llvm-6502/lib/Analysis/ConstantFolding.cpp
Chandler Carruth ccbf1e36d3 Switch llvm.cttz and llvm.ctlz to accept a second i1 parameter which
indicates whether the intrinsic has a defined result for a first
argument equal to zero. This will eventually allow these intrinsics to
accurately model the semantics of GCC's __builtin_ctz and __builtin_clz
and the X86 instructions (prior to AVX) which implement them.

This patch merely sets the stage by extending the signature of these
intrinsics and establishing auto-upgrade logic so that the old spelling
still works both in IR and in bitcode. The upgrade logic preserves the
existing (inefficient) semantics. This patch should not change any
behavior. CodeGen isn't updated because it can use the existing
semantics regardless of the flag's value.

Note that this will be followed by API updates to Clang and DragonEgg.

Reviewed by Nick Lewycky!

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146357 91177308-0d34-0410-b5e6-96231b3b80d8
2011-12-12 04:26:04 +00:00

1434 lines
57 KiB
C++

//===-- ConstantFolding.cpp - Fold instructions into constants ------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines routines for folding instructions into constants.
//
// Also, to supplement the basic VMCore ConstantExpr simplifications,
// this file defines some additional folding routines that can make use of
// TargetData information. These functions cannot go in VMCore due to library
// dependency issues.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/GlobalVariable.h"
#include "llvm/Instructions.h"
#include "llvm/Intrinsics.h"
#include "llvm/Operator.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLibraryInfo.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/FEnv.h"
#include <cerrno>
#include <cmath>
using namespace llvm;
//===----------------------------------------------------------------------===//
// Constant Folding internal helper functions
//===----------------------------------------------------------------------===//
/// FoldBitCast - Constant fold bitcast, symbolically evaluating it with
/// TargetData. This always returns a non-null constant, but it may be a
/// ConstantExpr if unfoldable.
static Constant *FoldBitCast(Constant *C, Type *DestTy,
const TargetData &TD) {
// Catch the obvious splat cases.
if (C->isNullValue() && !DestTy->isX86_MMXTy())
return Constant::getNullValue(DestTy);
if (C->isAllOnesValue() && !DestTy->isX86_MMXTy())
return Constant::getAllOnesValue(DestTy);
// The code below only handles casts to vectors currently.
VectorType *DestVTy = dyn_cast<VectorType>(DestTy);
if (DestVTy == 0)
return ConstantExpr::getBitCast(C, DestTy);
// If this is a scalar -> vector cast, convert the input into a <1 x scalar>
// vector so the code below can handle it uniformly.
if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) {
Constant *Ops = C; // don't take the address of C!
return FoldBitCast(ConstantVector::get(Ops), DestTy, TD);
}
// If this is a bitcast from constant vector -> vector, fold it.
ConstantVector *CV = dyn_cast<ConstantVector>(C);
if (CV == 0)
return ConstantExpr::getBitCast(C, DestTy);
// If the element types match, VMCore can fold it.
unsigned NumDstElt = DestVTy->getNumElements();
unsigned NumSrcElt = CV->getNumOperands();
if (NumDstElt == NumSrcElt)
return ConstantExpr::getBitCast(C, DestTy);
Type *SrcEltTy = CV->getType()->getElementType();
Type *DstEltTy = DestVTy->getElementType();
// Otherwise, we're changing the number of elements in a vector, which
// requires endianness information to do the right thing. For example,
// bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
// folds to (little endian):
// <4 x i32> <i32 0, i32 0, i32 1, i32 0>
// and to (big endian):
// <4 x i32> <i32 0, i32 0, i32 0, i32 1>
// First thing is first. We only want to think about integer here, so if
// we have something in FP form, recast it as integer.
if (DstEltTy->isFloatingPointTy()) {
// Fold to an vector of integers with same size as our FP type.
unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits();
Type *DestIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumDstElt);
// Recursively handle this integer conversion, if possible.
C = FoldBitCast(C, DestIVTy, TD);
if (!C) return ConstantExpr::getBitCast(C, DestTy);
// Finally, VMCore can handle this now that #elts line up.
return ConstantExpr::getBitCast(C, DestTy);
}
// Okay, we know the destination is integer, if the input is FP, convert
// it to integer first.
if (SrcEltTy->isFloatingPointTy()) {
unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits();
Type *SrcIVTy =
VectorType::get(IntegerType::get(C->getContext(), FPWidth), NumSrcElt);
// Ask VMCore to do the conversion now that #elts line up.
C = ConstantExpr::getBitCast(C, SrcIVTy);
CV = dyn_cast<ConstantVector>(C);
if (!CV) // If VMCore wasn't able to fold it, bail out.
return C;
}
// Now we know that the input and output vectors are both integer vectors
// of the same size, and that their #elements is not the same. Do the
// conversion here, which depends on whether the input or output has
// more elements.
bool isLittleEndian = TD.isLittleEndian();
SmallVector<Constant*, 32> Result;
if (NumDstElt < NumSrcElt) {
// Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>)
Constant *Zero = Constant::getNullValue(DstEltTy);
unsigned Ratio = NumSrcElt/NumDstElt;
unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits();
unsigned SrcElt = 0;
for (unsigned i = 0; i != NumDstElt; ++i) {
// Build each element of the result.
Constant *Elt = Zero;
unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(SrcElt++));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
// Zero extend the element to the right size.
Src = ConstantExpr::getZExt(Src, Elt->getType());
// Shift it to the right place, depending on endianness.
Src = ConstantExpr::getShl(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize;
// Mix it in.
Elt = ConstantExpr::getOr(Elt, Src);
}
Result.push_back(Elt);
}
} else {
// Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>)
unsigned Ratio = NumDstElt/NumSrcElt;
unsigned DstBitSize = DstEltTy->getPrimitiveSizeInBits();
// Loop over each source value, expanding into multiple results.
for (unsigned i = 0; i != NumSrcElt; ++i) {
Constant *Src = dyn_cast<ConstantInt>(CV->getOperand(i));
if (!Src) // Reject constantexpr elements.
return ConstantExpr::getBitCast(C, DestTy);
unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1);
for (unsigned j = 0; j != Ratio; ++j) {
// Shift the piece of the value into the right place, depending on
// endianness.
Constant *Elt = ConstantExpr::getLShr(Src,
ConstantInt::get(Src->getType(), ShiftAmt));
ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize;
// Truncate and remember this piece.
Result.push_back(ConstantExpr::getTrunc(Elt, DstEltTy));
}
}
}
return ConstantVector::get(Result);
}
/// IsConstantOffsetFromGlobal - If this constant is actually a constant offset
/// from a global, return the global and the constant. Because of
/// constantexprs, this function is recursive.
static bool IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV,
int64_t &Offset, const TargetData &TD) {
// Trivial case, constant is the global.
if ((GV = dyn_cast<GlobalValue>(C))) {
Offset = 0;
return true;
}
// Otherwise, if this isn't a constant expr, bail out.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return false;
// Look through ptr->int and ptr->ptr casts.
if (CE->getOpcode() == Instruction::PtrToInt ||
CE->getOpcode() == Instruction::BitCast)
return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD);
// i32* getelementptr ([5 x i32]* @a, i32 0, i32 5)
if (CE->getOpcode() == Instruction::GetElementPtr) {
// Cannot compute this if the element type of the pointer is missing size
// info.
if (!cast<PointerType>(CE->getOperand(0)->getType())
->getElementType()->isSized())
return false;
// If the base isn't a global+constant, we aren't either.
if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, TD))
return false;
// Otherwise, add any offset that our operands provide.
gep_type_iterator GTI = gep_type_begin(CE);
for (User::const_op_iterator i = CE->op_begin() + 1, e = CE->op_end();
i != e; ++i, ++GTI) {
ConstantInt *CI = dyn_cast<ConstantInt>(*i);
if (!CI) return false; // Index isn't a simple constant?
if (CI->isZero()) continue; // Not adding anything.
if (StructType *ST = dyn_cast<StructType>(*GTI)) {
// N = N + Offset
Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
} else {
SequentialType *SQT = cast<SequentialType>(*GTI);
Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
}
}
return true;
}
return false;
}
/// ReadDataFromGlobal - Recursive helper to read bits out of global. C is the
/// constant being copied out of. ByteOffset is an offset into C. CurPtr is the
/// pointer to copy results into and BytesLeft is the number of bytes left in
/// the CurPtr buffer. TD is the target data.
static bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset,
unsigned char *CurPtr, unsigned BytesLeft,
const TargetData &TD) {
assert(ByteOffset <= TD.getTypeAllocSize(C->getType()) &&
"Out of range access");
// If this element is zero or undefined, we can just return since *CurPtr is
// zero initialized.
if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C))
return true;
if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
if (CI->getBitWidth() > 64 ||
(CI->getBitWidth() & 7) != 0)
return false;
uint64_t Val = CI->getZExtValue();
unsigned IntBytes = unsigned(CI->getBitWidth()/8);
for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) {
CurPtr[i] = (unsigned char)(Val >> (ByteOffset * 8));
++ByteOffset;
}
return true;
}
if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
if (CFP->getType()->isDoubleTy()) {
C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), TD);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
}
if (CFP->getType()->isFloatTy()){
C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), TD);
return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, TD);
}
return false;
}
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
const StructLayout *SL = TD.getStructLayout(CS->getType());
unsigned Index = SL->getElementContainingOffset(ByteOffset);
uint64_t CurEltOffset = SL->getElementOffset(Index);
ByteOffset -= CurEltOffset;
while (1) {
// If the element access is to the element itself and not to tail padding,
// read the bytes from the element.
uint64_t EltSize = TD.getTypeAllocSize(CS->getOperand(Index)->getType());
if (ByteOffset < EltSize &&
!ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr,
BytesLeft, TD))
return false;
++Index;
// Check to see if we read from the last struct element, if so we're done.
if (Index == CS->getType()->getNumElements())
return true;
// If we read all of the bytes we needed from this element we're done.
uint64_t NextEltOffset = SL->getElementOffset(Index);
if (BytesLeft <= NextEltOffset-CurEltOffset-ByteOffset)
return true;
// Move to the next element of the struct.
CurPtr += NextEltOffset-CurEltOffset-ByteOffset;
BytesLeft -= NextEltOffset-CurEltOffset-ByteOffset;
ByteOffset = 0;
CurEltOffset = NextEltOffset;
}
// not reached.
}
if (ConstantArray *CA = dyn_cast<ConstantArray>(C)) {
uint64_t EltSize = TD.getTypeAllocSize(CA->getType()->getElementType());
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
for (; Index != CA->getType()->getNumElements(); ++Index) {
if (!ReadDataFromGlobal(CA->getOperand(Index), Offset, CurPtr,
BytesLeft, TD))
return false;
if (EltSize >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= EltSize;
CurPtr += EltSize;
}
return true;
}
if (ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
uint64_t EltSize = TD.getTypeAllocSize(CV->getType()->getElementType());
uint64_t Index = ByteOffset / EltSize;
uint64_t Offset = ByteOffset - Index * EltSize;
for (; Index != CV->getType()->getNumElements(); ++Index) {
if (!ReadDataFromGlobal(CV->getOperand(Index), Offset, CurPtr,
BytesLeft, TD))
return false;
if (EltSize >= BytesLeft)
return true;
Offset = 0;
BytesLeft -= EltSize;
CurPtr += EltSize;
}
return true;
}
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
if (CE->getOpcode() == Instruction::IntToPtr &&
CE->getOperand(0)->getType() == TD.getIntPtrType(CE->getContext()))
return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr,
BytesLeft, TD);
}
// Otherwise, unknown initializer type.
return false;
}
static Constant *FoldReinterpretLoadFromConstPtr(Constant *C,
const TargetData &TD) {
Type *LoadTy = cast<PointerType>(C->getType())->getElementType();
IntegerType *IntType = dyn_cast<IntegerType>(LoadTy);
// If this isn't an integer load we can't fold it directly.
if (!IntType) {
// If this is a float/double load, we can try folding it as an int32/64 load
// and then bitcast the result. This can be useful for union cases. Note
// that address spaces don't matter here since we're not going to result in
// an actual new load.
Type *MapTy;
if (LoadTy->isFloatTy())
MapTy = Type::getInt32PtrTy(C->getContext());
else if (LoadTy->isDoubleTy())
MapTy = Type::getInt64PtrTy(C->getContext());
else if (LoadTy->isVectorTy()) {
MapTy = IntegerType::get(C->getContext(),
TD.getTypeAllocSizeInBits(LoadTy));
MapTy = PointerType::getUnqual(MapTy);
} else
return 0;
C = FoldBitCast(C, MapTy, TD);
if (Constant *Res = FoldReinterpretLoadFromConstPtr(C, TD))
return FoldBitCast(Res, LoadTy, TD);
return 0;
}
unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8;
if (BytesLoaded > 32 || BytesLoaded == 0) return 0;
GlobalValue *GVal;
int64_t Offset;
if (!IsConstantOffsetFromGlobal(C, GVal, Offset, TD))
return 0;
GlobalVariable *GV = dyn_cast<GlobalVariable>(GVal);
if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
!GV->getInitializer()->getType()->isSized())
return 0;
// If we're loading off the beginning of the global, some bytes may be valid,
// but we don't try to handle this.
if (Offset < 0) return 0;
// If we're not accessing anything in this constant, the result is undefined.
if (uint64_t(Offset) >= TD.getTypeAllocSize(GV->getInitializer()->getType()))
return UndefValue::get(IntType);
unsigned char RawBytes[32] = {0};
if (!ReadDataFromGlobal(GV->getInitializer(), Offset, RawBytes,
BytesLoaded, TD))
return 0;
APInt ResultVal = APInt(IntType->getBitWidth(), RawBytes[BytesLoaded-1]);
for (unsigned i = 1; i != BytesLoaded; ++i) {
ResultVal <<= 8;
ResultVal |= RawBytes[BytesLoaded-1-i];
}
return ConstantInt::get(IntType->getContext(), ResultVal);
}
/// ConstantFoldLoadFromConstPtr - Return the value that a load from C would
/// produce if it is constant and determinable. If this is not determinable,
/// return null.
Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C,
const TargetData *TD) {
// First, try the easy cases:
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
return GV->getInitializer();
// If the loaded value isn't a constant expr, we can't handle it.
ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
if (!CE) return 0;
if (CE->getOpcode() == Instruction::GetElementPtr) {
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
if (GV->isConstant() && GV->hasDefinitiveInitializer())
if (Constant *V =
ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
return V;
}
// Instead of loading constant c string, use corresponding integer value
// directly if string length is small enough.
std::string Str;
if (TD && GetConstantStringInfo(CE, Str) && !Str.empty()) {
unsigned StrLen = Str.length();
Type *Ty = cast<PointerType>(CE->getType())->getElementType();
unsigned NumBits = Ty->getPrimitiveSizeInBits();
// Replace load with immediate integer if the result is an integer or fp
// value.
if ((NumBits >> 3) == StrLen + 1 && (NumBits & 7) == 0 &&
(isa<IntegerType>(Ty) || Ty->isFloatingPointTy())) {
APInt StrVal(NumBits, 0);
APInt SingleChar(NumBits, 0);
if (TD->isLittleEndian()) {
for (signed i = StrLen-1; i >= 0; i--) {
SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
StrVal = (StrVal << 8) | SingleChar;
}
} else {
for (unsigned i = 0; i < StrLen; i++) {
SingleChar = (uint64_t) Str[i] & UCHAR_MAX;
StrVal = (StrVal << 8) | SingleChar;
}
// Append NULL at the end.
SingleChar = 0;
StrVal = (StrVal << 8) | SingleChar;
}
Constant *Res = ConstantInt::get(CE->getContext(), StrVal);
if (Ty->isFloatingPointTy())
Res = ConstantExpr::getBitCast(Res, Ty);
return Res;
}
}
// If this load comes from anywhere in a constant global, and if the global
// is all undef or zero, we know what it loads.
if (GlobalVariable *GV =
dyn_cast<GlobalVariable>(GetUnderlyingObject(CE, TD))) {
if (GV->isConstant() && GV->hasDefinitiveInitializer()) {
Type *ResTy = cast<PointerType>(C->getType())->getElementType();
if (GV->getInitializer()->isNullValue())
return Constant::getNullValue(ResTy);
if (isa<UndefValue>(GV->getInitializer()))
return UndefValue::get(ResTy);
}
}
// Try hard to fold loads from bitcasted strange and non-type-safe things. We
// currently don't do any of this for big endian systems. It can be
// generalized in the future if someone is interested.
if (TD && TD->isLittleEndian())
return FoldReinterpretLoadFromConstPtr(CE, *TD);
return 0;
}
static Constant *ConstantFoldLoadInst(const LoadInst *LI, const TargetData *TD){
if (LI->isVolatile()) return 0;
if (Constant *C = dyn_cast<Constant>(LI->getOperand(0)))
return ConstantFoldLoadFromConstPtr(C, TD);
return 0;
}
/// SymbolicallyEvaluateBinop - One of Op0/Op1 is a constant expression.
/// Attempt to symbolically evaluate the result of a binary operator merging
/// these together. If target data info is available, it is provided as TD,
/// otherwise TD is null.
static Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0,
Constant *Op1, const TargetData *TD){
// SROA
// Fold (and 0xffffffff00000000, (shl x, 32)) -> shl.
// Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute
// bits.
// If the constant expr is something like &A[123] - &A[4].f, fold this into a
// constant. This happens frequently when iterating over a global array.
if (Opc == Instruction::Sub && TD) {
GlobalValue *GV1, *GV2;
int64_t Offs1, Offs2;
if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, *TD))
if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, *TD) &&
GV1 == GV2) {
// (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow.
return ConstantInt::get(Op0->getType(), Offs1-Offs2);
}
}
return 0;
}
/// CastGEPIndices - If array indices are not pointer-sized integers,
/// explicitly cast them so that they aren't implicitly casted by the
/// getelementptr.
static Constant *CastGEPIndices(ArrayRef<Constant *> Ops,
Type *ResultTy, const TargetData *TD,
const TargetLibraryInfo *TLI) {
if (!TD) return 0;
Type *IntPtrTy = TD->getIntPtrType(ResultTy->getContext());
bool Any = false;
SmallVector<Constant*, 32> NewIdxs;
for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
if ((i == 1 ||
!isa<StructType>(GetElementPtrInst::getIndexedType(Ops[0]->getType(),
Ops.slice(1, i-1)))) &&
Ops[i]->getType() != IntPtrTy) {
Any = true;
NewIdxs.push_back(ConstantExpr::getCast(CastInst::getCastOpcode(Ops[i],
true,
IntPtrTy,
true),
Ops[i], IntPtrTy));
} else
NewIdxs.push_back(Ops[i]);
}
if (!Any) return 0;
Constant *C =
ConstantExpr::getGetElementPtr(Ops[0], NewIdxs);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
if (Constant *Folded = ConstantFoldConstantExpression(CE, TD, TLI))
C = Folded;
return C;
}
/// SymbolicallyEvaluateGEP - If we can symbolically evaluate the specified GEP
/// constant expression, do so.
static Constant *SymbolicallyEvaluateGEP(ArrayRef<Constant *> Ops,
Type *ResultTy, const TargetData *TD,
const TargetLibraryInfo *TLI) {
Constant *Ptr = Ops[0];
if (!TD || !cast<PointerType>(Ptr->getType())->getElementType()->isSized() ||
!Ptr->getType()->isPointerTy())
return 0;
Type *IntPtrTy = TD->getIntPtrType(Ptr->getContext());
// If this is a constant expr gep that is effectively computing an
// "offsetof", fold it into 'cast int Size to T*' instead of 'gep 0, 0, 12'
for (unsigned i = 1, e = Ops.size(); i != e; ++i)
if (!isa<ConstantInt>(Ops[i])) {
// If this is "gep i8* Ptr, (sub 0, V)", fold this as:
// "inttoptr (sub (ptrtoint Ptr), V)"
if (Ops.size() == 2 &&
cast<PointerType>(ResultTy)->getElementType()->isIntegerTy(8)) {
ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[1]);
assert((CE == 0 || CE->getType() == IntPtrTy) &&
"CastGEPIndices didn't canonicalize index types!");
if (CE && CE->getOpcode() == Instruction::Sub &&
CE->getOperand(0)->isNullValue()) {
Constant *Res = ConstantExpr::getPtrToInt(Ptr, CE->getType());
Res = ConstantExpr::getSub(Res, CE->getOperand(1));
Res = ConstantExpr::getIntToPtr(Res, ResultTy);
if (ConstantExpr *ResCE = dyn_cast<ConstantExpr>(Res))
Res = ConstantFoldConstantExpression(ResCE, TD, TLI);
return Res;
}
}
return 0;
}
unsigned BitWidth = TD->getTypeSizeInBits(IntPtrTy);
APInt Offset =
APInt(BitWidth, TD->getIndexedOffset(Ptr->getType(),
makeArrayRef((Value **)Ops.data() + 1,
Ops.size() - 1)));
Ptr = cast<Constant>(Ptr->stripPointerCasts());
// If this is a GEP of a GEP, fold it all into a single GEP.
while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) {
SmallVector<Value *, 4> NestedOps(GEP->op_begin()+1, GEP->op_end());
// Do not try the incorporate the sub-GEP if some index is not a number.
bool AllConstantInt = true;
for (unsigned i = 0, e = NestedOps.size(); i != e; ++i)
if (!isa<ConstantInt>(NestedOps[i])) {
AllConstantInt = false;
break;
}
if (!AllConstantInt)
break;
Ptr = cast<Constant>(GEP->getOperand(0));
Offset += APInt(BitWidth,
TD->getIndexedOffset(Ptr->getType(), NestedOps));
Ptr = cast<Constant>(Ptr->stripPointerCasts());
}
// If the base value for this address is a literal integer value, fold the
// getelementptr to the resulting integer value casted to the pointer type.
APInt BasePtr(BitWidth, 0);
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
if (CE->getOpcode() == Instruction::IntToPtr)
if (ConstantInt *Base = dyn_cast<ConstantInt>(CE->getOperand(0)))
BasePtr = Base->getValue().zextOrTrunc(BitWidth);
if (Ptr->isNullValue() || BasePtr != 0) {
Constant *C = ConstantInt::get(Ptr->getContext(), Offset+BasePtr);
return ConstantExpr::getIntToPtr(C, ResultTy);
}
// Otherwise form a regular getelementptr. Recompute the indices so that
// we eliminate over-indexing of the notional static type array bounds.
// This makes it easy to determine if the getelementptr is "inbounds".
// Also, this helps GlobalOpt do SROA on GlobalVariables.
Type *Ty = Ptr->getType();
SmallVector<Constant*, 32> NewIdxs;
do {
if (SequentialType *ATy = dyn_cast<SequentialType>(Ty)) {
if (ATy->isPointerTy()) {
// The only pointer indexing we'll do is on the first index of the GEP.
if (!NewIdxs.empty())
break;
// Only handle pointers to sized types, not pointers to functions.
if (!ATy->getElementType()->isSized())
return 0;
}
// Determine which element of the array the offset points into.
APInt ElemSize(BitWidth, TD->getTypeAllocSize(ATy->getElementType()));
IntegerType *IntPtrTy = TD->getIntPtrType(Ty->getContext());
if (ElemSize == 0)
// The element size is 0. This may be [0 x Ty]*, so just use a zero
// index for this level and proceed to the next level to see if it can
// accommodate the offset.
NewIdxs.push_back(ConstantInt::get(IntPtrTy, 0));
else {
// The element size is non-zero divide the offset by the element
// size (rounding down), to compute the index at this level.
APInt NewIdx = Offset.udiv(ElemSize);
Offset -= NewIdx * ElemSize;
NewIdxs.push_back(ConstantInt::get(IntPtrTy, NewIdx));
}
Ty = ATy->getElementType();
} else if (StructType *STy = dyn_cast<StructType>(Ty)) {
// Determine which field of the struct the offset points into. The
// getZExtValue is at least as safe as the StructLayout API because we
// know the offset is within the struct at this point.
const StructLayout &SL = *TD->getStructLayout(STy);
unsigned ElIdx = SL.getElementContainingOffset(Offset.getZExtValue());
NewIdxs.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
ElIdx));
Offset -= APInt(BitWidth, SL.getElementOffset(ElIdx));
Ty = STy->getTypeAtIndex(ElIdx);
} else {
// We've reached some non-indexable type.
break;
}
} while (Ty != cast<PointerType>(ResultTy)->getElementType());
// If we haven't used up the entire offset by descending the static
// type, then the offset is pointing into the middle of an indivisible
// member, so we can't simplify it.
if (Offset != 0)
return 0;
// Create a GEP.
Constant *C =
ConstantExpr::getGetElementPtr(Ptr, NewIdxs);
assert(cast<PointerType>(C->getType())->getElementType() == Ty &&
"Computed GetElementPtr has unexpected type!");
// If we ended up indexing a member with a type that doesn't match
// the type of what the original indices indexed, add a cast.
if (Ty != cast<PointerType>(ResultTy)->getElementType())
C = FoldBitCast(C, ResultTy, *TD);
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding public APIs
//===----------------------------------------------------------------------===//
/// ConstantFoldInstruction - Try to constant fold the specified instruction.
/// If successful, the constant result is returned, if not, null is returned.
/// Note that this fails if not all of the operands are constant. Otherwise,
/// this function can only fail when attempting to fold instructions like loads
/// and stores, which have no constant expression form.
Constant *llvm::ConstantFoldInstruction(Instruction *I,
const TargetData *TD,
const TargetLibraryInfo *TLI) {
// Handle PHI nodes quickly here...
if (PHINode *PN = dyn_cast<PHINode>(I)) {
Constant *CommonValue = 0;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *Incoming = PN->getIncomingValue(i);
// If the incoming value is undef then skip it. Note that while we could
// skip the value if it is equal to the phi node itself we choose not to
// because that would break the rule that constant folding only applies if
// all operands are constants.
if (isa<UndefValue>(Incoming))
continue;
// If the incoming value is not a constant, or is a different constant to
// the one we saw previously, then give up.
Constant *C = dyn_cast<Constant>(Incoming);
if (!C || (CommonValue && C != CommonValue))
return 0;
CommonValue = C;
}
// If we reach here, all incoming values are the same constant or undef.
return CommonValue ? CommonValue : UndefValue::get(PN->getType());
}
// Scan the operand list, checking to see if they are all constants, if so,
// hand off to ConstantFoldInstOperands.
SmallVector<Constant*, 8> Ops;
for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
if (Constant *Op = dyn_cast<Constant>(*i))
Ops.push_back(Op);
else
return 0; // All operands not constant!
if (const CmpInst *CI = dyn_cast<CmpInst>(I))
return ConstantFoldCompareInstOperands(CI->getPredicate(), Ops[0], Ops[1],
TD, TLI);
if (const LoadInst *LI = dyn_cast<LoadInst>(I))
return ConstantFoldLoadInst(LI, TD);
if (InsertValueInst *IVI = dyn_cast<InsertValueInst>(I))
return ConstantExpr::getInsertValue(
cast<Constant>(IVI->getAggregateOperand()),
cast<Constant>(IVI->getInsertedValueOperand()),
IVI->getIndices());
if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I))
return ConstantExpr::getExtractValue(
cast<Constant>(EVI->getAggregateOperand()),
EVI->getIndices());
return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Ops, TD, TLI);
}
/// ConstantFoldConstantExpression - Attempt to fold the constant expression
/// using the specified TargetData. If successful, the constant result is
/// result is returned, if not, null is returned.
Constant *llvm::ConstantFoldConstantExpression(const ConstantExpr *CE,
const TargetData *TD,
const TargetLibraryInfo *TLI) {
SmallVector<Constant*, 8> Ops;
for (User::const_op_iterator i = CE->op_begin(), e = CE->op_end();
i != e; ++i) {
Constant *NewC = cast<Constant>(*i);
// Recursively fold the ConstantExpr's operands.
if (ConstantExpr *NewCE = dyn_cast<ConstantExpr>(NewC))
NewC = ConstantFoldConstantExpression(NewCE, TD, TLI);
Ops.push_back(NewC);
}
if (CE->isCompare())
return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1],
TD, TLI);
return ConstantFoldInstOperands(CE->getOpcode(), CE->getType(), Ops, TD, TLI);
}
/// ConstantFoldInstOperands - Attempt to constant fold an instruction with the
/// specified opcode and operands. If successful, the constant result is
/// returned, if not, null is returned. Note that this function can fail when
/// attempting to fold instructions like loads and stores, which have no
/// constant expression form.
///
/// TODO: This function neither utilizes nor preserves nsw/nuw/inbounds/etc
/// information, due to only being passed an opcode and operands. Constant
/// folding using this function strips this information.
///
Constant *llvm::ConstantFoldInstOperands(unsigned Opcode, Type *DestTy,
ArrayRef<Constant *> Ops,
const TargetData *TD,
const TargetLibraryInfo *TLI) {
// Handle easy binops first.
if (Instruction::isBinaryOp(Opcode)) {
if (isa<ConstantExpr>(Ops[0]) || isa<ConstantExpr>(Ops[1]))
if (Constant *C = SymbolicallyEvaluateBinop(Opcode, Ops[0], Ops[1], TD))
return C;
return ConstantExpr::get(Opcode, Ops[0], Ops[1]);
}
switch (Opcode) {
default: return 0;
case Instruction::ICmp:
case Instruction::FCmp: assert(0 && "Invalid for compares");
case Instruction::Call:
if (Function *F = dyn_cast<Function>(Ops.back()))
if (canConstantFoldCallTo(F))
return ConstantFoldCall(F, Ops.slice(0, Ops.size() - 1), TLI);
return 0;
case Instruction::PtrToInt:
// If the input is a inttoptr, eliminate the pair. This requires knowing
// the width of a pointer, so it can't be done in ConstantExpr::getCast.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0])) {
if (TD && CE->getOpcode() == Instruction::IntToPtr) {
Constant *Input = CE->getOperand(0);
unsigned InWidth = Input->getType()->getScalarSizeInBits();
if (TD->getPointerSizeInBits() < InWidth) {
Constant *Mask =
ConstantInt::get(CE->getContext(), APInt::getLowBitsSet(InWidth,
TD->getPointerSizeInBits()));
Input = ConstantExpr::getAnd(Input, Mask);
}
// Do a zext or trunc to get to the dest size.
return ConstantExpr::getIntegerCast(Input, DestTy, false);
}
}
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::IntToPtr:
// If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if
// the int size is >= the ptr size. This requires knowing the width of a
// pointer, so it can't be done in ConstantExpr::getCast.
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ops[0]))
if (TD &&
TD->getPointerSizeInBits() <= CE->getType()->getScalarSizeInBits() &&
CE->getOpcode() == Instruction::PtrToInt)
return FoldBitCast(CE->getOperand(0), DestTy, *TD);
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::Trunc:
case Instruction::ZExt:
case Instruction::SExt:
case Instruction::FPTrunc:
case Instruction::FPExt:
case Instruction::UIToFP:
case Instruction::SIToFP:
case Instruction::FPToUI:
case Instruction::FPToSI:
return ConstantExpr::getCast(Opcode, Ops[0], DestTy);
case Instruction::BitCast:
if (TD)
return FoldBitCast(Ops[0], DestTy, *TD);
return ConstantExpr::getBitCast(Ops[0], DestTy);
case Instruction::Select:
return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
case Instruction::ExtractElement:
return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
case Instruction::InsertElement:
return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
case Instruction::ShuffleVector:
return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
case Instruction::GetElementPtr:
if (Constant *C = CastGEPIndices(Ops, DestTy, TD, TLI))
return C;
if (Constant *C = SymbolicallyEvaluateGEP(Ops, DestTy, TD, TLI))
return C;
return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1));
}
}
/// ConstantFoldCompareInstOperands - Attempt to constant fold a compare
/// instruction (icmp/fcmp) with the specified operands. If it fails, it
/// returns a constant expression of the specified operands.
///
Constant *llvm::ConstantFoldCompareInstOperands(unsigned Predicate,
Constant *Ops0, Constant *Ops1,
const TargetData *TD,
const TargetLibraryInfo *TLI) {
// fold: icmp (inttoptr x), null -> icmp x, 0
// fold: icmp (ptrtoint x), 0 -> icmp x, null
// fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y
// fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y
//
// ConstantExpr::getCompare cannot do this, because it doesn't have TD
// around to know if bit truncation is happening.
if (ConstantExpr *CE0 = dyn_cast<ConstantExpr>(Ops0)) {
if (TD && Ops1->isNullValue()) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if (CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy) {
Constant *C = CE0->getOperand(0);
Constant *Null = Constant::getNullValue(C->getType());
return ConstantFoldCompareInstOperands(Predicate, C, Null, TD, TLI);
}
}
if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(Ops1)) {
if (TD && CE0->getOpcode() == CE1->getOpcode()) {
Type *IntPtrTy = TD->getIntPtrType(CE0->getContext());
if (CE0->getOpcode() == Instruction::IntToPtr) {
// Convert the integer value to the right size to ensure we get the
// proper extension or truncation.
Constant *C0 = ConstantExpr::getIntegerCast(CE0->getOperand(0),
IntPtrTy, false);
Constant *C1 = ConstantExpr::getIntegerCast(CE1->getOperand(0),
IntPtrTy, false);
return ConstantFoldCompareInstOperands(Predicate, C0, C1, TD, TLI);
}
// Only do this transformation if the int is intptrty in size, otherwise
// there is a truncation or extension that we aren't modeling.
if ((CE0->getOpcode() == Instruction::PtrToInt &&
CE0->getType() == IntPtrTy &&
CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()))
return ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0),
CE1->getOperand(0), TD, TLI);
}
}
// icmp eq (or x, y), 0 -> (icmp eq x, 0) & (icmp eq y, 0)
// icmp ne (or x, y), 0 -> (icmp ne x, 0) | (icmp ne y, 0)
if ((Predicate == ICmpInst::ICMP_EQ || Predicate == ICmpInst::ICMP_NE) &&
CE0->getOpcode() == Instruction::Or && Ops1->isNullValue()) {
Constant *LHS =
ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(0), Ops1,
TD, TLI);
Constant *RHS =
ConstantFoldCompareInstOperands(Predicate, CE0->getOperand(1), Ops1,
TD, TLI);
unsigned OpC =
Predicate == ICmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
Constant *Ops[] = { LHS, RHS };
return ConstantFoldInstOperands(OpC, LHS->getType(), Ops, TD, TLI);
}
}
return ConstantExpr::getCompare(Predicate, Ops0, Ops1);
}
/// ConstantFoldLoadThroughGEPConstantExpr - Given a constant and a
/// getelementptr constantexpr, return the constant value being addressed by the
/// constant expression, or null if something is funny and we can't decide.
Constant *llvm::ConstantFoldLoadThroughGEPConstantExpr(Constant *C,
ConstantExpr *CE) {
if (CE->getOperand(1) != Constant::getNullValue(CE->getOperand(1)->getType()))
return 0; // Do not allow stepping over the value!
// Loop over all of the operands, tracking down which value we are
// addressing...
gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE);
for (++I; I != E; ++I)
if (StructType *STy = dyn_cast<StructType>(*I)) {
ConstantInt *CU = cast<ConstantInt>(I.getOperand());
assert(CU->getZExtValue() < STy->getNumElements() &&
"Struct index out of range!");
unsigned El = (unsigned)CU->getZExtValue();
if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) {
C = CS->getOperand(El);
} else if (isa<ConstantAggregateZero>(C)) {
C = Constant::getNullValue(STy->getElementType(El));
} else if (isa<UndefValue>(C)) {
C = UndefValue::get(STy->getElementType(El));
} else {
return 0;
}
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand())) {
if (ArrayType *ATy = dyn_cast<ArrayType>(*I)) {
if (CI->getZExtValue() >= ATy->getNumElements())
return 0;
if (ConstantArray *CA = dyn_cast<ConstantArray>(C))
C = CA->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Constant::getNullValue(ATy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(ATy->getElementType());
else
return 0;
} else if (VectorType *VTy = dyn_cast<VectorType>(*I)) {
if (CI->getZExtValue() >= VTy->getNumElements())
return 0;
if (ConstantVector *CP = dyn_cast<ConstantVector>(C))
C = CP->getOperand(CI->getZExtValue());
else if (isa<ConstantAggregateZero>(C))
C = Constant::getNullValue(VTy->getElementType());
else if (isa<UndefValue>(C))
C = UndefValue::get(VTy->getElementType());
else
return 0;
} else {
return 0;
}
} else {
return 0;
}
return C;
}
//===----------------------------------------------------------------------===//
// Constant Folding for Calls
//
/// canConstantFoldCallTo - Return true if its even possible to fold a call to
/// the specified function.
bool
llvm::canConstantFoldCallTo(const Function *F) {
switch (F->getIntrinsicID()) {
case Intrinsic::sqrt:
case Intrinsic::pow:
case Intrinsic::powi:
case Intrinsic::bswap:
case Intrinsic::ctpop:
case Intrinsic::ctlz:
case Intrinsic::cttz:
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow:
case Intrinsic::convert_from_fp16:
case Intrinsic::convert_to_fp16:
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
return true;
default:
return false;
case 0: break;
}
if (!F->hasName()) return false;
StringRef Name = F->getName();
// In these cases, the check of the length is required. We don't want to
// return true for a name like "cos\0blah" which strcmp would return equal to
// "cos", but has length 8.
switch (Name[0]) {
default: return false;
case 'a':
return Name == "acos" || Name == "asin" ||
Name == "atan" || Name == "atan2";
case 'c':
return Name == "cos" || Name == "ceil" || Name == "cosf" || Name == "cosh";
case 'e':
return Name == "exp" || Name == "exp2";
case 'f':
return Name == "fabs" || Name == "fmod" || Name == "floor";
case 'l':
return Name == "log" || Name == "log10";
case 'p':
return Name == "pow";
case 's':
return Name == "sin" || Name == "sinh" || Name == "sqrt" ||
Name == "sinf" || Name == "sqrtf";
case 't':
return Name == "tan" || Name == "tanh";
}
}
static Constant *ConstantFoldFP(double (*NativeFP)(double), double V,
Type *Ty) {
sys::llvm_fenv_clearexcept();
V = NativeFP(V);
if (sys::llvm_fenv_testexcept()) {
sys::llvm_fenv_clearexcept();
return 0;
}
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
llvm_unreachable("Can only constant fold float/double");
return 0; // dummy return to suppress warning
}
static Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double),
double V, double W, Type *Ty) {
sys::llvm_fenv_clearexcept();
V = NativeFP(V, W);
if (sys::llvm_fenv_testexcept()) {
sys::llvm_fenv_clearexcept();
return 0;
}
if (Ty->isFloatTy())
return ConstantFP::get(Ty->getContext(), APFloat((float)V));
if (Ty->isDoubleTy())
return ConstantFP::get(Ty->getContext(), APFloat(V));
llvm_unreachable("Can only constant fold float/double");
return 0; // dummy return to suppress warning
}
/// ConstantFoldConvertToInt - Attempt to an SSE floating point to integer
/// conversion of a constant floating point. If roundTowardZero is false, the
/// default IEEE rounding is used (toward nearest, ties to even). This matches
/// the behavior of the non-truncating SSE instructions in the default rounding
/// mode. The desired integer type Ty is used to select how many bits are
/// available for the result. Returns null if the conversion cannot be
/// performed, otherwise returns the Constant value resulting from the
/// conversion.
static Constant *ConstantFoldConvertToInt(ConstantFP *Op, bool roundTowardZero,
Type *Ty) {
assert(Op && "Called with NULL operand");
APFloat Val(Op->getValueAPF());
// All of these conversion intrinsics form an integer of at most 64bits.
unsigned ResultWidth = cast<IntegerType>(Ty)->getBitWidth();
assert(ResultWidth <= 64 &&
"Can only constant fold conversions to 64 and 32 bit ints");
uint64_t UIntVal;
bool isExact = false;
APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero
: APFloat::rmNearestTiesToEven;
APFloat::opStatus status = Val.convertToInteger(&UIntVal, ResultWidth,
/*isSigned=*/true, mode,
&isExact);
if (status != APFloat::opOK && status != APFloat::opInexact)
return 0;
return ConstantInt::get(Ty, UIntVal, /*isSigned=*/true);
}
/// ConstantFoldCall - Attempt to constant fold a call to the specified function
/// with the specified arguments, returning null if unsuccessful.
Constant *
llvm::ConstantFoldCall(Function *F, ArrayRef<Constant *> Operands,
const TargetLibraryInfo *TLI) {
if (!F->hasName()) return 0;
StringRef Name = F->getName();
Type *Ty = F->getReturnType();
if (Operands.size() == 1) {
if (ConstantFP *Op = dyn_cast<ConstantFP>(Operands[0])) {
if (F->getIntrinsicID() == Intrinsic::convert_to_fp16) {
APFloat Val(Op->getValueAPF());
bool lost = false;
Val.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &lost);
return ConstantInt::get(F->getContext(), Val.bitcastToAPInt());
}
if (!TLI)
return 0;
if (!Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
/// We only fold functions with finite arguments. Folding NaN and inf is
/// likely to be aborted with an exception anyway, and some host libms
/// have known errors raising exceptions.
if (Op->getValueAPF().isNaN() || Op->getValueAPF().isInfinity())
return 0;
/// Currently APFloat versions of these functions do not exist, so we use
/// the host native double versions. Float versions are not called
/// directly but for all these it is true (float)(f((double)arg)) ==
/// f(arg). Long double not supported yet.
double V = Ty->isFloatTy() ? (double)Op->getValueAPF().convertToFloat() :
Op->getValueAPF().convertToDouble();
switch (Name[0]) {
case 'a':
if (Name == "acos" && TLI->has(LibFunc::acos))
return ConstantFoldFP(acos, V, Ty);
else if (Name == "asin" && TLI->has(LibFunc::asin))
return ConstantFoldFP(asin, V, Ty);
else if (Name == "atan" && TLI->has(LibFunc::atan))
return ConstantFoldFP(atan, V, Ty);
break;
case 'c':
if (Name == "ceil" && TLI->has(LibFunc::ceil))
return ConstantFoldFP(ceil, V, Ty);
else if (Name == "cos" && TLI->has(LibFunc::cos))
return ConstantFoldFP(cos, V, Ty);
else if (Name == "cosh" && TLI->has(LibFunc::cosh))
return ConstantFoldFP(cosh, V, Ty);
else if (Name == "cosf" && TLI->has(LibFunc::cosf))
return ConstantFoldFP(cos, V, Ty);
break;
case 'e':
if (Name == "exp" && TLI->has(LibFunc::exp))
return ConstantFoldFP(exp, V, Ty);
if (Name == "exp2" && TLI->has(LibFunc::exp2)) {
// Constant fold exp2(x) as pow(2,x) in case the host doesn't have a
// C99 library.
return ConstantFoldBinaryFP(pow, 2.0, V, Ty);
}
break;
case 'f':
if (Name == "fabs" && TLI->has(LibFunc::fabs))
return ConstantFoldFP(fabs, V, Ty);
else if (Name == "floor" && TLI->has(LibFunc::floor))
return ConstantFoldFP(floor, V, Ty);
break;
case 'l':
if (Name == "log" && V > 0 && TLI->has(LibFunc::log))
return ConstantFoldFP(log, V, Ty);
else if (Name == "log10" && V > 0 && TLI->has(LibFunc::log10))
return ConstantFoldFP(log10, V, Ty);
else if (F->getIntrinsicID() == Intrinsic::sqrt &&
(Ty->isFloatTy() || Ty->isDoubleTy())) {
if (V >= -0.0)
return ConstantFoldFP(sqrt, V, Ty);
else // Undefined
return Constant::getNullValue(Ty);
}
break;
case 's':
if (Name == "sin" && TLI->has(LibFunc::sin))
return ConstantFoldFP(sin, V, Ty);
else if (Name == "sinh" && TLI->has(LibFunc::sinh))
return ConstantFoldFP(sinh, V, Ty);
else if (Name == "sqrt" && V >= 0 && TLI->has(LibFunc::sqrt))
return ConstantFoldFP(sqrt, V, Ty);
else if (Name == "sqrtf" && V >= 0 && TLI->has(LibFunc::sqrtf))
return ConstantFoldFP(sqrt, V, Ty);
else if (Name == "sinf" && TLI->has(LibFunc::sinf))
return ConstantFoldFP(sin, V, Ty);
break;
case 't':
if (Name == "tan" && TLI->has(LibFunc::tan))
return ConstantFoldFP(tan, V, Ty);
else if (Name == "tanh" && TLI->has(LibFunc::tanh))
return ConstantFoldFP(tanh, V, Ty);
break;
default:
break;
}
return 0;
}
if (ConstantInt *Op = dyn_cast<ConstantInt>(Operands[0])) {
switch (F->getIntrinsicID()) {
case Intrinsic::bswap:
return ConstantInt::get(F->getContext(), Op->getValue().byteSwap());
case Intrinsic::ctpop:
return ConstantInt::get(Ty, Op->getValue().countPopulation());
case Intrinsic::convert_from_fp16: {
APFloat Val(Op->getValue());
bool lost = false;
APFloat::opStatus status =
Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
// Conversion is always precise.
(void)status;
assert(status == APFloat::opOK && !lost &&
"Precision lost during fp16 constfolding");
return ConstantFP::get(F->getContext(), Val);
}
default:
return 0;
}
}
if (ConstantVector *Op = dyn_cast<ConstantVector>(Operands[0])) {
switch (F->getIntrinsicID()) {
default: break;
case Intrinsic::x86_sse_cvtss2si:
case Intrinsic::x86_sse_cvtss2si64:
case Intrinsic::x86_sse2_cvtsd2si:
case Intrinsic::x86_sse2_cvtsd2si64:
if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/false, Ty);
case Intrinsic::x86_sse_cvttss2si:
case Intrinsic::x86_sse_cvttss2si64:
case Intrinsic::x86_sse2_cvttsd2si:
case Intrinsic::x86_sse2_cvttsd2si64:
if (ConstantFP *FPOp = dyn_cast<ConstantFP>(Op->getOperand(0)))
return ConstantFoldConvertToInt(FPOp, /*roundTowardZero=*/true, Ty);
}
}
if (isa<UndefValue>(Operands[0])) {
if (F->getIntrinsicID() == Intrinsic::bswap)
return Operands[0];
return 0;
}
return 0;
}
if (Operands.size() == 2) {
if (ConstantFP *Op1 = dyn_cast<ConstantFP>(Operands[0])) {
if (!Ty->isFloatTy() && !Ty->isDoubleTy())
return 0;
double Op1V = Ty->isFloatTy() ?
(double)Op1->getValueAPF().convertToFloat() :
Op1->getValueAPF().convertToDouble();
if (ConstantFP *Op2 = dyn_cast<ConstantFP>(Operands[1])) {
if (Op2->getType() != Op1->getType())
return 0;
double Op2V = Ty->isFloatTy() ?
(double)Op2->getValueAPF().convertToFloat():
Op2->getValueAPF().convertToDouble();
if (F->getIntrinsicID() == Intrinsic::pow) {
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
}
if (!TLI)
return 0;
if (Name == "pow" && TLI->has(LibFunc::pow))
return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty);
if (Name == "fmod" && TLI->has(LibFunc::fmod))
return ConstantFoldBinaryFP(fmod, Op1V, Op2V, Ty);
if (Name == "atan2" && TLI->has(LibFunc::atan2))
return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty);
} else if (ConstantInt *Op2C = dyn_cast<ConstantInt>(Operands[1])) {
if (F->getIntrinsicID() == Intrinsic::powi && Ty->isFloatTy())
return ConstantFP::get(F->getContext(),
APFloat((float)std::pow((float)Op1V,
(int)Op2C->getZExtValue())));
if (F->getIntrinsicID() == Intrinsic::powi && Ty->isDoubleTy())
return ConstantFP::get(F->getContext(),
APFloat((double)std::pow((double)Op1V,
(int)Op2C->getZExtValue())));
}
return 0;
}
if (ConstantInt *Op1 = dyn_cast<ConstantInt>(Operands[0])) {
if (ConstantInt *Op2 = dyn_cast<ConstantInt>(Operands[1])) {
switch (F->getIntrinsicID()) {
default: break;
case Intrinsic::sadd_with_overflow:
case Intrinsic::uadd_with_overflow:
case Intrinsic::ssub_with_overflow:
case Intrinsic::usub_with_overflow:
case Intrinsic::smul_with_overflow:
case Intrinsic::umul_with_overflow: {
APInt Res;
bool Overflow;
switch (F->getIntrinsicID()) {
default: assert(0 && "Invalid case");
case Intrinsic::sadd_with_overflow:
Res = Op1->getValue().sadd_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::uadd_with_overflow:
Res = Op1->getValue().uadd_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::ssub_with_overflow:
Res = Op1->getValue().ssub_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::usub_with_overflow:
Res = Op1->getValue().usub_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::smul_with_overflow:
Res = Op1->getValue().smul_ov(Op2->getValue(), Overflow);
break;
case Intrinsic::umul_with_overflow:
Res = Op1->getValue().umul_ov(Op2->getValue(), Overflow);
break;
}
Constant *Ops[] = {
ConstantInt::get(F->getContext(), Res),
ConstantInt::get(Type::getInt1Ty(F->getContext()), Overflow)
};
return ConstantStruct::get(cast<StructType>(F->getReturnType()), Ops);
}
case Intrinsic::cttz:
// FIXME: This should check for Op2 == 1, and become unreachable if
// Op1 == 0.
return ConstantInt::get(Ty, Op1->getValue().countTrailingZeros());
case Intrinsic::ctlz:
// FIXME: This should check for Op2 == 1, and become unreachable if
// Op1 == 0.
return ConstantInt::get(Ty, Op1->getValue().countLeadingZeros());
}
}
return 0;
}
return 0;
}
return 0;
}