mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-13 04:30:23 +00:00
4bc3daaa3f
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@280 91177308-0d34-0410-b5e6-96231b3b80d8
441 lines
13 KiB
C++
441 lines
13 KiB
C++
// $Id$
|
|
//---------------------------------------------------------------------------
|
|
// File:
|
|
// InstrForest.cpp
|
|
//
|
|
// Purpose:
|
|
// Convert SSA graph to instruction trees for instruction selection.
|
|
//
|
|
// Strategy:
|
|
// The key goal is to group instructions into a single
|
|
// tree if one or more of them might be potentially combined into a single
|
|
// complex instruction in the target machine.
|
|
// Since this grouping is completely machine-independent, we do it as
|
|
// aggressive as possible to exploit any possible taret instructions.
|
|
// In particular, we group two instructions O and I if:
|
|
// (1) Instruction O computes an operand used by instruction I,
|
|
// and (2) O and I are part of the same basic block,
|
|
// and (3) O has only a single use, viz., I.
|
|
//
|
|
// History:
|
|
// 6/28/01 - Vikram Adve - Created
|
|
//
|
|
//---------------------------------------------------------------------------
|
|
|
|
//*************************** User Include Files ***************************/
|
|
|
|
#include "llvm/CodeGen/InstrForest.h"
|
|
#include "llvm/Method.h"
|
|
#include "llvm/iTerminators.h"
|
|
#include "llvm/iMemory.h"
|
|
#include "llvm/ConstPoolVals.h"
|
|
#include "llvm/BasicBlock.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
|
|
|
|
//------------------------------------------------------------------------
|
|
// class InstrTreeNode
|
|
//------------------------------------------------------------------------
|
|
|
|
|
|
InstrTreeNode::InstrTreeNode(InstrTreeNodeType nodeType,
|
|
Value* _val)
|
|
: treeNodeType(nodeType),
|
|
val(_val)
|
|
{
|
|
basicNode.leftChild = NULL;
|
|
basicNode.rightChild = NULL;
|
|
basicNode.parent = NULL;
|
|
basicNode.opLabel = InvalidOp;
|
|
basicNode.treeNodePtr = this;
|
|
}
|
|
|
|
void
|
|
InstrTreeNode::dump(int dumpChildren,
|
|
int indent) const
|
|
{
|
|
this->dumpNode(indent);
|
|
|
|
if (dumpChildren)
|
|
{
|
|
if (leftChild())
|
|
leftChild()->dump(dumpChildren, indent+1);
|
|
if (rightChild())
|
|
rightChild()->dump(dumpChildren, indent+1);
|
|
}
|
|
}
|
|
|
|
|
|
InstructionNode::InstructionNode(Instruction* _instr)
|
|
: InstrTreeNode(NTInstructionNode, _instr)
|
|
{
|
|
OpLabel opLabel = _instr->getOpcode();
|
|
|
|
// Distinguish special cases of some instructions such as Ret and Br
|
|
//
|
|
if (opLabel == Instruction::Ret && ((ReturnInst*) _instr)->getReturnValue())
|
|
{
|
|
opLabel = RetValueOp; // ret(value) operation
|
|
}
|
|
else if (opLabel == Instruction::Br && ! ((BranchInst*) _instr)->isUnconditional())
|
|
{
|
|
opLabel = BrCondOp; // br(cond) operation
|
|
}
|
|
else if (opLabel >= Instruction::SetEQ && opLabel <= Instruction::SetGT)
|
|
{
|
|
opLabel = SetCCOp; // common label for all SetCC ops
|
|
}
|
|
else if (opLabel == Instruction::Alloca && _instr->getNumOperands() > 0)
|
|
{
|
|
opLabel = AllocaN; // Alloca(ptr, N) operation
|
|
}
|
|
else if ((opLabel == Instruction::Load ||
|
|
opLabel == Instruction::GetElementPtr)
|
|
&& ((MemAccessInst*)_instr)->getFirstOffsetIdx() > 0)
|
|
{
|
|
opLabel = opLabel + 100; // load/getElem with index vector
|
|
}
|
|
else if (opLabel == Instruction::Cast)
|
|
{
|
|
const Type* instrValueType = _instr->getType();
|
|
switch(instrValueType->getPrimitiveID())
|
|
{
|
|
case Type::BoolTyID: opLabel = ToBoolTy; break;
|
|
case Type::UByteTyID: opLabel = ToUByteTy; break;
|
|
case Type::SByteTyID: opLabel = ToSByteTy; break;
|
|
case Type::UShortTyID: opLabel = ToUShortTy; break;
|
|
case Type::ShortTyID: opLabel = ToShortTy; break;
|
|
case Type::UIntTyID: opLabel = ToUIntTy; break;
|
|
case Type::IntTyID: opLabel = ToIntTy; break;
|
|
case Type::ULongTyID: opLabel = ToULongTy; break;
|
|
case Type::LongTyID: opLabel = ToLongTy; break;
|
|
case Type::FloatTyID: opLabel = ToFloatTy; break;
|
|
case Type::DoubleTyID: opLabel = ToDoubleTy; break;
|
|
default:
|
|
if (instrValueType->isArrayType())
|
|
opLabel = ToArrayTy;
|
|
else if (instrValueType->isPointerType())
|
|
opLabel = ToPointerTy;
|
|
else
|
|
; // Just use `Cast' opcode otherwise. It's probably ignored.
|
|
break;
|
|
}
|
|
}
|
|
|
|
basicNode.opLabel = opLabel;
|
|
}
|
|
|
|
void
|
|
InstructionNode::reverseBinaryArgumentOrder()
|
|
{
|
|
assert(getInstruction()->isBinaryOp());
|
|
|
|
// switch arguments for the instruction
|
|
((BinaryOperator*) getInstruction())->swapOperands();
|
|
|
|
// switch arguments for this tree node itself
|
|
BasicTreeNode* leftCopy = basicNode.leftChild;
|
|
basicNode.leftChild = basicNode.rightChild;
|
|
basicNode.rightChild = leftCopy;
|
|
}
|
|
|
|
void
|
|
InstructionNode::dumpNode(int indent) const
|
|
{
|
|
for (int i=0; i < indent; i++)
|
|
cout << " ";
|
|
|
|
cout << getInstruction()->getOpcodeName();
|
|
|
|
const vector<MachineInstr*>& mvec = getInstruction()->getMachineInstrVec();
|
|
if (mvec.size() > 0)
|
|
cout << "\tMachine Instructions: ";
|
|
for (unsigned int i=0; i < mvec.size(); i++)
|
|
{
|
|
mvec[i]->dump(0);
|
|
if (i < mvec.size() - 1)
|
|
cout << "; ";
|
|
}
|
|
|
|
cout << endl;
|
|
}
|
|
|
|
|
|
VRegListNode::VRegListNode()
|
|
: InstrTreeNode(NTVRegListNode, NULL)
|
|
{
|
|
basicNode.opLabel = VRegListOp;
|
|
}
|
|
|
|
void
|
|
VRegListNode::dumpNode(int indent) const
|
|
{
|
|
for (int i=0; i < indent; i++)
|
|
cout << " ";
|
|
|
|
cout << "List" << endl;
|
|
}
|
|
|
|
|
|
VRegNode::VRegNode(Value* _val)
|
|
: InstrTreeNode(NTVRegNode, _val)
|
|
{
|
|
basicNode.opLabel = VRegNodeOp;
|
|
}
|
|
|
|
void
|
|
VRegNode::dumpNode(int indent) const
|
|
{
|
|
for (int i=0; i < indent; i++)
|
|
cout << " ";
|
|
|
|
cout << "VReg " << getValue() << "\t(type "
|
|
<< (int) getValue()->getValueType() << ")" << endl;
|
|
}
|
|
|
|
|
|
ConstantNode::ConstantNode(ConstPoolVal* constVal)
|
|
: InstrTreeNode(NTConstNode, constVal)
|
|
{
|
|
basicNode.opLabel = ConstantNodeOp;
|
|
}
|
|
|
|
void
|
|
ConstantNode::dumpNode(int indent) const
|
|
{
|
|
for (int i=0; i < indent; i++)
|
|
cout << " ";
|
|
|
|
cout << "Constant " << getValue() << "\t(type "
|
|
<< (int) getValue()->getValueType() << ")" << endl;
|
|
}
|
|
|
|
|
|
LabelNode::LabelNode(BasicBlock* _bblock)
|
|
: InstrTreeNode(NTLabelNode, _bblock)
|
|
{
|
|
basicNode.opLabel = LabelNodeOp;
|
|
}
|
|
|
|
void
|
|
LabelNode::dumpNode(int indent) const
|
|
{
|
|
for (int i=0; i < indent; i++)
|
|
cout << " ";
|
|
|
|
cout << "Label " << getValue() << endl;
|
|
}
|
|
|
|
//------------------------------------------------------------------------
|
|
// class InstrForest
|
|
//
|
|
// A forest of instruction trees, usually for a single method.
|
|
//------------------------------------------------------------------------
|
|
|
|
void
|
|
InstrForest::buildTreesForMethod(Method *method)
|
|
{
|
|
for (Method::inst_iterator instrIter = method->inst_begin();
|
|
instrIter != method->inst_end();
|
|
++instrIter)
|
|
{
|
|
Instruction *instr = *instrIter;
|
|
if (! instr->isPHINode())
|
|
(void) this->buildTreeForInstruction(instr);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
InstrForest::dump() const
|
|
{
|
|
for (hash_set<InstructionNode*>::const_iterator
|
|
treeRootIter = treeRoots.begin();
|
|
treeRootIter != treeRoots.end();
|
|
++treeRootIter)
|
|
{
|
|
(*treeRootIter)->dump(/*dumpChildren*/ 1, /*indent*/ 0);
|
|
}
|
|
}
|
|
|
|
inline void
|
|
InstrForest::noteTreeNodeForInstr(Instruction* instr,
|
|
InstructionNode* treeNode)
|
|
{
|
|
assert(treeNode->getNodeType() == InstrTreeNode::NTInstructionNode);
|
|
(*this)[instr] = treeNode;
|
|
treeRoots.insert(treeNode); // mark node as root of a new tree
|
|
}
|
|
|
|
|
|
inline void
|
|
InstrForest::setLeftChild(InstrTreeNode* parent, InstrTreeNode* child)
|
|
{
|
|
parent->basicNode.leftChild = & child->basicNode;
|
|
child->basicNode.parent = & parent->basicNode;
|
|
if (child->getNodeType() == InstrTreeNode::NTInstructionNode)
|
|
treeRoots.erase((InstructionNode*) child); // no longer a tree root
|
|
}
|
|
|
|
|
|
inline void
|
|
InstrForest::setRightChild(InstrTreeNode* parent, InstrTreeNode* child)
|
|
{
|
|
parent->basicNode.rightChild = & child->basicNode;
|
|
child->basicNode.parent = & parent->basicNode;
|
|
if (child->getNodeType() == InstrTreeNode::NTInstructionNode)
|
|
treeRoots.erase((InstructionNode*) child); // no longer a tree root
|
|
}
|
|
|
|
|
|
InstructionNode*
|
|
InstrForest::buildTreeForInstruction(Instruction* instr)
|
|
{
|
|
InstructionNode* treeNode = this->getTreeNodeForInstr(instr);
|
|
if (treeNode != NULL)
|
|
{// treeNode has already been constructed for this instruction
|
|
assert(treeNode->getInstruction() == instr);
|
|
return treeNode;
|
|
}
|
|
|
|
// Otherwise, create a new tree node for this instruction.
|
|
//
|
|
treeNode = new InstructionNode(instr);
|
|
this->noteTreeNodeForInstr(instr, treeNode);
|
|
|
|
// If the instruction has more than 2 instruction operands,
|
|
// then we will not add any children. This assumes that instructions
|
|
// like 'call' that have more than 2 instruction operands do not
|
|
// ever get combined with the instructions that compute the operands.
|
|
// Note that we only count operands of type instruction and not other
|
|
// values such as branch labels for a branch or switch instruction.
|
|
//
|
|
// To do this efficiently, we'll walk all operands, build treeNodes
|
|
// for all instruction operands and save them in an array, and then
|
|
// insert children at the end if there are not more than 2.
|
|
// As a performance optimization, allocate a child array only
|
|
// if a fixed array is too small.
|
|
//
|
|
int numChildren = 0;
|
|
const unsigned int MAX_CHILD = 8;
|
|
static InstrTreeNode* fixedChildArray[MAX_CHILD];
|
|
InstrTreeNode** childArray =
|
|
(instr->getNumOperands() > MAX_CHILD)
|
|
? new (InstrTreeNode*)[instr->getNumOperands()]
|
|
: fixedChildArray;
|
|
|
|
//
|
|
// Walk the operands of the instruction
|
|
//
|
|
for (Instruction::op_iterator opIter = instr->op_begin();
|
|
opIter != instr->op_end();
|
|
++opIter)
|
|
{
|
|
Value* operand = *opIter;
|
|
|
|
// Check if the operand is a data value, not an branch label, type,
|
|
// method or module. If the operand is an address type (i.e., label
|
|
// or method) that is used in an non-branching operation, e.g., `add'.
|
|
// that should be considered a data value.
|
|
|
|
// Check latter condition here just to simplify the next IF.
|
|
bool includeAddressOperand =
|
|
((operand->getValueType() == Value::BasicBlockVal
|
|
|| operand->getValueType() == Value::MethodVal)
|
|
&& ! instr->isTerminator());
|
|
|
|
if (/* (*opIter) != NULL
|
|
&&*/ includeAddressOperand
|
|
|| operand->getValueType() == Value::InstructionVal
|
|
|| operand->getValueType() == Value::ConstantVal
|
|
|| operand->getValueType() == Value::MethodArgumentVal)
|
|
{// This operand is a data value
|
|
|
|
// An instruction that computes the incoming value is added as a
|
|
// child of the current instruction if:
|
|
// the value has only a single use
|
|
// AND both instructions are in the same basic block
|
|
// AND the instruction is not a PHI
|
|
//
|
|
// (Note that if the value has only a single use (viz., `instr'),
|
|
// the def of the value can be safely moved just before instr
|
|
// and therefore it is safe to combine these two instructions.)
|
|
//
|
|
// In all other cases, the virtual register holding the value
|
|
// is used directly, i.e., made a child of the instruction node.
|
|
//
|
|
InstrTreeNode* opTreeNode;
|
|
if (operand->getValueType() == Value::InstructionVal
|
|
&& operand->use_size() == 1
|
|
&& ((Instruction*)operand)->getParent() == instr->getParent()
|
|
&& ! ((Instruction*)operand)->isPHINode())
|
|
{
|
|
// Recursively create a treeNode for it.
|
|
opTreeNode =this->buildTreeForInstruction((Instruction*)operand);
|
|
}
|
|
else if (operand->getValueType() == Value::ConstantVal)
|
|
{
|
|
// Create a leaf node for a constant
|
|
opTreeNode = new ConstantNode((ConstPoolVal*) operand);
|
|
}
|
|
else
|
|
{
|
|
// Create a leaf node for the virtual register
|
|
opTreeNode = new VRegNode(operand);
|
|
}
|
|
|
|
childArray[numChildren] = opTreeNode;
|
|
numChildren++;
|
|
}
|
|
}
|
|
|
|
//--------------------------------------------------------------------
|
|
// Add any selected operands as children in the tree.
|
|
// Certain instructions can have more than 2 in some instances (viz.,
|
|
// a CALL or a memory access -- LOAD, STORE, and GetElemPtr -- to an
|
|
// array or struct). Make the operands of every such instruction into
|
|
// a right-leaning binary tree with the operand nodes at the leaves
|
|
// and VRegList nodes as internal nodes.
|
|
//--------------------------------------------------------------------
|
|
|
|
InstrTreeNode* parent = treeNode; // new VRegListNode();
|
|
int n;
|
|
|
|
if (numChildren > 2)
|
|
{
|
|
unsigned instrOpcode = treeNode->getInstruction()->getOpcode();
|
|
assert(instrOpcode == Instruction::Call ||
|
|
instrOpcode == Instruction::Load ||
|
|
instrOpcode == Instruction::Store ||
|
|
instrOpcode == Instruction::GetElementPtr);
|
|
}
|
|
|
|
// Insert the first child as a direct child
|
|
if (numChildren >= 1)
|
|
this->setLeftChild(parent, childArray[0]);
|
|
|
|
// Create a list node for children 2 .. N-1, if any
|
|
for (n = numChildren-1; n >= 2; n--)
|
|
{ // We have more than two children
|
|
InstrTreeNode* listNode = new VRegListNode();
|
|
this->setRightChild(parent, listNode);
|
|
this->setLeftChild(listNode, childArray[numChildren - n]);
|
|
parent = listNode;
|
|
}
|
|
|
|
// Now insert the last remaining child (if any).
|
|
if (numChildren >= 2)
|
|
{
|
|
assert(n == 1);
|
|
this->setRightChild(parent, childArray[numChildren - 1]);
|
|
}
|
|
|
|
if (childArray != fixedChildArray)
|
|
{
|
|
delete[] childArray;
|
|
}
|
|
|
|
return treeNode;
|
|
}
|
|
|