";
WriteAsOperand(O, I, true, true, &M);
O << "\n";
} else {
switch (I->getLinkage()) {
case GlobalValue::LinkOnceLinkage:
case GlobalValue::WeakLinkage: // FIXME: Verify correct for weak.
// Nonnull linkonce -> weak
O << "\t.weak " << name << "\n";
SwitchSection("", I);
O << "\t.section\t\".llvm.linkonce.d." << name
<< "\",\"aw\",@progbits\n";
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << "\n";
// FALL THROUGH
case GlobalValue::InternalLinkage:
if (C->isNullValue())
SwitchSection(".bss", I);
else
SwitchSection(".data", I);
break;
case GlobalValue::GhostLinkage:
std::cerr << "Should not have any unmaterialized functions!\n";
abort();
}
O << "\t.align " << Align << "\n";
O << "\t.type " << name << ",#object\n";
O << "\t.size " << name << "," << Size << "\n";
O << name << ":\t\t\t\t! ";
WriteAsOperand(O, I, true, true, &M);
O << "\n";
EmitGlobalConstant(C);
}
}
AsmPrinter::doFinalization(M);
return false; // success
}