llvm-6502/lib/Target/R600/SIISelLowering.cpp
Matt Arsenault cb1ac70623 R600: Add new functions for splitting vector loads and stores.
These will be used in future patches and shouldn't change anything yet.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@213877 91177308-0d34-0410-b5e6-96231b3b80d8
2014-07-24 17:10:35 +00:00

1822 lines
63 KiB
C++

//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Custom DAG lowering for SI
//
//===----------------------------------------------------------------------===//
#ifdef _MSC_VER
// Provide M_PI.
#define _USE_MATH_DEFINES
#include <cmath>
#endif
#include "SIISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/Function.h"
#include "llvm/ADT/SmallString.h"
using namespace llvm;
SITargetLowering::SITargetLowering(TargetMachine &TM) :
AMDGPUTargetLowering(TM) {
addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass);
addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass);
addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass);
addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass);
addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
computeRegisterProperties();
// Condition Codes
setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGE, MVT::f32, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
setCondCodeAction(ISD::SETULE, MVT::f32, Expand);
setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
setCondCodeAction(ISD::SETUGE, MVT::f64, Expand);
setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
setCondCodeAction(ISD::SETULE, MVT::f64, Expand);
setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
setOperationAction(ISD::ADD, MVT::i32, Legal);
setOperationAction(ISD::ADDC, MVT::i32, Legal);
setOperationAction(ISD::ADDE, MVT::i32, Legal);
setOperationAction(ISD::SUBC, MVT::i32, Legal);
setOperationAction(ISD::SUBE, MVT::i32, Legal);
setOperationAction(ISD::FSIN, MVT::f32, Custom);
setOperationAction(ISD::FCOS, MVT::f32, Custom);
// We need to custom lower vector stores from local memory
setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::v8i32, Custom);
setOperationAction(ISD::STORE, MVT::v16i32, Custom);
setOperationAction(ISD::STORE, MVT::i1, Custom);
setOperationAction(ISD::STORE, MVT::i32, Custom);
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
setOperationAction(ISD::SELECT, MVT::f32, Promote);
AddPromotedToType(ISD::SELECT, MVT::f32, MVT::i32);
setOperationAction(ISD::SELECT, MVT::i64, Custom);
setOperationAction(ISD::SELECT, MVT::f64, Promote);
AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Custom);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
setOperationAction(ISD::BRCOND, MVT::Other, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::i16, Custom);
setLoadExtAction(ISD::SEXTLOAD, MVT::i32, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v8i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v16i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i16, Custom);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, MVT::i8, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i16, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::i32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setTruncStoreAction(MVT::i32, MVT::i8, Custom);
setTruncStoreAction(MVT::i32, MVT::i16, Custom);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
setTruncStoreAction(MVT::i64, MVT::i32, Expand);
setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
setOperationAction(ISD::LOAD, MVT::i1, Custom);
setOperationAction(ISD::FP_TO_SINT, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
// These should use UDIVREM, so set them to expand
setOperationAction(ISD::UDIV, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
// We only support LOAD/STORE and vector manipulation ops for vectors
// with > 4 elements.
MVT VecTypes[] = {
MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32
};
setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
setOperationAction(ISD::SELECT, MVT::i1, Promote);
for (MVT VT : VecTypes) {
for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
switch(Op) {
case ISD::LOAD:
case ISD::STORE:
case ISD::BUILD_VECTOR:
case ISD::BITCAST:
case ISD::EXTRACT_VECTOR_ELT:
case ISD::INSERT_VECTOR_ELT:
case ISD::CONCAT_VECTORS:
case ISD::INSERT_SUBVECTOR:
case ISD::EXTRACT_SUBVECTOR:
break;
default:
setOperationAction(Op, VT, Expand);
break;
}
}
}
for (int I = MVT::v1f64; I <= MVT::v8f64; ++I) {
MVT::SimpleValueType VT = static_cast<MVT::SimpleValueType>(I);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
}
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
setOperationAction(ISD::FCEIL, MVT::f64, Legal);
setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
setOperationAction(ISD::FRINT, MVT::f64, Legal);
}
// FIXME: These should be removed and handled the same was as f32 fneg. Source
// modifiers also work for the double instructions.
setOperationAction(ISD::FNEG, MVT::f64, Expand);
setOperationAction(ISD::FABS, MVT::f64, Expand);
setOperationAction(ISD::FDIV, MVT::f32, Custom);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::SETCC);
setTargetDAGCombine(ISD::UINT_TO_FP);
setSchedulingPreference(Sched::RegPressure);
}
//===----------------------------------------------------------------------===//
// TargetLowering queries
//===----------------------------------------------------------------------===//
bool SITargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
unsigned AddrSpace,
bool *IsFast) const {
if (IsFast)
*IsFast = false;
// XXX: This depends on the address space and also we may want to revist
// the alignment values we specify in the DataLayout.
// TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
// which isn't a simple VT.
if (!VT.isSimple() || VT == MVT::Other)
return false;
// XXX - CI changes say "Support for unaligned memory accesses" but I don't
// see what for specifically. The wording everywhere else seems to be the
// same.
// XXX - The only mention I see of this in the ISA manual is for LDS direct
// reads the "byte address and must be dword aligned". Is it also true for the
// normal loads and stores?
if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS)
return false;
// 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
// byte-address are ignored, thus forcing Dword alignment.
// This applies to private, global, and constant memory.
if (IsFast)
*IsFast = true;
return VT.bitsGT(MVT::i32);
}
TargetLoweringBase::LegalizeTypeAction
SITargetLowering::getPreferredVectorAction(EVT VT) const {
if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
return TypeSplitVector;
return TargetLoweringBase::getPreferredVectorAction(VT);
}
bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
Type *Ty) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
return TII->isInlineConstant(Imm);
}
SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
SDLoc DL, SDValue Chain,
unsigned Offset, bool Signed) const {
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
PointerType *PtrTy = PointerType::get(VT.getTypeForEVT(*DAG.getContext()),
AMDGPUAS::CONSTANT_ADDRESS);
SDValue BasePtr = DAG.getCopyFromReg(Chain, DL,
MRI.getLiveInVirtReg(AMDGPU::SGPR0_SGPR1), MVT::i64);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, MVT::i64, BasePtr,
DAG.getConstant(Offset, MVT::i64));
return DAG.getExtLoad(Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD, DL, VT, Chain, Ptr,
MachinePointerInfo(UndefValue::get(PtrTy)), MemVT,
false, false, MemVT.getSizeInBits() >> 3);
}
SDValue SITargetLowering::LowerFormalArguments(
SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg> &Ins,
SDLoc DL, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
MachineFunction &MF = DAG.getMachineFunction();
FunctionType *FType = MF.getFunction()->getFunctionType();
SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
assert(CallConv == CallingConv::C);
SmallVector<ISD::InputArg, 16> Splits;
uint32_t Skipped = 0;
for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
// First check if it's a PS input addr
if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() &&
!Arg.Flags.isByVal()) {
assert((PSInputNum <= 15) && "Too many PS inputs!");
if (!Arg.Used) {
// We can savely skip PS inputs
Skipped |= 1 << i;
++PSInputNum;
continue;
}
Info->PSInputAddr |= 1 << PSInputNum++;
}
// Second split vertices into their elements
if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) {
ISD::InputArg NewArg = Arg;
NewArg.Flags.setSplit();
NewArg.VT = Arg.VT.getVectorElementType();
// We REALLY want the ORIGINAL number of vertex elements here, e.g. a
// three or five element vertex only needs three or five registers,
// NOT four or eigth.
Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
unsigned NumElements = ParamType->getVectorNumElements();
for (unsigned j = 0; j != NumElements; ++j) {
Splits.push_back(NewArg);
NewArg.PartOffset += NewArg.VT.getStoreSize();
}
} else if (Info->getShaderType() != ShaderType::COMPUTE) {
Splits.push_back(Arg);
}
}
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
// At least one interpolation mode must be enabled or else the GPU will hang.
if (Info->getShaderType() == ShaderType::PIXEL &&
(Info->PSInputAddr & 0x7F) == 0) {
Info->PSInputAddr |= 1;
CCInfo.AllocateReg(AMDGPU::VGPR0);
CCInfo.AllocateReg(AMDGPU::VGPR1);
}
// The pointer to the list of arguments is stored in SGPR0, SGPR1
// The pointer to the scratch buffer is stored in SGPR2, SGPR3
if (Info->getShaderType() == ShaderType::COMPUTE) {
Info->NumUserSGPRs = 4;
CCInfo.AllocateReg(AMDGPU::SGPR0);
CCInfo.AllocateReg(AMDGPU::SGPR1);
CCInfo.AllocateReg(AMDGPU::SGPR2);
CCInfo.AllocateReg(AMDGPU::SGPR3);
MF.addLiveIn(AMDGPU::SGPR0_SGPR1, &AMDGPU::SReg_64RegClass);
MF.addLiveIn(AMDGPU::SGPR2_SGPR3, &AMDGPU::SReg_64RegClass);
}
if (Info->getShaderType() == ShaderType::COMPUTE) {
getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
Splits);
}
AnalyzeFormalArguments(CCInfo, Splits);
for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
const ISD::InputArg &Arg = Ins[i];
if (Skipped & (1 << i)) {
InVals.push_back(DAG.getUNDEF(Arg.VT));
continue;
}
CCValAssign &VA = ArgLocs[ArgIdx++];
EVT VT = VA.getLocVT();
if (VA.isMemLoc()) {
VT = Ins[i].VT;
EVT MemVT = Splits[i].VT;
// The first 36 bytes of the input buffer contains information about
// thread group and global sizes.
SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, DAG.getRoot(),
36 + VA.getLocMemOffset(),
Ins[i].Flags.isSExt());
InVals.push_back(Arg);
continue;
}
assert(VA.isRegLoc() && "Parameter must be in a register!");
unsigned Reg = VA.getLocReg();
if (VT == MVT::i64) {
// For now assume it is a pointer
Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
&AMDGPU::SReg_64RegClass);
Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
continue;
}
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
Reg = MF.addLiveIn(Reg, RC);
SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
if (Arg.VT.isVector()) {
// Build a vector from the registers
Type *ParamType = FType->getParamType(Arg.OrigArgIndex);
unsigned NumElements = ParamType->getVectorNumElements();
SmallVector<SDValue, 4> Regs;
Regs.push_back(Val);
for (unsigned j = 1; j != NumElements; ++j) {
Reg = ArgLocs[ArgIdx++].getLocReg();
Reg = MF.addLiveIn(Reg, RC);
Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT));
}
// Fill up the missing vector elements
NumElements = Arg.VT.getVectorNumElements() - NumElements;
for (unsigned j = 0; j != NumElements; ++j)
Regs.push_back(DAG.getUNDEF(VT));
InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
continue;
}
InVals.push_back(Val);
}
return Chain;
}
MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter(
MachineInstr * MI, MachineBasicBlock * BB) const {
MachineBasicBlock::iterator I = *MI;
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
switch (MI->getOpcode()) {
default:
return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
case AMDGPU::BRANCH: return BB;
case AMDGPU::SI_ADDR64_RSRC: {
unsigned SuperReg = MI->getOperand(0).getReg();
unsigned SubRegLo = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
unsigned SubRegHi = MRI.createVirtualRegister(&AMDGPU::SGPR_64RegClass);
unsigned SubRegHiHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
unsigned SubRegHiLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B64), SubRegLo)
.addOperand(MI->getOperand(1));
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiLo)
.addImm(0);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), SubRegHiHi)
.addImm(AMDGPU::RSRC_DATA_FORMAT >> 32);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SubRegHi)
.addReg(SubRegHiLo)
.addImm(AMDGPU::sub0)
.addReg(SubRegHiHi)
.addImm(AMDGPU::sub1);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE), SuperReg)
.addReg(SubRegLo)
.addImm(AMDGPU::sub0_sub1)
.addReg(SubRegHi)
.addImm(AMDGPU::sub2_sub3);
MI->eraseFromParent();
break;
}
case AMDGPU::SI_BUFFER_RSRC: {
unsigned SuperReg = MI->getOperand(0).getReg();
unsigned Args[4];
for (unsigned i = 0, e = 4; i < e; ++i) {
MachineOperand &Arg = MI->getOperand(i + 1);
if (Arg.isReg()) {
Args[i] = Arg.getReg();
continue;
}
assert(Arg.isImm());
unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::S_MOV_B32), Reg)
.addImm(Arg.getImm());
Args[i] = Reg;
}
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::REG_SEQUENCE),
SuperReg)
.addReg(Args[0])
.addImm(AMDGPU::sub0)
.addReg(Args[1])
.addImm(AMDGPU::sub1)
.addReg(Args[2])
.addImm(AMDGPU::sub2)
.addReg(Args[3])
.addImm(AMDGPU::sub3);
MI->eraseFromParent();
break;
}
case AMDGPU::V_SUB_F64: {
unsigned DestReg = MI->getOperand(0).getReg();
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F64), DestReg)
.addImm(0) // SRC0 modifiers
.addReg(MI->getOperand(1).getReg())
.addImm(1) // SRC1 modifiers
.addReg(MI->getOperand(2).getReg())
.addImm(0) // SRC2 modifiers
.addImm(0) // src2
.addImm(0) // CLAMP
.addImm(0); // OMOD
MI->eraseFromParent();
break;
}
case AMDGPU::SI_RegisterStorePseudo: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
MachineInstrBuilder MIB =
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore),
Reg);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
MIB.addOperand(MI->getOperand(i));
MI->eraseFromParent();
break;
}
case AMDGPU::FABS_SI: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
unsigned Reg = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_MOV_B32_e32),
Reg)
.addImm(0x7fffffff);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_AND_B32_e32),
MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addReg(Reg);
MI->eraseFromParent();
break;
}
case AMDGPU::FNEG_SI: {
MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
unsigned Reg = MRI.createVirtualRegister(&AMDGPU::VReg_32RegClass);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_MOV_B32_e32),
Reg)
.addImm(0x80000000);
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_XOR_B32_e32),
MI->getOperand(0).getReg())
.addReg(MI->getOperand(1).getReg())
.addReg(Reg);
MI->eraseFromParent();
break;
}
case AMDGPU::FCLAMP_SI: {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::V_ADD_F32_e64),
MI->getOperand(0).getReg())
.addImm(0) // SRC0 modifiers
.addOperand(MI->getOperand(1))
.addImm(0) // SRC1 modifiers
.addImm(0) // SRC1
.addImm(1) // CLAMP
.addImm(0); // OMOD
MI->eraseFromParent();
}
}
return BB;
}
EVT SITargetLowering::getSetCCResultType(LLVMContext &, EVT VT) const {
if (!VT.isVector()) {
return MVT::i1;
}
return MVT::getVectorVT(MVT::i1, VT.getVectorNumElements());
}
MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const {
return MVT::i32;
}
bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
VT = VT.getScalarType();
if (!VT.isSimple())
return false;
switch (VT.getSimpleVT().SimpleTy) {
case MVT::f32:
return false; /* There is V_MAD_F32 for f32 */
case MVT::f64:
return true;
default:
break;
}
return false;
}
//===----------------------------------------------------------------------===//
// Custom DAG Lowering Operations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
switch (Op.getOpcode()) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::BRCOND: return LowerBRCOND(Op, DAG);
case ISD::LOAD: {
SDValue Result = LowerLOAD(Op, DAG);
assert((!Result.getNode() ||
Result.getNode()->getNumValues() == 2) &&
"Load should return a value and a chain");
return Result;
}
case ISD::FSIN:
case ISD::FCOS:
return LowerTrig(Op, DAG);
case ISD::SELECT: return LowerSELECT(Op, DAG);
case ISD::FDIV: return LowerFDIV(Op, DAG);
case ISD::STORE: return LowerSTORE(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(MFI, Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: {
unsigned IntrinsicID =
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
EVT VT = Op.getValueType();
SDLoc DL(Op);
switch (IntrinsicID) {
default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
case Intrinsic::r600_read_ngroups_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 0, false);
case Intrinsic::r600_read_ngroups_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 4, false);
case Intrinsic::r600_read_ngroups_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 8, false);
case Intrinsic::r600_read_global_size_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 12, false);
case Intrinsic::r600_read_global_size_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 16, false);
case Intrinsic::r600_read_global_size_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 20, false);
case Intrinsic::r600_read_local_size_x:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 24, false);
case Intrinsic::r600_read_local_size_y:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 28, false);
case Intrinsic::r600_read_local_size_z:
return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), 32, false);
case Intrinsic::r600_read_tgid_x:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 0), VT);
case Intrinsic::r600_read_tgid_y:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 1), VT);
case Intrinsic::r600_read_tgid_z:
return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
AMDGPU::SReg_32RegClass.getRegister(MFI->NumUserSGPRs + 2), VT);
case Intrinsic::r600_read_tidig_x:
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
AMDGPU::VGPR0, VT);
case Intrinsic::r600_read_tidig_y:
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
AMDGPU::VGPR1, VT);
case Intrinsic::r600_read_tidig_z:
return CreateLiveInRegister(DAG, &AMDGPU::VReg_32RegClass,
AMDGPU::VGPR2, VT);
case AMDGPUIntrinsic::SI_load_const: {
SDValue Ops [] = {
Op.getOperand(1),
Op.getOperand(2)
};
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
VT.getSizeInBits() / 8, 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
Op->getVTList(), Ops, VT, MMO);
}
case AMDGPUIntrinsic::SI_sample:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG);
case AMDGPUIntrinsic::SI_sampleb:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG);
case AMDGPUIntrinsic::SI_sampled:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG);
case AMDGPUIntrinsic::SI_samplel:
return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG);
case AMDGPUIntrinsic::SI_vs_load_input:
return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
}
}
case ISD::INTRINSIC_VOID:
SDValue Chain = Op.getOperand(0);
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
switch (IntrinsicID) {
case AMDGPUIntrinsic::SI_tbuffer_store: {
SDLoc DL(Op);
SDValue Ops [] = {
Chain,
Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4),
Op.getOperand(5),
Op.getOperand(6),
Op.getOperand(7),
Op.getOperand(8),
Op.getOperand(9),
Op.getOperand(10),
Op.getOperand(11),
Op.getOperand(12),
Op.getOperand(13),
Op.getOperand(14)
};
EVT VT = Op.getOperand(3).getValueType();
MachineMemOperand *MMO = MF.getMachineMemOperand(
MachinePointerInfo(),
MachineMemOperand::MOStore,
VT.getSizeInBits() / 8, 4);
return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
Op->getVTList(), Ops, VT, MMO);
}
default:
break;
}
}
return SDValue();
}
/// \brief Helper function for LowerBRCOND
static SDNode *findUser(SDValue Value, unsigned Opcode) {
SDNode *Parent = Value.getNode();
for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
I != E; ++I) {
if (I.getUse().get() != Value)
continue;
if (I->getOpcode() == Opcode)
return *I;
}
return nullptr;
}
SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
unsigned FrameIndex = FINode->getIndex();
CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
TRI.getPreloadedValue(MF, SIRegisterInfo::SCRATCH_WAVE_OFFSET), MVT::i32);
return DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
}
/// This transforms the control flow intrinsics to get the branch destination as
/// last parameter, also switches branch target with BR if the need arise
SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
SelectionDAG &DAG) const {
SDLoc DL(BRCOND);
SDNode *Intr = BRCOND.getOperand(1).getNode();
SDValue Target = BRCOND.getOperand(2);
SDNode *BR = nullptr;
if (Intr->getOpcode() == ISD::SETCC) {
// As long as we negate the condition everything is fine
SDNode *SetCC = Intr;
assert(SetCC->getConstantOperandVal(1) == 1);
assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==
ISD::SETNE);
Intr = SetCC->getOperand(0).getNode();
} else {
// Get the target from BR if we don't negate the condition
BR = findUser(BRCOND, ISD::BR);
Target = BR->getOperand(1);
}
assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN);
// Build the result and
SmallVector<EVT, 4> Res;
for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i)
Res.push_back(Intr->getValueType(i));
// operands of the new intrinsic call
SmallVector<SDValue, 4> Ops;
Ops.push_back(BRCOND.getOperand(0));
for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i)
Ops.push_back(Intr->getOperand(i));
Ops.push_back(Target);
// build the new intrinsic call
SDNode *Result = DAG.getNode(
Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
DAG.getVTList(Res), Ops).getNode();
if (BR) {
// Give the branch instruction our target
SDValue Ops[] = {
BR->getOperand(0),
BRCOND.getOperand(2)
};
DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops);
}
SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
// Copy the intrinsic results to registers
for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
if (!CopyToReg)
continue;
Chain = DAG.getCopyToReg(
Chain, DL,
CopyToReg->getOperand(1),
SDValue(Result, i - 1),
SDValue());
DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
}
// Remove the old intrinsic from the chain
DAG.ReplaceAllUsesOfValueWith(
SDValue(Intr, Intr->getNumValues() - 1),
Intr->getOperand(0));
return Chain;
}
SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
SDValue Op,
SelectionDAG &DAG) const {
GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
SDLoc DL(GSD);
const GlobalValue *GV = GSD->getGlobal();
MVT PtrVT = getPointerTy(GSD->getAddressSpace());
SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT);
SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
DAG.getConstant(0, MVT::i32));
SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr,
DAG.getConstant(1, MVT::i32));
SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue),
PtrLo, GA);
SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue),
PtrHi, DAG.getConstant(0, MVT::i32),
SDValue(Lo.getNode(), 1));
return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi);
}
SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
if (Op.getValueType().isVector()) {
assert(Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented.");
unsigned NumElements = Op.getValueType().getVectorNumElements();
assert(NumElements != 2 && "v2 loads are supported for all address spaces.");
switch (Load->getAddressSpace()) {
default: break;
case AMDGPUAS::GLOBAL_ADDRESS:
case AMDGPUAS::PRIVATE_ADDRESS:
// v4 loads are supported for private and global memory.
if (NumElements <= 4)
break;
// fall-through
case AMDGPUAS::LOCAL_ADDRESS:
return ScalarizeVectorLoad(Op, DAG);
}
}
return AMDGPUTargetLowering::LowerLOAD(Op, DAG);
}
SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode,
const SDValue &Op,
SelectionDAG &DAG) const {
return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3),
Op.getOperand(4));
}
SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
if (Op.getValueType() != MVT::i64)
return SDValue();
SDLoc DL(Op);
SDValue Cond = Op.getOperand(0);
SDValue Zero = DAG.getConstant(0, MVT::i32);
SDValue One = DAG.getConstant(1, MVT::i32);
SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
}
// Catch division cases where we can use shortcuts with rcp and rsq
// instructions.
SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
EVT VT = Op.getValueType();
bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
CLHS->isExactlyValue(1.0)) {
// v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
// the CI documentation has a worst case error of 1 ulp.
// OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
// use it as long as we aren't trying to use denormals.
// 1.0 / sqrt(x) -> rsq(x)
//
// XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
// error seems really high at 2^29 ULP.
if (RHS.getOpcode() == ISD::FSQRT)
return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
// 1.0 / x -> rcp(x)
return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
}
}
if (Unsafe) {
// Turn into multiply by the reciprocal.
// x / y -> x * (1.0 / y)
SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip);
}
return SDValue();
}
SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
SDValue FastLowered = LowerFastFDIV(Op, DAG);
if (FastLowered.getNode())
return FastLowered;
// This uses v_rcp_f32 which does not handle denormals. Let this hit a
// selection error for now rather than do something incorrect.
if (Subtarget->hasFP32Denormals())
return SDValue();
SDLoc SL(Op);
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
const APFloat K0Val(BitsToFloat(0x6f800000));
const SDValue K0 = DAG.getConstantFP(K0Val, MVT::f32);
const APFloat K1Val(BitsToFloat(0x2f800000));
const SDValue K1 = DAG.getConstantFP(K1Val, MVT::f32);
const SDValue One = DAG.getTargetConstantFP(1.0, MVT::f32);
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
}
SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
return SDValue();
}
SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
if (VT == MVT::f32)
return LowerFDIV32(Op, DAG);
if (VT == MVT::f64)
return LowerFDIV64(Op, DAG);
llvm_unreachable("Unexpected type for fdiv");
}
SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT VT = Store->getMemoryVT();
// These stores are legal.
if (Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
VT.isVector() && VT.getVectorNumElements() == 2 &&
VT.getVectorElementType() == MVT::i32)
return SDValue();
if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
if (VT.isVector() && VT.getVectorNumElements() > 4)
return ScalarizeVectorStore(Op, DAG);
return SDValue();
}
SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG);
if (Ret.getNode())
return Ret;
if (VT.isVector() && VT.getVectorNumElements() >= 8)
return ScalarizeVectorStore(Op, DAG);
if (VT == MVT::i1)
return DAG.getTruncStore(Store->getChain(), DL,
DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
Store->getBasePtr(), MVT::i1, Store->getMemOperand());
return SDValue();
}
SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
SDValue Arg = Op.getOperand(0);
SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, SDLoc(Op), VT,
DAG.getNode(ISD::FMUL, SDLoc(Op), VT, Arg,
DAG.getConstantFP(0.5 / M_PI, VT)));
switch (Op.getOpcode()) {
case ISD::FCOS:
return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
case ISD::FSIN:
return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
default:
llvm_unreachable("Wrong trig opcode");
}
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
DAGCombinerInfo &DCI) {
EVT VT = N->getValueType(0);
EVT ScalarVT = VT.getScalarType();
if (ScalarVT != MVT::f32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue Src = N->getOperand(0);
EVT SrcVT = Src.getValueType();
// TODO: We could try to match extracting the higher bytes, which would be
// easier if i8 vectors weren't promoted to i32 vectors, particularly after
// types are legalized. v4i8 -> v4f32 is probably the only case to worry
// about in practice.
if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
DCI.AddToWorklist(Cvt.getNode());
return Cvt;
}
}
// We are primarily trying to catch operations on illegal vector types
// before they are expanded.
// For scalars, we can use the more flexible method of checking masked bits
// after legalization.
if (!DCI.isBeforeLegalize() ||
!SrcVT.isVector() ||
SrcVT.getVectorElementType() != MVT::i8) {
return SDValue();
}
assert(DCI.isBeforeLegalize() && "Unexpected legal type");
// Weird sized vectors are a pain to handle, but we know 3 is really the same
// size as 4.
unsigned NElts = SrcVT.getVectorNumElements();
if (!SrcVT.isSimple() && NElts != 3)
return SDValue();
// Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
// prevent a mess from expanding to v4i32 and repacking.
if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
LoadSDNode *Load = cast<LoadSDNode>(Src);
SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
Load->getChain(),
Load->getBasePtr(),
LoadVT,
Load->getMemOperand());
// Make sure successors of the original load stay after it by updating
// them to use the new Chain.
DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
SmallVector<SDValue, 4> Elts;
if (RegVT.isVector())
DAG.ExtractVectorElements(NewLoad, Elts);
else
Elts.push_back(NewLoad);
SmallVector<SDValue, 4> Ops;
unsigned EltIdx = 0;
for (SDValue Elt : Elts) {
unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
for (unsigned I = 0; I < ComponentsInElt; ++I) {
unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
DCI.AddToWorklist(Cvt.getNode());
Ops.push_back(Cvt);
}
++EltIdx;
}
assert(Ops.size() == NElts);
return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
}
return SDValue();
}
SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
EVT VT = N->getValueType(0);
switch (N->getOpcode()) {
default: return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
case ISD::SETCC: {
SDValue Arg0 = N->getOperand(0);
SDValue Arg1 = N->getOperand(1);
SDValue CC = N->getOperand(2);
ConstantSDNode * C = nullptr;
ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get();
// i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne)
if (VT == MVT::i1
&& Arg0.getOpcode() == ISD::SIGN_EXTEND
&& Arg0.getOperand(0).getValueType() == MVT::i1
&& (C = dyn_cast<ConstantSDNode>(Arg1))
&& C->isNullValue()
&& CCOp == ISD::SETNE) {
return SimplifySetCC(VT, Arg0.getOperand(0),
DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL);
}
break;
}
case AMDGPUISD::CVT_F32_UBYTE0:
case AMDGPUISD::CVT_F32_UBYTE1:
case AMDGPUISD::CVT_F32_UBYTE2:
case AMDGPUISD::CVT_F32_UBYTE3: {
unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
SDValue Src = N->getOperand(0);
APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case ISD::UINT_TO_FP: {
return performUCharToFloatCombine(N, DCI);
}
}
return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
}
/// \brief Test if RegClass is one of the VSrc classes
static bool isVSrc(unsigned RegClass) {
return AMDGPU::VSrc_32RegClassID == RegClass ||
AMDGPU::VSrc_64RegClassID == RegClass;
}
/// \brief Test if RegClass is one of the SSrc classes
static bool isSSrc(unsigned RegClass) {
return AMDGPU::SSrc_32RegClassID == RegClass ||
AMDGPU::SSrc_64RegClassID == RegClass;
}
/// \brief Analyze the possible immediate value Op
///
/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
/// and the immediate value if it's a literal immediate
int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
union {
int32_t I;
float F;
} Imm;
if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
if (Node->getZExtValue() >> 32) {
return -1;
}
Imm.I = Node->getSExtValue();
} else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
if (N->getValueType(0) != MVT::f32)
return -1;
Imm.F = Node->getValueAPF().convertToFloat();
} else
return -1; // It isn't an immediate
if ((Imm.I >= -16 && Imm.I <= 64) ||
Imm.F == 0.5f || Imm.F == -0.5f ||
Imm.F == 1.0f || Imm.F == -1.0f ||
Imm.F == 2.0f || Imm.F == -2.0f ||
Imm.F == 4.0f || Imm.F == -4.0f)
return 0; // It's an inline immediate
return Imm.I; // It's a literal immediate
}
/// \brief Try to fold an immediate directly into an instruction
bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate,
bool &ScalarSlotUsed) const {
MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand);
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
if (!Mov || !TII->isMov(Mov->getMachineOpcode()))
return false;
const SDValue &Op = Mov->getOperand(0);
int32_t Value = analyzeImmediate(Op.getNode());
if (Value == -1) {
// Not an immediate at all
return false;
} else if (Value == 0) {
// Inline immediates can always be fold
Operand = Op;
return true;
} else if (Value == Immediate) {
// Already fold literal immediate
Operand = Op;
return true;
} else if (!ScalarSlotUsed && !Immediate) {
// Fold this literal immediate
ScalarSlotUsed = true;
Immediate = Value;
Operand = Op;
return true;
}
return false;
}
const TargetRegisterClass *SITargetLowering::getRegClassForNode(
SelectionDAG &DAG, const SDValue &Op) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
const SIRegisterInfo &TRI = TII->getRegisterInfo();
if (!Op->isMachineOpcode()) {
switch(Op->getOpcode()) {
case ISD::CopyFromReg: {
MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
unsigned Reg = cast<RegisterSDNode>(Op->getOperand(1))->getReg();
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
return MRI.getRegClass(Reg);
}
return TRI.getPhysRegClass(Reg);
}
default: return nullptr;
}
}
const MCInstrDesc &Desc = TII->get(Op->getMachineOpcode());
int OpClassID = Desc.OpInfo[Op.getResNo()].RegClass;
if (OpClassID != -1) {
return TRI.getRegClass(OpClassID);
}
switch(Op.getMachineOpcode()) {
case AMDGPU::COPY_TO_REGCLASS:
// Operand 1 is the register class id for COPY_TO_REGCLASS instructions.
OpClassID = cast<ConstantSDNode>(Op->getOperand(1))->getZExtValue();
// If the COPY_TO_REGCLASS instruction is copying to a VSrc register
// class, then the register class for the value could be either a
// VReg or and SReg. In order to get a more accurate
if (OpClassID == AMDGPU::VSrc_32RegClassID ||
OpClassID == AMDGPU::VSrc_64RegClassID) {
return getRegClassForNode(DAG, Op.getOperand(0));
}
return TRI.getRegClass(OpClassID);
case AMDGPU::EXTRACT_SUBREG: {
int SubIdx = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
const TargetRegisterClass *SuperClass =
getRegClassForNode(DAG, Op.getOperand(0));
return TRI.getSubClassWithSubReg(SuperClass, SubIdx);
}
case AMDGPU::REG_SEQUENCE:
// Operand 0 is the register class id for REG_SEQUENCE instructions.
return TRI.getRegClass(
cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue());
default:
return getRegClassFor(Op.getSimpleValueType());
}
}
/// \brief Does "Op" fit into register class "RegClass" ?
bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, const SDValue &Op,
unsigned RegClass) const {
const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
const TargetRegisterClass *RC = getRegClassForNode(DAG, Op);
if (!RC) {
return false;
}
return TRI->getRegClass(RegClass)->hasSubClassEq(RC);
}
/// \brief Make sure that we don't exeed the number of allowed scalars
void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand,
unsigned RegClass,
bool &ScalarSlotUsed) const {
// First map the operands register class to a destination class
if (RegClass == AMDGPU::VSrc_32RegClassID)
RegClass = AMDGPU::VReg_32RegClassID;
else if (RegClass == AMDGPU::VSrc_64RegClassID)
RegClass = AMDGPU::VReg_64RegClassID;
else
return;
// Nothing to do if they fit naturally
if (fitsRegClass(DAG, Operand, RegClass))
return;
// If the scalar slot isn't used yet use it now
if (!ScalarSlotUsed) {
ScalarSlotUsed = true;
return;
}
// This is a conservative aproach. It is possible that we can't determine the
// correct register class and copy too often, but better safe than sorry.
SDNode *Node;
// We can't use COPY_TO_REGCLASS with FrameIndex arguments.
if (isa<FrameIndexSDNode>(Operand)) {
unsigned Opcode = Operand.getValueType() == MVT::i32 ?
AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
Node = DAG.getMachineNode(Opcode, SDLoc(), Operand.getValueType(),
Operand);
} else {
SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32);
Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, SDLoc(),
Operand.getValueType(), Operand, RC);
}
Operand = SDValue(Node, 0);
}
/// \returns true if \p Node's operands are different from the SDValue list
/// \p Ops
static bool isNodeChanged(const SDNode *Node, const std::vector<SDValue> &Ops) {
for (unsigned i = 0, e = Node->getNumOperands(); i < e; ++i) {
if (Ops[i].getNode() != Node->getOperand(i).getNode()) {
return true;
}
}
return false;
}
/// \brief Try to fold the Nodes operands into the Node
SDNode *SITargetLowering::foldOperands(MachineSDNode *Node,
SelectionDAG &DAG) const {
// Original encoding (either e32 or e64)
int Opcode = Node->getMachineOpcode();
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
const MCInstrDesc *Desc = &TII->get(Opcode);
unsigned NumDefs = Desc->getNumDefs();
unsigned NumOps = Desc->getNumOperands();
// Commuted opcode if available
int OpcodeRev = Desc->isCommutable() ? TII->commuteOpcode(Opcode) : -1;
const MCInstrDesc *DescRev = OpcodeRev == -1 ? nullptr : &TII->get(OpcodeRev);
assert(!DescRev || DescRev->getNumDefs() == NumDefs);
assert(!DescRev || DescRev->getNumOperands() == NumOps);
// e64 version if available, -1 otherwise
int OpcodeE64 = AMDGPU::getVOPe64(Opcode);
const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? nullptr : &TII->get(OpcodeE64);
int InputModifiers[3] = {0};
assert(!DescE64 || DescE64->getNumDefs() == NumDefs);
int32_t Immediate = Desc->getSize() == 4 ? 0 : -1;
bool HaveVSrc = false, HaveSSrc = false;
// First figure out what we already have in this instruction.
for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
i != e && Op < NumOps; ++i, ++Op) {
unsigned RegClass = Desc->OpInfo[Op].RegClass;
if (isVSrc(RegClass))
HaveVSrc = true;
else if (isSSrc(RegClass))
HaveSSrc = true;
else
continue;
int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode());
if (Imm != -1 && Imm != 0) {
// Literal immediate
Immediate = Imm;
}
}
// If we neither have VSrc nor SSrc, it makes no sense to continue.
if (!HaveVSrc && !HaveSSrc)
return Node;
// No scalar allowed when we have both VSrc and SSrc
bool ScalarSlotUsed = HaveVSrc && HaveSSrc;
// Second go over the operands and try to fold them
std::vector<SDValue> Ops;
bool Promote2e64 = false;
for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs;
i != e && Op < NumOps; ++i, ++Op) {
const SDValue &Operand = Node->getOperand(i);
Ops.push_back(Operand);
// Already folded immediate?
if (isa<ConstantSDNode>(Operand.getNode()) ||
isa<ConstantFPSDNode>(Operand.getNode()))
continue;
// Is this a VSrc or SSrc operand?
unsigned RegClass = Desc->OpInfo[Op].RegClass;
if (isVSrc(RegClass) || isSSrc(RegClass)) {
// Try to fold the immediates
if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) {
// Folding didn't work, make sure we don't hit the SReg limit.
ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed);
}
continue;
} else {
// If it's not a VSrc or SSrc operand check if we have a GlobalAddress.
// These will be lowered to immediates, so we will need to insert a MOV.
if (isa<GlobalAddressSDNode>(Ops[i])) {
SDNode *Node = DAG.getMachineNode(AMDGPU::V_MOV_B32_e32, SDLoc(),
Operand.getValueType(), Operand);
Ops[i] = SDValue(Node, 0);
}
}
if (i == 1 && DescRev && fitsRegClass(DAG, Ops[0], RegClass)) {
unsigned OtherRegClass = Desc->OpInfo[NumDefs].RegClass;
assert(isVSrc(OtherRegClass) || isSSrc(OtherRegClass));
// Test if it makes sense to swap operands
if (foldImm(Ops[1], Immediate, ScalarSlotUsed) ||
(!fitsRegClass(DAG, Ops[1], RegClass) &&
fitsRegClass(DAG, Ops[1], OtherRegClass))) {
// Swap commutable operands
std::swap(Ops[0], Ops[1]);
Desc = DescRev;
DescRev = nullptr;
continue;
}
}
if (Immediate)
continue;
if (DescE64) {
// Test if it makes sense to switch to e64 encoding
unsigned OtherRegClass = DescE64->OpInfo[Op].RegClass;
if (!isVSrc(OtherRegClass) && !isSSrc(OtherRegClass))
continue;
int32_t TmpImm = -1;
if (foldImm(Ops[i], TmpImm, ScalarSlotUsed) ||
(!fitsRegClass(DAG, Ops[i], RegClass) &&
fitsRegClass(DAG, Ops[1], OtherRegClass))) {
// Switch to e64 encoding
Immediate = -1;
Promote2e64 = true;
Desc = DescE64;
DescE64 = nullptr;
}
}
if (!DescE64 && !Promote2e64)
continue;
if (!Operand.isMachineOpcode())
continue;
if (Operand.getMachineOpcode() == AMDGPU::FNEG_SI) {
Ops.pop_back();
Ops.push_back(Operand.getOperand(0));
InputModifiers[i] = 1;
Promote2e64 = true;
if (!DescE64)
continue;
Desc = DescE64;
DescE64 = nullptr;
}
else if (Operand.getMachineOpcode() == AMDGPU::FABS_SI) {
Ops.pop_back();
Ops.push_back(Operand.getOperand(0));
InputModifiers[i] = 2;
Promote2e64 = true;
if (!DescE64)
continue;
Desc = DescE64;
DescE64 = nullptr;
}
}
if (Promote2e64) {
std::vector<SDValue> OldOps(Ops);
Ops.clear();
for (unsigned i = 0; i < OldOps.size(); ++i) {
// src_modifier
Ops.push_back(DAG.getTargetConstant(InputModifiers[i], MVT::i32));
Ops.push_back(OldOps[i]);
}
// Add the modifier flags while promoting
for (unsigned i = 0; i < 2; ++i)
Ops.push_back(DAG.getTargetConstant(0, MVT::i32));
}
// Add optional chain and glue
for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i)
Ops.push_back(Node->getOperand(i));
// Nodes that have a glue result are not CSE'd by getMachineNode(), so in
// this case a brand new node is always be created, even if the operands
// are the same as before. So, manually check if anything has been changed.
if (Desc->Opcode == Opcode && !isNodeChanged(Node, Ops)) {
return Node;
}
// Create a complete new instruction
return DAG.getMachineNode(Desc->Opcode, SDLoc(Node), Node->getVTList(), Ops);
}
/// \brief Helper function for adjustWritemask
static unsigned SubIdx2Lane(unsigned Idx) {
switch (Idx) {
default: return 0;
case AMDGPU::sub0: return 0;
case AMDGPU::sub1: return 1;
case AMDGPU::sub2: return 2;
case AMDGPU::sub3: return 3;
}
}
/// \brief Adjust the writemask of MIMG instructions
void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
SelectionDAG &DAG) const {
SDNode *Users[4] = { };
unsigned Lane = 0;
unsigned OldDmask = Node->getConstantOperandVal(0);
unsigned NewDmask = 0;
// Try to figure out the used register components
for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
I != E; ++I) {
// Abort if we can't understand the usage
if (!I->isMachineOpcode() ||
I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
return;
// Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
// Note that subregs are packed, i.e. Lane==0 is the first bit set
// in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
// set, etc.
Lane = SubIdx2Lane(I->getConstantOperandVal(1));
// Set which texture component corresponds to the lane.
unsigned Comp;
for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
assert(Dmask);
Comp = countTrailingZeros(Dmask);
Dmask &= ~(1 << Comp);
}
// Abort if we have more than one user per component
if (Users[Lane])
return;
Users[Lane] = *I;
NewDmask |= 1 << Comp;
}
// Abort if there's no change
if (NewDmask == OldDmask)
return;
// Adjust the writemask in the node
std::vector<SDValue> Ops;
Ops.push_back(DAG.getTargetConstant(NewDmask, MVT::i32));
for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i)
Ops.push_back(Node->getOperand(i));
Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
// If we only got one lane, replace it with a copy
// (if NewDmask has only one bit set...)
if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
SDValue RC = DAG.getTargetConstant(AMDGPU::VReg_32RegClassID, MVT::i32);
SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
SDLoc(), Users[Lane]->getValueType(0),
SDValue(Node, 0), RC);
DAG.ReplaceAllUsesWith(Users[Lane], Copy);
return;
}
// Update the users of the node with the new indices
for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
SDNode *User = Users[i];
if (!User)
continue;
SDValue Op = DAG.getTargetConstant(Idx, MVT::i32);
DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
switch (Idx) {
default: break;
case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
}
}
}
/// \brief Fold the instructions after selecting them.
SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
SelectionDAG &DAG) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
Node = AdjustRegClass(Node, DAG);
if (TII->isMIMG(Node->getMachineOpcode()))
adjustWritemask(Node, DAG);
return foldOperands(Node, DAG);
}
/// \brief Assign the register class depending on the number of
/// bits set in the writemask
void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
SDNode *Node) const {
const SIInstrInfo *TII =
static_cast<const SIInstrInfo*>(getTargetMachine().getInstrInfo());
if (!TII->isMIMG(MI->getOpcode()))
return;
unsigned VReg = MI->getOperand(0).getReg();
unsigned Writemask = MI->getOperand(1).getImm();
unsigned BitsSet = 0;
for (unsigned i = 0; i < 4; ++i)
BitsSet += Writemask & (1 << i) ? 1 : 0;
const TargetRegisterClass *RC;
switch (BitsSet) {
default: return;
case 1: RC = &AMDGPU::VReg_32RegClass; break;
case 2: RC = &AMDGPU::VReg_64RegClass; break;
case 3: RC = &AMDGPU::VReg_96RegClass; break;
}
unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
MI->setDesc(TII->get(NewOpcode));
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
MRI.setRegClass(VReg, RC);
}
MachineSDNode *SITargetLowering::AdjustRegClass(MachineSDNode *N,
SelectionDAG &DAG) const {
SDLoc DL(N);
unsigned NewOpcode = N->getMachineOpcode();
switch (N->getMachineOpcode()) {
default: return N;
case AMDGPU::S_LOAD_DWORD_IMM:
NewOpcode = AMDGPU::BUFFER_LOAD_DWORD_ADDR64;
// Fall-through
case AMDGPU::S_LOAD_DWORDX2_SGPR:
if (NewOpcode == N->getMachineOpcode()) {
NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX2_ADDR64;
}
// Fall-through
case AMDGPU::S_LOAD_DWORDX4_IMM:
case AMDGPU::S_LOAD_DWORDX4_SGPR: {
if (NewOpcode == N->getMachineOpcode()) {
NewOpcode = AMDGPU::BUFFER_LOAD_DWORDX4_ADDR64;
}
if (fitsRegClass(DAG, N->getOperand(0), AMDGPU::SReg_64RegClassID)) {
return N;
}
ConstantSDNode *Offset = cast<ConstantSDNode>(N->getOperand(1));
SDValue Ops[] = {
SDValue(DAG.getMachineNode(AMDGPU::SI_ADDR64_RSRC, DL, MVT::i128,
DAG.getConstant(0, MVT::i64)), 0),
N->getOperand(0),
DAG.getConstant(Offset->getSExtValue() << 2, MVT::i32)
};
return DAG.getMachineNode(NewOpcode, DL, N->getVTList(), Ops);
}
}
}
SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
cast<RegisterSDNode>(VReg)->getReg(), VT);
}