llvm-6502/lib/Target/Sparc/SparcISelLowering.cpp
Rafael Espindola 26c8dcc692 Always compute all the bits in ComputeMaskedBits.
This allows us to keep passing reduced masks to SimplifyDemandedBits, but
know about all the bits if SimplifyDemandedBits fails. This allows instcombine
to simplify cases like the one in the included testcase.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@154011 91177308-0d34-0410-b5e6-96231b3b80d8
2012-04-04 12:51:34 +00:00

1274 lines
50 KiB
C++

//===-- SparcISelLowering.cpp - Sparc DAG Lowering Implementation ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces that Sparc uses to lower LLVM code into a
// selection DAG.
//
//===----------------------------------------------------------------------===//
#include "SparcISelLowering.h"
#include "SparcTargetMachine.h"
#include "SparcMachineFunctionInfo.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Module.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/Support/ErrorHandling.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
static bool CC_Sparc_Assign_SRet(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
assert (ArgFlags.isSRet());
//Assign SRet argument
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
0,
LocVT, LocInfo));
return true;
}
static bool CC_Sparc_Assign_f64(unsigned &ValNo, MVT &ValVT,
MVT &LocVT, CCValAssign::LocInfo &LocInfo,
ISD::ArgFlagsTy &ArgFlags, CCState &State)
{
static const uint16_t RegList[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
//Try to get first reg
if (unsigned Reg = State.AllocateReg(RegList, 6)) {
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
} else {
//Assign whole thing in stack
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(8,4),
LocVT, LocInfo));
return true;
}
//Try to get second reg
if (unsigned Reg = State.AllocateReg(RegList, 6))
State.addLoc(CCValAssign::getCustomReg(ValNo, ValVT, Reg, LocVT, LocInfo));
else
State.addLoc(CCValAssign::getCustomMem(ValNo, ValVT,
State.AllocateStack(4,4),
LocVT, LocInfo));
return true;
}
#include "SparcGenCallingConv.inc"
SDValue
SparcTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
DebugLoc dl, SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
// CCValAssign - represent the assignment of the return value to locations.
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
DAG.getTarget(), RVLocs, *DAG.getContext());
// Analize return values.
CCInfo.AnalyzeReturn(Outs, RetCC_Sparc32);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
if (MF.getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
MF.getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Flag;
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
assert(VA.isRegLoc() && "Can only return in registers!");
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
OutVals[i], Flag);
// Guarantee that all emitted copies are stuck together with flags.
Flag = Chain.getValue(1);
}
unsigned RetAddrOffset = 8; //Call Inst + Delay Slot
// If the function returns a struct, copy the SRetReturnReg to I0
if (MF.getFunction()->hasStructRetAttr()) {
SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
unsigned Reg = SFI->getSRetReturnReg();
if (!Reg)
llvm_unreachable("sret virtual register not created in the entry block");
SDValue Val = DAG.getCopyFromReg(Chain, dl, Reg, getPointerTy());
Chain = DAG.getCopyToReg(Chain, dl, SP::I0, Val, Flag);
Flag = Chain.getValue(1);
if (MF.getRegInfo().liveout_empty())
MF.getRegInfo().addLiveOut(SP::I0);
RetAddrOffset = 12; // CallInst + Delay Slot + Unimp
}
SDValue RetAddrOffsetNode = DAG.getConstant(RetAddrOffset, MVT::i32);
if (Flag.getNode())
return DAG.getNode(SPISD::RET_FLAG, dl, MVT::Other, Chain,
RetAddrOffsetNode, Flag);
return DAG.getNode(SPISD::RET_FLAG, dl, MVT::Other, Chain,
RetAddrOffsetNode);
}
/// LowerFormalArguments - V8 uses a very simple ABI, where all values are
/// passed in either one or two GPRs, including FP values. TODO: we should
/// pass FP values in FP registers for fastcc functions.
SDValue
SparcTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals)
const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
getTargetMachine(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_Sparc32);
const unsigned StackOffset = 92;
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
if (i == 0 && Ins[i].Flags.isSRet()) {
//Get SRet from [%fp+64]
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, 64, true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
SDValue Arg = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
InVals.push_back(Arg);
continue;
}
if (VA.isRegLoc()) {
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::f64);
unsigned VRegHi = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(VA.getLocReg(), VRegHi);
SDValue HiVal = DAG.getCopyFromReg(Chain, dl, VRegHi, MVT::i32);
assert(i+1 < e);
CCValAssign &NextVA = ArgLocs[++i];
SDValue LoVal;
if (NextVA.isMemLoc()) {
int FrameIdx = MF.getFrameInfo()->
CreateFixedObject(4, StackOffset+NextVA.getLocMemOffset(),true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
} else {
unsigned loReg = MF.addLiveIn(NextVA.getLocReg(),
&SP::IntRegsRegClass);
LoVal = DAG.getCopyFromReg(Chain, dl, loReg, MVT::i32);
}
SDValue WholeValue =
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
InVals.push_back(WholeValue);
continue;
}
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(VA.getLocReg(), VReg);
SDValue Arg = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
if (VA.getLocVT() == MVT::f32)
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Arg);
else if (VA.getLocVT() != MVT::i32) {
Arg = DAG.getNode(ISD::AssertSext, dl, MVT::i32, Arg,
DAG.getValueType(VA.getLocVT()));
Arg = DAG.getNode(ISD::TRUNCATE, dl, VA.getLocVT(), Arg);
}
InVals.push_back(Arg);
continue;
}
assert(VA.isMemLoc());
unsigned Offset = VA.getLocMemOffset()+StackOffset;
if (VA.needsCustom()) {
assert(VA.getValVT() == MVT::f64);
//If it is double-word aligned, just load.
if (Offset % 8 == 0) {
int FI = MF.getFrameInfo()->CreateFixedObject(8,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
MachinePointerInfo(),
false,false, false, 0);
InVals.push_back(Load);
continue;
}
int FI = MF.getFrameInfo()->CreateFixedObject(4,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue HiVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
int FI2 = MF.getFrameInfo()->CreateFixedObject(4,
Offset+4,
true);
SDValue FIPtr2 = DAG.getFrameIndex(FI2, getPointerTy());
SDValue LoVal = DAG.getLoad(MVT::i32, dl, Chain, FIPtr2,
MachinePointerInfo(),
false, false, false, 0);
SDValue WholeValue =
DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, LoVal, HiVal);
WholeValue = DAG.getNode(ISD::BITCAST, dl, MVT::f64, WholeValue);
InVals.push_back(WholeValue);
continue;
}
int FI = MF.getFrameInfo()->CreateFixedObject(4,
Offset,
true);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue Load ;
if (VA.getValVT() == MVT::i32 || VA.getValVT() == MVT::f32) {
Load = DAG.getLoad(VA.getValVT(), dl, Chain, FIPtr,
MachinePointerInfo(),
false, false, false, 0);
} else {
ISD::LoadExtType LoadOp = ISD::SEXTLOAD;
// Sparc is big endian, so add an offset based on the ObjectVT.
unsigned Offset = 4-std::max(1U, VA.getValVT().getSizeInBits()/8);
FIPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, FIPtr,
DAG.getConstant(Offset, MVT::i32));
Load = DAG.getExtLoad(LoadOp, dl, MVT::i32, Chain, FIPtr,
MachinePointerInfo(),
VA.getValVT(), false, false,0);
Load = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Load);
}
InVals.push_back(Load);
}
if (MF.getFunction()->hasStructRetAttr()) {
//Copy the SRet Argument to SRetReturnReg
SparcMachineFunctionInfo *SFI = MF.getInfo<SparcMachineFunctionInfo>();
unsigned Reg = SFI->getSRetReturnReg();
if (!Reg) {
Reg = MF.getRegInfo().createVirtualRegister(&SP::IntRegsRegClass);
SFI->setSRetReturnReg(Reg);
}
SDValue Copy = DAG.getCopyToReg(DAG.getEntryNode(), dl, Reg, InVals[0]);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Copy, Chain);
}
// Store remaining ArgRegs to the stack if this is a varargs function.
if (isVarArg) {
static const uint16_t ArgRegs[] = {
SP::I0, SP::I1, SP::I2, SP::I3, SP::I4, SP::I5
};
unsigned NumAllocated = CCInfo.getFirstUnallocated(ArgRegs, 6);
const uint16_t *CurArgReg = ArgRegs+NumAllocated, *ArgRegEnd = ArgRegs+6;
unsigned ArgOffset = CCInfo.getNextStackOffset();
if (NumAllocated == 6)
ArgOffset += StackOffset;
else {
assert(!ArgOffset);
ArgOffset = 68+4*NumAllocated;
}
// Remember the vararg offset for the va_start implementation.
FuncInfo->setVarArgsFrameOffset(ArgOffset);
std::vector<SDValue> OutChains;
for (; CurArgReg != ArgRegEnd; ++CurArgReg) {
unsigned VReg = RegInfo.createVirtualRegister(&SP::IntRegsRegClass);
MF.getRegInfo().addLiveIn(*CurArgReg, VReg);
SDValue Arg = DAG.getCopyFromReg(DAG.getRoot(), dl, VReg, MVT::i32);
int FrameIdx = MF.getFrameInfo()->CreateFixedObject(4, ArgOffset,
true);
SDValue FIPtr = DAG.getFrameIndex(FrameIdx, MVT::i32);
OutChains.push_back(DAG.getStore(DAG.getRoot(), dl, Arg, FIPtr,
MachinePointerInfo(),
false, false, 0));
ArgOffset += 4;
}
if (!OutChains.empty()) {
OutChains.push_back(Chain);
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], OutChains.size());
}
}
return Chain;
}
SDValue
SparcTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool doesNotRet, bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) const {
// Sparc target does not yet support tail call optimization.
isTailCall = false;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
DAG.getTarget(), ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_Sparc32);
// Get the size of the outgoing arguments stack space requirement.
unsigned ArgsSize = CCInfo.getNextStackOffset();
// Keep stack frames 8-byte aligned.
ArgsSize = (ArgsSize+7) & ~7;
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
//Create local copies for byval args.
SmallVector<SDValue, 8> ByValArgs;
for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
ISD::ArgFlagsTy Flags = Outs[i].Flags;
if (!Flags.isByVal())
continue;
SDValue Arg = OutVals[i];
unsigned Size = Flags.getByValSize();
unsigned Align = Flags.getByValAlign();
int FI = MFI->CreateStackObject(Size, Align, false);
SDValue FIPtr = DAG.getFrameIndex(FI, getPointerTy());
SDValue SizeNode = DAG.getConstant(Size, MVT::i32);
Chain = DAG.getMemcpy(Chain, dl, FIPtr, Arg, SizeNode, Align,
false, //isVolatile,
(Size <= 32), //AlwaysInline if size <= 32
MachinePointerInfo(), MachinePointerInfo());
ByValArgs.push_back(FIPtr);
}
Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(ArgsSize, true));
SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
SmallVector<SDValue, 8> MemOpChains;
const unsigned StackOffset = 92;
bool hasStructRetAttr = false;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, realArgIdx = 0, byvalArgIdx = 0, e = ArgLocs.size();
i != e;
++i, ++realArgIdx) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = OutVals[realArgIdx];
ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
//Use local copy if it is a byval arg.
if (Flags.isByVal())
Arg = ByValArgs[byvalArgIdx++];
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: llvm_unreachable("Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::BCvt:
Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
break;
}
if (Flags.isSRet()) {
assert(VA.needsCustom());
// store SRet argument in %sp+64
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(64);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
hasStructRetAttr = true;
continue;
}
if (VA.needsCustom()) {
assert(VA.getLocVT() == MVT::f64);
if (VA.isMemLoc()) {
unsigned Offset = VA.getLocMemOffset() + StackOffset;
//if it is double-word aligned, just store.
if (Offset % 8 == 0) {
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
continue;
}
}
SDValue StackPtr = DAG.CreateStackTemporary(MVT::f64, MVT::i32);
SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
Arg, StackPtr, MachinePointerInfo(),
false, false, 0);
// Sparc is big-endian, so the high part comes first.
SDValue Hi = DAG.getLoad(MVT::i32, dl, Store, StackPtr,
MachinePointerInfo(), false, false, false, 0);
// Increment the pointer to the other half.
StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
DAG.getIntPtrConstant(4));
// Load the low part.
SDValue Lo = DAG.getLoad(MVT::i32, dl, Store, StackPtr,
MachinePointerInfo(), false, false, false, 0);
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Hi));
assert(i+1 != e);
CCValAssign &NextVA = ArgLocs[++i];
if (NextVA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), Lo));
} else {
//Store the low part in stack.
unsigned Offset = NextVA.getLocMemOffset() + StackOffset;
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
} else {
unsigned Offset = VA.getLocMemOffset() + StackOffset;
// Store the high part.
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(Offset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Hi, PtrOff,
MachinePointerInfo(),
false, false, 0));
// Store the low part.
PtrOff = DAG.getIntPtrConstant(Offset+4);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Lo, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
continue;
}
// Arguments that can be passed on register must be kept at
// RegsToPass vector
if (VA.isRegLoc()) {
if (VA.getLocVT() != MVT::f32) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
Arg = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Arg);
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
continue;
}
assert(VA.isMemLoc());
// Create a store off the stack pointer for this argument.
SDValue StackPtr = DAG.getRegister(SP::O6, MVT::i32);
SDValue PtrOff = DAG.getIntPtrConstant(VA.getLocMemOffset()+StackOffset);
PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
MachinePointerInfo(),
false, false, 0));
}
// Emit all stores, make sure the occur before any copies into physregs.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token
// chain and flag operands which copy the outgoing args into registers.
// The InFlag in necessary since all emitted instructions must be
// stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
unsigned Reg = RegsToPass[i].first;
// Remap I0->I7 -> O0->O7.
if (Reg >= SP::I0 && Reg <= SP::I7)
Reg = Reg-SP::I0+SP::O0;
Chain = DAG.getCopyToReg(Chain, dl, Reg, RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
unsigned SRetArgSize = (hasStructRetAttr)? getSRetArgSize(DAG, Callee):0;
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, MVT::i32);
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), MVT::i32);
// Returns a chain & a flag for retval copy to use
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
if (hasStructRetAttr)
Ops.push_back(DAG.getTargetConstant(SRetArgSize, MVT::i32));
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
unsigned Reg = RegsToPass[i].first;
if (Reg >= SP::I0 && Reg <= SP::I7)
Reg = Reg-SP::I0+SP::O0;
Ops.push_back(DAG.getRegister(Reg, RegsToPass[i].second.getValueType()));
}
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(SPISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(ArgsSize, true),
DAG.getIntPtrConstant(0, true), InFlag);
InFlag = Chain.getValue(1);
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState RVInfo(CallConv, isVarArg, DAG.getMachineFunction(),
DAG.getTarget(), RVLocs, *DAG.getContext());
RVInfo.AnalyzeCallResult(Ins, RetCC_Sparc32);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
unsigned Reg = RVLocs[i].getLocReg();
// Remap I0->I7 -> O0->O7.
if (Reg >= SP::I0 && Reg <= SP::I7)
Reg = Reg-SP::I0+SP::O0;
Chain = DAG.getCopyFromReg(Chain, dl, Reg,
RVLocs[i].getValVT(), InFlag).getValue(1);
InFlag = Chain.getValue(2);
InVals.push_back(Chain.getValue(0));
}
return Chain;
}
unsigned
SparcTargetLowering::getSRetArgSize(SelectionDAG &DAG, SDValue Callee) const
{
const Function *CalleeFn = 0;
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
CalleeFn = dyn_cast<Function>(G->getGlobal());
} else if (ExternalSymbolSDNode *E =
dyn_cast<ExternalSymbolSDNode>(Callee)) {
const Function *Fn = DAG.getMachineFunction().getFunction();
const Module *M = Fn->getParent();
CalleeFn = M->getFunction(E->getSymbol());
}
if (!CalleeFn)
return 0;
assert(CalleeFn->hasStructRetAttr() &&
"Callee does not have the StructRet attribute.");
PointerType *Ty = cast<PointerType>(CalleeFn->arg_begin()->getType());
Type *ElementTy = Ty->getElementType();
return getTargetData()->getTypeAllocSize(ElementTy);
}
//===----------------------------------------------------------------------===//
// TargetLowering Implementation
//===----------------------------------------------------------------------===//
/// IntCondCCodeToICC - Convert a DAG integer condition code to a SPARC ICC
/// condition.
static SPCC::CondCodes IntCondCCodeToICC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown integer condition code!");
case ISD::SETEQ: return SPCC::ICC_E;
case ISD::SETNE: return SPCC::ICC_NE;
case ISD::SETLT: return SPCC::ICC_L;
case ISD::SETGT: return SPCC::ICC_G;
case ISD::SETLE: return SPCC::ICC_LE;
case ISD::SETGE: return SPCC::ICC_GE;
case ISD::SETULT: return SPCC::ICC_CS;
case ISD::SETULE: return SPCC::ICC_LEU;
case ISD::SETUGT: return SPCC::ICC_GU;
case ISD::SETUGE: return SPCC::ICC_CC;
}
}
/// FPCondCCodeToFCC - Convert a DAG floatingp oint condition code to a SPARC
/// FCC condition.
static SPCC::CondCodes FPCondCCodeToFCC(ISD::CondCode CC) {
switch (CC) {
default: llvm_unreachable("Unknown fp condition code!");
case ISD::SETEQ:
case ISD::SETOEQ: return SPCC::FCC_E;
case ISD::SETNE:
case ISD::SETUNE: return SPCC::FCC_NE;
case ISD::SETLT:
case ISD::SETOLT: return SPCC::FCC_L;
case ISD::SETGT:
case ISD::SETOGT: return SPCC::FCC_G;
case ISD::SETLE:
case ISD::SETOLE: return SPCC::FCC_LE;
case ISD::SETGE:
case ISD::SETOGE: return SPCC::FCC_GE;
case ISD::SETULT: return SPCC::FCC_UL;
case ISD::SETULE: return SPCC::FCC_ULE;
case ISD::SETUGT: return SPCC::FCC_UG;
case ISD::SETUGE: return SPCC::FCC_UGE;
case ISD::SETUO: return SPCC::FCC_U;
case ISD::SETO: return SPCC::FCC_O;
case ISD::SETONE: return SPCC::FCC_LG;
case ISD::SETUEQ: return SPCC::FCC_UE;
}
}
SparcTargetLowering::SparcTargetLowering(TargetMachine &TM)
: TargetLowering(TM, new TargetLoweringObjectFileELF()) {
// Set up the register classes.
addRegisterClass(MVT::i32, SP::IntRegsRegisterClass);
addRegisterClass(MVT::f32, SP::FPRegsRegisterClass);
addRegisterClass(MVT::f64, SP::DFPRegsRegisterClass);
// Turn FP extload into load/fextend
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
// Sparc doesn't have i1 sign extending load
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
// Turn FP truncstore into trunc + store.
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
// Custom legalize GlobalAddress nodes into LO/HI parts.
setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool , MVT::i32, Custom);
// Sparc doesn't have sext_inreg, replace them with shl/sra
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand);
// Sparc has no REM or DIVREM operations.
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
// Custom expand fp<->sint
setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
// Expand fp<->uint
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::BITCAST, MVT::f32, Expand);
setOperationAction(ISD::BITCAST, MVT::i32, Expand);
// Sparc has no select or setcc: expand to SELECT_CC.
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
// Sparc doesn't have BRCOND either, it has BR_CC.
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
// FIXME: There are instructions available for ATOMIC_FENCE
// on SparcV8 and later.
setOperationAction(ISD::MEMBARRIER, MVT::Other, Expand);
setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand);
setOperationAction(ISD::FSIN , MVT::f64, Expand);
setOperationAction(ISD::FCOS , MVT::f64, Expand);
setOperationAction(ISD::FREM , MVT::f64, Expand);
setOperationAction(ISD::FMA , MVT::f64, Expand);
setOperationAction(ISD::FSIN , MVT::f32, Expand);
setOperationAction(ISD::FCOS , MVT::f32, Expand);
setOperationAction(ISD::FREM , MVT::f32, Expand);
setOperationAction(ISD::FMA , MVT::f32, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTTZ , MVT::i32, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::CTLZ , MVT::i32, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
setOperationAction(ISD::ROTL , MVT::i32, Expand);
setOperationAction(ISD::ROTR , MVT::i32, Expand);
setOperationAction(ISD::BSWAP, MVT::i32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FPOW , MVT::f64, Expand);
setOperationAction(ISD::FPOW , MVT::f32, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
// FIXME: Sparc provides these multiplies, but we don't have them yet.
setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
// VASTART needs to be custom lowered to use the VarArgsFrameIndex.
setOperationAction(ISD::VASTART , MVT::Other, Custom);
// VAARG needs to be lowered to not do unaligned accesses for doubles.
setOperationAction(ISD::VAARG , MVT::Other, Custom);
// Use the default implementation.
setOperationAction(ISD::VACOPY , MVT::Other, Expand);
setOperationAction(ISD::VAEND , MVT::Other, Expand);
setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
// No debug info support yet.
setOperationAction(ISD::EH_LABEL, MVT::Other, Expand);
setStackPointerRegisterToSaveRestore(SP::O6);
if (TM.getSubtarget<SparcSubtarget>().isV9())
setOperationAction(ISD::CTPOP, MVT::i32, Legal);
setMinFunctionAlignment(2);
computeRegisterProperties();
}
const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return 0;
case SPISD::CMPICC: return "SPISD::CMPICC";
case SPISD::CMPFCC: return "SPISD::CMPFCC";
case SPISD::BRICC: return "SPISD::BRICC";
case SPISD::BRFCC: return "SPISD::BRFCC";
case SPISD::SELECT_ICC: return "SPISD::SELECT_ICC";
case SPISD::SELECT_FCC: return "SPISD::SELECT_FCC";
case SPISD::Hi: return "SPISD::Hi";
case SPISD::Lo: return "SPISD::Lo";
case SPISD::FTOI: return "SPISD::FTOI";
case SPISD::ITOF: return "SPISD::ITOF";
case SPISD::CALL: return "SPISD::CALL";
case SPISD::RET_FLAG: return "SPISD::RET_FLAG";
case SPISD::GLOBAL_BASE_REG: return "SPISD::GLOBAL_BASE_REG";
case SPISD::FLUSHW: return "SPISD::FLUSHW";
}
}
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
/// be zero. Op is expected to be a target specific node. Used by DAG
/// combiner.
void SparcTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
APInt KnownZero2, KnownOne2;
KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
switch (Op.getOpcode()) {
default: break;
case SPISD::SELECT_ICC:
case SPISD::SELECT_FCC:
DAG.ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
DAG.ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
break;
}
}
// Look at LHS/RHS/CC and see if they are a lowered setcc instruction. If so
// set LHS/RHS and SPCC to the LHS/RHS of the setcc and SPCC to the condition.
static void LookThroughSetCC(SDValue &LHS, SDValue &RHS,
ISD::CondCode CC, unsigned &SPCC) {
if (isa<ConstantSDNode>(RHS) &&
cast<ConstantSDNode>(RHS)->isNullValue() &&
CC == ISD::SETNE &&
((LHS.getOpcode() == SPISD::SELECT_ICC &&
LHS.getOperand(3).getOpcode() == SPISD::CMPICC) ||
(LHS.getOpcode() == SPISD::SELECT_FCC &&
LHS.getOperand(3).getOpcode() == SPISD::CMPFCC)) &&
isa<ConstantSDNode>(LHS.getOperand(0)) &&
isa<ConstantSDNode>(LHS.getOperand(1)) &&
cast<ConstantSDNode>(LHS.getOperand(0))->isOne() &&
cast<ConstantSDNode>(LHS.getOperand(1))->isNullValue()) {
SDValue CMPCC = LHS.getOperand(3);
SPCC = cast<ConstantSDNode>(LHS.getOperand(2))->getZExtValue();
LHS = CMPCC.getOperand(0);
RHS = CMPCC.getOperand(1);
}
}
SDValue SparcTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) const {
const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
// FIXME there isn't really any debug info here
DebugLoc dl = Op.getDebugLoc();
SDValue GA = DAG.getTargetGlobalAddress(GV, dl, MVT::i32);
SDValue Hi = DAG.getNode(SPISD::Hi, dl, MVT::i32, GA);
SDValue Lo = DAG.getNode(SPISD::Lo, dl, MVT::i32, GA);
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, dl,
getPointerTy());
SDValue RelAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
SDValue AbsAddr = DAG.getNode(ISD::ADD, dl, MVT::i32,
GlobalBase, RelAddr);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
AbsAddr, MachinePointerInfo(), false, false, false, 0);
}
SDValue SparcTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) const {
ConstantPoolSDNode *N = cast<ConstantPoolSDNode>(Op);
// FIXME there isn't really any debug info here
DebugLoc dl = Op.getDebugLoc();
const Constant *C = N->getConstVal();
SDValue CP = DAG.getTargetConstantPool(C, MVT::i32, N->getAlignment());
SDValue Hi = DAG.getNode(SPISD::Hi, dl, MVT::i32, CP);
SDValue Lo = DAG.getNode(SPISD::Lo, dl, MVT::i32, CP);
if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
return DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
SDValue GlobalBase = DAG.getNode(SPISD::GLOBAL_BASE_REG, dl,
getPointerTy());
SDValue RelAddr = DAG.getNode(ISD::ADD, dl, MVT::i32, Lo, Hi);
SDValue AbsAddr = DAG.getNode(ISD::ADD, dl, MVT::i32,
GlobalBase, RelAddr);
return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
AbsAddr, MachinePointerInfo(), false, false, false, 0);
}
static SDValue LowerFP_TO_SINT(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
// Convert the fp value to integer in an FP register.
assert(Op.getValueType() == MVT::i32);
Op = DAG.getNode(SPISD::FTOI, dl, MVT::f32, Op.getOperand(0));
return DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
}
static SDValue LowerSINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
assert(Op.getOperand(0).getValueType() == MVT::i32);
SDValue Tmp = DAG.getNode(ISD::BITCAST, dl, MVT::f32, Op.getOperand(0));
// Convert the int value to FP in an FP register.
return DAG.getNode(SPISD::ITOF, dl, Op.getValueType(), Tmp);
}
static SDValue LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
DebugLoc dl = Op.getDebugLoc();
unsigned Opc, SPCC = ~0U;
// If this is a br_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
// Get the condition flag.
SDValue CompareFlag;
if (LHS.getValueType() == MVT::i32) {
std::vector<EVT> VTs;
VTs.push_back(MVT::i32);
VTs.push_back(MVT::Glue);
SDValue Ops[2] = { LHS, RHS };
CompareFlag = DAG.getNode(SPISD::CMPICC, dl, VTs, Ops, 2).getValue(1);
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
Opc = SPISD::BRICC;
} else {
CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
Opc = SPISD::BRFCC;
}
return DAG.getNode(Opc, dl, MVT::Other, Chain, Dest,
DAG.getConstant(SPCC, MVT::i32), CompareFlag);
}
static SDValue LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
SDValue TrueVal = Op.getOperand(2);
SDValue FalseVal = Op.getOperand(3);
DebugLoc dl = Op.getDebugLoc();
unsigned Opc, SPCC = ~0U;
// If this is a select_cc of a "setcc", and if the setcc got lowered into
// an CMP[IF]CC/SELECT_[IF]CC pair, find the original compared values.
LookThroughSetCC(LHS, RHS, CC, SPCC);
SDValue CompareFlag;
if (LHS.getValueType() == MVT::i32) {
std::vector<EVT> VTs;
VTs.push_back(LHS.getValueType()); // subcc returns a value
VTs.push_back(MVT::Glue);
SDValue Ops[2] = { LHS, RHS };
CompareFlag = DAG.getNode(SPISD::CMPICC, dl, VTs, Ops, 2).getValue(1);
Opc = SPISD::SELECT_ICC;
if (SPCC == ~0U) SPCC = IntCondCCodeToICC(CC);
} else {
CompareFlag = DAG.getNode(SPISD::CMPFCC, dl, MVT::Glue, LHS, RHS);
Opc = SPISD::SELECT_FCC;
if (SPCC == ~0U) SPCC = FPCondCCodeToFCC(CC);
}
return DAG.getNode(Opc, dl, TrueVal.getValueType(), TrueVal, FalseVal,
DAG.getConstant(SPCC, MVT::i32), CompareFlag);
}
static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG,
const SparcTargetLowering &TLI) {
MachineFunction &MF = DAG.getMachineFunction();
SparcMachineFunctionInfo *FuncInfo = MF.getInfo<SparcMachineFunctionInfo>();
// vastart just stores the address of the VarArgsFrameIndex slot into the
// memory location argument.
DebugLoc dl = Op.getDebugLoc();
SDValue Offset =
DAG.getNode(ISD::ADD, dl, MVT::i32,
DAG.getRegister(SP::I6, MVT::i32),
DAG.getConstant(FuncInfo->getVarArgsFrameOffset(),
MVT::i32));
const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
return DAG.getStore(Op.getOperand(0), dl, Offset, Op.getOperand(1),
MachinePointerInfo(SV), false, false, 0);
}
static SDValue LowerVAARG(SDValue Op, SelectionDAG &DAG) {
SDNode *Node = Op.getNode();
EVT VT = Node->getValueType(0);
SDValue InChain = Node->getOperand(0);
SDValue VAListPtr = Node->getOperand(1);
const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
DebugLoc dl = Node->getDebugLoc();
SDValue VAList = DAG.getLoad(MVT::i32, dl, InChain, VAListPtr,
MachinePointerInfo(SV), false, false, false, 0);
// Increment the pointer, VAList, to the next vaarg
SDValue NextPtr = DAG.getNode(ISD::ADD, dl, MVT::i32, VAList,
DAG.getConstant(VT.getSizeInBits()/8,
MVT::i32));
// Store the incremented VAList to the legalized pointer
InChain = DAG.getStore(VAList.getValue(1), dl, NextPtr,
VAListPtr, MachinePointerInfo(SV), false, false, 0);
// Load the actual argument out of the pointer VAList, unless this is an
// f64 load.
if (VT != MVT::f64)
return DAG.getLoad(VT, dl, InChain, VAList, MachinePointerInfo(),
false, false, false, 0);
// Otherwise, load it as i64, then do a bitconvert.
SDValue V = DAG.getLoad(MVT::i64, dl, InChain, VAList, MachinePointerInfo(),
false, false, false, 0);
// Bit-Convert the value to f64.
SDValue Ops[2] = {
DAG.getNode(ISD::BITCAST, dl, MVT::f64, V),
V.getValue(1)
};
return DAG.getMergeValues(Ops, 2, dl);
}
static SDValue LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) {
SDValue Chain = Op.getOperand(0); // Legalize the chain.
SDValue Size = Op.getOperand(1); // Legalize the size.
DebugLoc dl = Op.getDebugLoc();
unsigned SPReg = SP::O6;
SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
SDValue NewSP = DAG.getNode(ISD::SUB, dl, MVT::i32, SP, Size); // Value
Chain = DAG.getCopyToReg(SP.getValue(1), dl, SPReg, NewSP); // Output chain
// The resultant pointer is actually 16 words from the bottom of the stack,
// to provide a register spill area.
SDValue NewVal = DAG.getNode(ISD::ADD, dl, MVT::i32, NewSP,
DAG.getConstant(96, MVT::i32));
SDValue Ops[2] = { NewVal, Chain };
return DAG.getMergeValues(Ops, 2, dl);
}
static SDValue getFLUSHW(SDValue Op, SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
SDValue Chain = DAG.getNode(SPISD::FLUSHW,
dl, MVT::Other, DAG.getEntryNode());
return Chain;
}
static SDValue LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setFrameAddressIsTaken(true);
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned FrameReg = SP::I6;
uint64_t depth = Op.getConstantOperandVal(0);
SDValue FrameAddr;
if (depth == 0)
FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
else {
// flush first to make sure the windowed registers' values are in stack
SDValue Chain = getFLUSHW(Op, DAG);
FrameAddr = DAG.getCopyFromReg(Chain, dl, FrameReg, VT);
for (uint64_t i = 0; i != depth; ++i) {
SDValue Ptr = DAG.getNode(ISD::ADD,
dl, MVT::i32,
FrameAddr, DAG.getIntPtrConstant(56));
FrameAddr = DAG.getLoad(MVT::i32, dl,
Chain,
Ptr,
MachinePointerInfo(), false, false, false, 0);
}
}
return FrameAddr;
}
static SDValue LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) {
MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
MFI->setReturnAddressIsTaken(true);
EVT VT = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
unsigned RetReg = SP::I7;
uint64_t depth = Op.getConstantOperandVal(0);
SDValue RetAddr;
if (depth == 0)
RetAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, RetReg, VT);
else {
// flush first to make sure the windowed registers' values are in stack
SDValue Chain = getFLUSHW(Op, DAG);
RetAddr = DAG.getCopyFromReg(Chain, dl, SP::I6, VT);
for (uint64_t i = 0; i != depth; ++i) {
SDValue Ptr = DAG.getNode(ISD::ADD,
dl, MVT::i32,
RetAddr,
DAG.getIntPtrConstant((i == depth-1)?60:56));
RetAddr = DAG.getLoad(MVT::i32, dl,
Chain,
Ptr,
MachinePointerInfo(), false, false, false, 0);
}
}
return RetAddr;
}
SDValue SparcTargetLowering::
LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
case ISD::GlobalTLSAddress:
llvm_unreachable("TLS not implemented for Sparc.");
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::VASTART: return LowerVASTART(Op, DAG, *this);
case ISD::VAARG: return LowerVAARG(Op, DAG);
case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
}
}
MachineBasicBlock *
SparcTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB) const {
const TargetInstrInfo &TII = *getTargetMachine().getInstrInfo();
unsigned BROpcode;
unsigned CC;
DebugLoc dl = MI->getDebugLoc();
// Figure out the conditional branch opcode to use for this select_cc.
switch (MI->getOpcode()) {
default: llvm_unreachable("Unknown SELECT_CC!");
case SP::SELECT_CC_Int_ICC:
case SP::SELECT_CC_FP_ICC:
case SP::SELECT_CC_DFP_ICC:
BROpcode = SP::BCOND;
break;
case SP::SELECT_CC_Int_FCC:
case SP::SELECT_CC_FP_FCC:
case SP::SELECT_CC_DFP_FCC:
BROpcode = SP::FBCOND;
break;
}
CC = (SPCC::CondCodes)MI->getOperand(3).getImm();
// To "insert" a SELECT_CC instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator It = BB;
++It;
// thisMBB:
// ...
// TrueVal = ...
// [f]bCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
F->insert(It, copy0MBB);
F->insert(It, sinkMBB);
// Transfer the remainder of BB and its successor edges to sinkMBB.
sinkMBB->splice(sinkMBB->begin(), BB,
llvm::next(MachineBasicBlock::iterator(MI)),
BB->end());
sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
// Add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(sinkMBB);
BuildMI(BB, dl, TII.get(BROpcode)).addMBB(sinkMBB).addImm(CC);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to sinkMBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(sinkMBB);
// sinkMBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = sinkMBB;
BuildMI(*BB, BB->begin(), dl, TII.get(SP::PHI), MI->getOperand(0).getReg())
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
MI->eraseFromParent(); // The pseudo instruction is gone now.
return BB;
}
//===----------------------------------------------------------------------===//
// Sparc Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
SparcTargetLowering::ConstraintType
SparcTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
default: break;
case 'r': return C_RegisterClass;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass*>
SparcTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return std::make_pair(0U, SP::IntRegsRegisterClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
bool
SparcTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
// The Sparc target isn't yet aware of offsets.
return false;
}