mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-06 05:06:45 +00:00
845012e6d3
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@77754 91177308-0d34-0410-b5e6-96231b3b80d8
389 lines
15 KiB
C++
389 lines
15 KiB
C++
//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass eliminates machine instruction PHI nodes by inserting copy
|
|
// instructions. This destroys SSA information, but is the desired input for
|
|
// some register allocators.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "phielim"
|
|
#include "PHIElimination.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
#include <map>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumAtomic, "Number of atomic phis lowered");
|
|
|
|
char PHIElimination::ID = 0;
|
|
static RegisterPass<PHIElimination>
|
|
X("phi-node-elimination", "Eliminate PHI nodes for register allocation");
|
|
|
|
const PassInfo *const llvm::PHIEliminationID = &X;
|
|
|
|
void llvm::PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addPreserved<LiveVariables>();
|
|
AU.addPreservedID(MachineLoopInfoID);
|
|
AU.addPreservedID(MachineDominatorsID);
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
|
|
bool llvm::PHIElimination::runOnMachineFunction(MachineFunction &Fn) {
|
|
MRI = &Fn.getRegInfo();
|
|
|
|
PHIDefs.clear();
|
|
PHIKills.clear();
|
|
analyzePHINodes(Fn);
|
|
|
|
bool Changed = false;
|
|
|
|
// Eliminate PHI instructions by inserting copies into predecessor blocks.
|
|
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
Changed |= EliminatePHINodes(Fn, *I);
|
|
|
|
// Remove dead IMPLICIT_DEF instructions.
|
|
for (SmallPtrSet<MachineInstr*,4>::iterator I = ImpDefs.begin(),
|
|
E = ImpDefs.end(); I != E; ++I) {
|
|
MachineInstr *DefMI = *I;
|
|
unsigned DefReg = DefMI->getOperand(0).getReg();
|
|
if (MRI->use_empty(DefReg))
|
|
DefMI->eraseFromParent();
|
|
}
|
|
|
|
ImpDefs.clear();
|
|
VRegPHIUseCount.clear();
|
|
return Changed;
|
|
}
|
|
|
|
|
|
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
|
|
/// predecessor basic blocks.
|
|
///
|
|
bool llvm::PHIElimination::EliminatePHINodes(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) {
|
|
if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
|
|
return false; // Quick exit for basic blocks without PHIs.
|
|
|
|
// Get an iterator to the first instruction after the last PHI node (this may
|
|
// also be the end of the basic block).
|
|
MachineBasicBlock::iterator AfterPHIsIt = SkipPHIsAndLabels(MBB, MBB.begin());
|
|
|
|
while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
|
|
LowerAtomicPHINode(MBB, AfterPHIsIt);
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
|
|
/// are implicit_def's.
|
|
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
|
|
const MachineRegisterInfo *MRI) {
|
|
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) {
|
|
unsigned SrcReg = MPhi->getOperand(i).getReg();
|
|
const MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
|
|
if (!DefMI || DefMI->getOpcode() != TargetInstrInfo::IMPLICIT_DEF)
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// FindCopyInsertPoint - Find a safe place in MBB to insert a copy from SrcReg.
|
|
// This needs to be after any def or uses of SrcReg, but before any subsequent
|
|
// point where control flow might jump out of the basic block.
|
|
MachineBasicBlock::iterator
|
|
llvm::PHIElimination::FindCopyInsertPoint(MachineBasicBlock &MBB,
|
|
unsigned SrcReg) {
|
|
// Handle the trivial case trivially.
|
|
if (MBB.empty())
|
|
return MBB.begin();
|
|
|
|
// If this basic block does not contain an invoke, then control flow always
|
|
// reaches the end of it, so place the copy there. The logic below works in
|
|
// this case too, but is more expensive.
|
|
if (!isa<InvokeInst>(MBB.getBasicBlock()->getTerminator()))
|
|
return MBB.getFirstTerminator();
|
|
|
|
// Discover any definition/uses in this basic block.
|
|
SmallPtrSet<MachineInstr*, 8> DefUsesInMBB;
|
|
for (MachineRegisterInfo::reg_iterator RI = MRI->reg_begin(SrcReg),
|
|
RE = MRI->reg_end(); RI != RE; ++RI) {
|
|
MachineInstr *DefUseMI = &*RI;
|
|
if (DefUseMI->getParent() == &MBB)
|
|
DefUsesInMBB.insert(DefUseMI);
|
|
}
|
|
|
|
MachineBasicBlock::iterator InsertPoint;
|
|
if (DefUsesInMBB.empty()) {
|
|
// No def/uses. Insert the copy at the start of the basic block.
|
|
InsertPoint = MBB.begin();
|
|
} else if (DefUsesInMBB.size() == 1) {
|
|
// Insert the copy immediately after the definition/use.
|
|
InsertPoint = *DefUsesInMBB.begin();
|
|
++InsertPoint;
|
|
} else {
|
|
// Insert the copy immediately after the last definition/use.
|
|
InsertPoint = MBB.end();
|
|
while (!DefUsesInMBB.count(&*--InsertPoint)) {}
|
|
++InsertPoint;
|
|
}
|
|
|
|
// Make sure the copy goes after any phi nodes however.
|
|
return SkipPHIsAndLabels(MBB, InsertPoint);
|
|
}
|
|
|
|
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
|
|
/// under the assuption that it needs to be lowered in a way that supports
|
|
/// atomic execution of PHIs. This lowering method is always correct all of the
|
|
/// time.
|
|
///
|
|
void llvm::PHIElimination::LowerAtomicPHINode(
|
|
MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator AfterPHIsIt) {
|
|
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
|
|
MachineInstr *MPhi = MBB.remove(MBB.begin());
|
|
|
|
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
|
|
unsigned DestReg = MPhi->getOperand(0).getReg();
|
|
bool isDead = MPhi->getOperand(0).isDead();
|
|
|
|
// Create a new register for the incoming PHI arguments.
|
|
MachineFunction &MF = *MBB.getParent();
|
|
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
|
|
unsigned IncomingReg = 0;
|
|
|
|
// Insert a register to register copy at the top of the current block (but
|
|
// after any remaining phi nodes) which copies the new incoming register
|
|
// into the phi node destination.
|
|
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
|
|
if (isSourceDefinedByImplicitDef(MPhi, MRI))
|
|
// If all sources of a PHI node are implicit_def, just emit an
|
|
// implicit_def instead of a copy.
|
|
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
|
|
TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
|
|
else {
|
|
IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
|
|
TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
|
|
}
|
|
|
|
// Record PHI def.
|
|
assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
|
|
PHIDefs[DestReg] = &MBB;
|
|
|
|
// Update live variable information if there is any.
|
|
LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
|
|
if (LV) {
|
|
MachineInstr *PHICopy = prior(AfterPHIsIt);
|
|
|
|
if (IncomingReg) {
|
|
// Increment use count of the newly created virtual register.
|
|
LV->getVarInfo(IncomingReg).NumUses++;
|
|
|
|
// Add information to LiveVariables to know that the incoming value is
|
|
// killed. Note that because the value is defined in several places (once
|
|
// each for each incoming block), the "def" block and instruction fields
|
|
// for the VarInfo is not filled in.
|
|
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
|
|
}
|
|
|
|
// Since we are going to be deleting the PHI node, if it is the last use of
|
|
// any registers, or if the value itself is dead, we need to move this
|
|
// information over to the new copy we just inserted.
|
|
LV->removeVirtualRegistersKilled(MPhi);
|
|
|
|
// If the result is dead, update LV.
|
|
if (isDead) {
|
|
LV->addVirtualRegisterDead(DestReg, PHICopy);
|
|
LV->removeVirtualRegisterDead(DestReg, MPhi);
|
|
}
|
|
}
|
|
|
|
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
|
|
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
|
|
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
|
|
MPhi->getOperand(i).getReg())];
|
|
|
|
// Now loop over all of the incoming arguments, changing them to copy into the
|
|
// IncomingReg register in the corresponding predecessor basic block.
|
|
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
|
|
for (int i = NumSrcs - 1; i >= 0; --i) {
|
|
unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
|
|
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
|
|
"Machine PHI Operands must all be virtual registers!");
|
|
|
|
// Get the MachineBasicBlock equivalent of the BasicBlock that is the source
|
|
// path the PHI.
|
|
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
|
|
|
|
// Record the kill.
|
|
PHIKills[SrcReg].insert(&opBlock);
|
|
|
|
// If source is defined by an implicit def, there is no need to insert a
|
|
// copy.
|
|
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
|
|
if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
|
|
ImpDefs.insert(DefMI);
|
|
continue;
|
|
}
|
|
|
|
// Check to make sure we haven't already emitted the copy for this block.
|
|
// This can happen because PHI nodes may have multiple entries for the same
|
|
// basic block.
|
|
if (!MBBsInsertedInto.insert(&opBlock))
|
|
continue; // If the copy has already been emitted, we're done.
|
|
|
|
// Find a safe location to insert the copy, this may be the first terminator
|
|
// in the block (or end()).
|
|
MachineBasicBlock::iterator InsertPos = FindCopyInsertPoint(opBlock, SrcReg);
|
|
|
|
// Insert the copy.
|
|
TII->copyRegToReg(opBlock, InsertPos, IncomingReg, SrcReg, RC, RC);
|
|
|
|
// Now update live variable information if we have it. Otherwise we're done
|
|
if (!LV) continue;
|
|
|
|
// We want to be able to insert a kill of the register if this PHI (aka, the
|
|
// copy we just inserted) is the last use of the source value. Live
|
|
// variable analysis conservatively handles this by saying that the value is
|
|
// live until the end of the block the PHI entry lives in. If the value
|
|
// really is dead at the PHI copy, there will be no successor blocks which
|
|
// have the value live-in.
|
|
//
|
|
// Check to see if the copy is the last use, and if so, update the live
|
|
// variables information so that it knows the copy source instruction kills
|
|
// the incoming value.
|
|
LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
|
|
|
|
// Loop over all of the successors of the basic block, checking to see if
|
|
// the value is either live in the block, or if it is killed in the block.
|
|
// Also check to see if this register is in use by another PHI node which
|
|
// has not yet been eliminated. If so, it will be killed at an appropriate
|
|
// point later.
|
|
|
|
// Is it used by any PHI instructions in this block?
|
|
bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
|
|
|
|
std::vector<MachineBasicBlock*> OpSuccBlocks;
|
|
|
|
// Otherwise, scan successors, including the BB the PHI node lives in.
|
|
for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
|
|
E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
|
|
MachineBasicBlock *SuccMBB = *SI;
|
|
|
|
// Is it alive in this successor?
|
|
unsigned SuccIdx = SuccMBB->getNumber();
|
|
if (InRegVI.AliveBlocks.test(SuccIdx)) {
|
|
ValueIsLive = true;
|
|
break;
|
|
}
|
|
|
|
OpSuccBlocks.push_back(SuccMBB);
|
|
}
|
|
|
|
// Check to see if this value is live because there is a use in a successor
|
|
// that kills it.
|
|
if (!ValueIsLive) {
|
|
switch (OpSuccBlocks.size()) {
|
|
case 1: {
|
|
MachineBasicBlock *MBB = OpSuccBlocks[0];
|
|
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
|
|
if (InRegVI.Kills[i]->getParent() == MBB) {
|
|
ValueIsLive = true;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
case 2: {
|
|
MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
|
|
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
|
|
if (InRegVI.Kills[i]->getParent() == MBB1 ||
|
|
InRegVI.Kills[i]->getParent() == MBB2) {
|
|
ValueIsLive = true;
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
|
|
for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
|
|
if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
|
|
InRegVI.Kills[i]->getParent())) {
|
|
ValueIsLive = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Okay, if we now know that the value is not live out of the block, we can
|
|
// add a kill marker in this block saying that it kills the incoming value!
|
|
if (!ValueIsLive) {
|
|
// In our final twist, we have to decide which instruction kills the
|
|
// register. In most cases this is the copy, however, the first
|
|
// terminator instruction at the end of the block may also use the value.
|
|
// In this case, we should mark *it* as being the killing block, not the
|
|
// copy.
|
|
MachineBasicBlock::iterator KillInst = prior(InsertPos);
|
|
MachineBasicBlock::iterator Term = opBlock.getFirstTerminator();
|
|
if (Term != opBlock.end()) {
|
|
if (Term->readsRegister(SrcReg))
|
|
KillInst = Term;
|
|
|
|
// Check that no other terminators use values.
|
|
#ifndef NDEBUG
|
|
for (MachineBasicBlock::iterator TI = next(Term); TI != opBlock.end();
|
|
++TI) {
|
|
assert(!TI->readsRegister(SrcReg) &&
|
|
"Terminator instructions cannot use virtual registers unless"
|
|
"they are the first terminator in a block!");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
// Finally, mark it killed.
|
|
LV->addVirtualRegisterKilled(SrcReg, KillInst);
|
|
|
|
// This vreg no longer lives all of the way through opBlock.
|
|
unsigned opBlockNum = opBlock.getNumber();
|
|
InRegVI.AliveBlocks.reset(opBlockNum);
|
|
}
|
|
}
|
|
|
|
// Really delete the PHI instruction now!
|
|
MF.DeleteMachineInstr(MPhi);
|
|
++NumAtomic;
|
|
}
|
|
|
|
/// analyzePHINodes - Gather information about the PHI nodes in here. In
|
|
/// particular, we want to map the number of uses of a virtual register which is
|
|
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
|
|
/// used later to determine when the vreg is killed in the BB.
|
|
///
|
|
void llvm::PHIElimination::analyzePHINodes(const MachineFunction& Fn) {
|
|
for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
|
|
I != E; ++I)
|
|
for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
|
|
BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
|
|
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
|
|
++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
|
|
BBI->getOperand(i).getReg())];
|
|
}
|