llvm-6502/lib/AsmParser/llvmAsmParser.y
2004-12-08 16:13:53 +00:00

2197 lines
78 KiB
Plaintext

//===-- llvmAsmParser.y - Parser for llvm assembly files --------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the bison parser for LLVM assembly languages files.
//
//===----------------------------------------------------------------------===//
%{
#include "ParserInternals.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/SymbolTable.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <iostream>
#include <list>
#include <utility>
int yyerror(const char *ErrorMsg); // Forward declarations to prevent "implicit
int yylex(); // declaration" of xxx warnings.
int yyparse();
namespace llvm {
std::string CurFilename;
}
using namespace llvm;
static Module *ParserResult;
// DEBUG_UPREFS - Define this symbol if you want to enable debugging output
// relating to upreferences in the input stream.
//
//#define DEBUG_UPREFS 1
#ifdef DEBUG_UPREFS
#define UR_OUT(X) std::cerr << X
#else
#define UR_OUT(X)
#endif
#define YYERROR_VERBOSE 1
// HACK ALERT: This variable is used to implement the automatic conversion of
// variable argument instructions from their old to new forms. When this
// compatiblity "Feature" is removed, this should be too.
//
static BasicBlock *CurBB;
static bool ObsoleteVarArgs;
// This contains info used when building the body of a function. It is
// destroyed when the function is completed.
//
typedef std::vector<Value *> ValueList; // Numbered defs
static void ResolveDefinitions(std::map<const Type *,ValueList> &LateResolvers,
std::map<const Type *,ValueList> *FutureLateResolvers = 0);
static struct PerModuleInfo {
Module *CurrentModule;
std::map<const Type *, ValueList> Values; // Module level numbered definitions
std::map<const Type *,ValueList> LateResolveValues;
std::vector<PATypeHolder> Types;
std::map<ValID, PATypeHolder> LateResolveTypes;
/// PlaceHolderInfo - When temporary placeholder objects are created, remember
/// how they were referenced and one which line of the input they came from so
/// that we can resolve them later and print error messages as appropriate.
std::map<Value*, std::pair<ValID, int> > PlaceHolderInfo;
// GlobalRefs - This maintains a mapping between <Type, ValID>'s and forward
// references to global values. Global values may be referenced before they
// are defined, and if so, the temporary object that they represent is held
// here. This is used for forward references of GlobalValues.
//
typedef std::map<std::pair<const PointerType *,
ValID>, GlobalValue*> GlobalRefsType;
GlobalRefsType GlobalRefs;
void ModuleDone() {
// If we could not resolve some functions at function compilation time
// (calls to functions before they are defined), resolve them now... Types
// are resolved when the constant pool has been completely parsed.
//
ResolveDefinitions(LateResolveValues);
// Check to make sure that all global value forward references have been
// resolved!
//
if (!GlobalRefs.empty()) {
std::string UndefinedReferences = "Unresolved global references exist:\n";
for (GlobalRefsType::iterator I = GlobalRefs.begin(), E =GlobalRefs.end();
I != E; ++I) {
UndefinedReferences += " " + I->first.first->getDescription() + " " +
I->first.second.getName() + "\n";
}
ThrowException(UndefinedReferences);
}
Values.clear(); // Clear out function local definitions
Types.clear();
CurrentModule = 0;
}
// GetForwardRefForGlobal - Check to see if there is a forward reference
// for this global. If so, remove it from the GlobalRefs map and return it.
// If not, just return null.
GlobalValue *GetForwardRefForGlobal(const PointerType *PTy, ValID ID) {
// Check to see if there is a forward reference to this global variable...
// if there is, eliminate it and patch the reference to use the new def'n.
GlobalRefsType::iterator I = GlobalRefs.find(std::make_pair(PTy, ID));
GlobalValue *Ret = 0;
if (I != GlobalRefs.end()) {
Ret = I->second;
GlobalRefs.erase(I);
}
return Ret;
}
} CurModule;
static struct PerFunctionInfo {
Function *CurrentFunction; // Pointer to current function being created
std::map<const Type*, ValueList> Values; // Keep track of #'d definitions
std::map<const Type*, ValueList> LateResolveValues;
std::vector<PATypeHolder> Types;
std::map<ValID, PATypeHolder> LateResolveTypes;
bool isDeclare; // Is this function a forward declararation?
/// BBForwardRefs - When we see forward references to basic blocks, keep
/// track of them here.
std::map<BasicBlock*, std::pair<ValID, int> > BBForwardRefs;
std::vector<BasicBlock*> NumberedBlocks;
unsigned NextBBNum;
inline PerFunctionInfo() {
CurrentFunction = 0;
isDeclare = false;
}
inline void FunctionStart(Function *M) {
CurrentFunction = M;
NextBBNum = 0;
}
void FunctionDone() {
NumberedBlocks.clear();
// Any forward referenced blocks left?
if (!BBForwardRefs.empty())
ThrowException("Undefined reference to label " +
BBForwardRefs.begin()->second.first.getName());
// Resolve all forward references now.
ResolveDefinitions(LateResolveValues, &CurModule.LateResolveValues);
Values.clear(); // Clear out function local definitions
Types.clear(); // Clear out function local types
CurrentFunction = 0;
isDeclare = false;
}
} CurFun; // Info for the current function...
static bool inFunctionScope() { return CurFun.CurrentFunction != 0; }
//===----------------------------------------------------------------------===//
// Code to handle definitions of all the types
//===----------------------------------------------------------------------===//
static int InsertValue(Value *V,
std::map<const Type*,ValueList> &ValueTab = CurFun.Values) {
if (V->hasName()) return -1; // Is this a numbered definition?
// Yes, insert the value into the value table...
ValueList &List = ValueTab[V->getType()];
List.push_back(V);
return List.size()-1;
}
static const Type *getTypeVal(const ValID &D, bool DoNotImprovise = false) {
switch (D.Type) {
case ValID::NumberVal: // Is it a numbered definition?
// Module constants occupy the lowest numbered slots...
if ((unsigned)D.Num < CurModule.Types.size())
return CurModule.Types[(unsigned)D.Num];
break;
case ValID::NameVal: // Is it a named definition?
if (const Type *N = CurModule.CurrentModule->getTypeByName(D.Name)) {
D.destroy(); // Free old strdup'd memory...
return N;
}
break;
default:
ThrowException("Internal parser error: Invalid symbol type reference!");
}
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
//
if (DoNotImprovise) return 0; // Do we just want a null to be returned?
std::map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ?
CurFun.LateResolveTypes : CurModule.LateResolveTypes;
std::map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
if (I != LateResolver.end()) {
return I->second;
}
Type *Typ = OpaqueType::get();
LateResolver.insert(std::make_pair(D, Typ));
return Typ;
}
static Value *lookupInSymbolTable(const Type *Ty, const std::string &Name) {
SymbolTable &SymTab =
inFunctionScope() ? CurFun.CurrentFunction->getSymbolTable() :
CurModule.CurrentModule->getSymbolTable();
return SymTab.lookup(Ty, Name);
}
// getValNonImprovising - Look up the value specified by the provided type and
// the provided ValID. If the value exists and has already been defined, return
// it. Otherwise return null.
//
static Value *getValNonImprovising(const Type *Ty, const ValID &D) {
if (isa<FunctionType>(Ty))
ThrowException("Functions are not values and "
"must be referenced as pointers");
switch (D.Type) {
case ValID::NumberVal: { // Is it a numbered definition?
unsigned Num = (unsigned)D.Num;
// Module constants occupy the lowest numbered slots...
std::map<const Type*,ValueList>::iterator VI = CurModule.Values.find(Ty);
if (VI != CurModule.Values.end()) {
if (Num < VI->second.size())
return VI->second[Num];
Num -= VI->second.size();
}
// Make sure that our type is within bounds
VI = CurFun.Values.find(Ty);
if (VI == CurFun.Values.end()) return 0;
// Check that the number is within bounds...
if (VI->second.size() <= Num) return 0;
return VI->second[Num];
}
case ValID::NameVal: { // Is it a named definition?
Value *N = lookupInSymbolTable(Ty, std::string(D.Name));
if (N == 0) return 0;
D.destroy(); // Free old strdup'd memory...
return N;
}
// Check to make sure that "Ty" is an integral type, and that our
// value will fit into the specified type...
case ValID::ConstSIntVal: // Is it a constant pool reference??
if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64))
ThrowException("Signed integral constant '" +
itostr(D.ConstPool64) + "' is invalid for type '" +
Ty->getDescription() + "'!");
return ConstantSInt::get(Ty, D.ConstPool64);
case ValID::ConstUIntVal: // Is it an unsigned const pool reference?
if (!ConstantUInt::isValueValidForType(Ty, D.UConstPool64)) {
if (!ConstantSInt::isValueValidForType(Ty, D.ConstPool64)) {
ThrowException("Integral constant '" + utostr(D.UConstPool64) +
"' is invalid or out of range!");
} else { // This is really a signed reference. Transmogrify.
return ConstantSInt::get(Ty, D.ConstPool64);
}
} else {
return ConstantUInt::get(Ty, D.UConstPool64);
}
case ValID::ConstFPVal: // Is it a floating point const pool reference?
if (!ConstantFP::isValueValidForType(Ty, D.ConstPoolFP))
ThrowException("FP constant invalid for type!!");
return ConstantFP::get(Ty, D.ConstPoolFP);
case ValID::ConstNullVal: // Is it a null value?
if (!isa<PointerType>(Ty))
ThrowException("Cannot create a a non pointer null!");
return ConstantPointerNull::get(cast<PointerType>(Ty));
case ValID::ConstUndefVal: // Is it an undef value?
return UndefValue::get(Ty);
case ValID::ConstantVal: // Fully resolved constant?
if (D.ConstantValue->getType() != Ty)
ThrowException("Constant expression type different from required type!");
return D.ConstantValue;
default:
assert(0 && "Unhandled case!");
return 0;
} // End of switch
assert(0 && "Unhandled case!");
return 0;
}
// getVal - This function is identical to getValNonImprovising, except that if a
// value is not already defined, it "improvises" by creating a placeholder var
// that looks and acts just like the requested variable. When the value is
// defined later, all uses of the placeholder variable are replaced with the
// real thing.
//
static Value *getVal(const Type *Ty, const ValID &ID) {
if (Ty == Type::LabelTy)
ThrowException("Cannot use a basic block here");
// See if the value has already been defined.
Value *V = getValNonImprovising(Ty, ID);
if (V) return V;
// If we reached here, we referenced either a symbol that we don't know about
// or an id number that hasn't been read yet. We may be referencing something
// forward, so just create an entry to be resolved later and get to it...
//
V = new Argument(Ty);
// Remember where this forward reference came from. FIXME, shouldn't we try
// to recycle these things??
CurModule.PlaceHolderInfo.insert(std::make_pair(V, std::make_pair(ID,
llvmAsmlineno)));
if (inFunctionScope())
InsertValue(V, CurFun.LateResolveValues);
else
InsertValue(V, CurModule.LateResolveValues);
return V;
}
/// getBBVal - This is used for two purposes:
/// * If isDefinition is true, a new basic block with the specified ID is being
/// defined.
/// * If isDefinition is true, this is a reference to a basic block, which may
/// or may not be a forward reference.
///
static BasicBlock *getBBVal(const ValID &ID, bool isDefinition = false) {
assert(inFunctionScope() && "Can't get basic block at global scope!");
std::string Name;
BasicBlock *BB = 0;
switch (ID.Type) {
default: ThrowException("Illegal label reference " + ID.getName());
case ValID::NumberVal: // Is it a numbered definition?
if (unsigned(ID.Num) >= CurFun.NumberedBlocks.size())
CurFun.NumberedBlocks.resize(ID.Num+1);
BB = CurFun.NumberedBlocks[ID.Num];
break;
case ValID::NameVal: // Is it a named definition?
Name = ID.Name;
if (Value *N = CurFun.CurrentFunction->
getSymbolTable().lookup(Type::LabelTy, Name))
BB = cast<BasicBlock>(N);
break;
}
// See if the block has already been defined.
if (BB) {
// If this is the definition of the block, make sure the existing value was
// just a forward reference. If it was a forward reference, there will be
// an entry for it in the PlaceHolderInfo map.
if (isDefinition && !CurFun.BBForwardRefs.erase(BB))
// The existing value was a definition, not a forward reference.
ThrowException("Redefinition of label " + ID.getName());
ID.destroy(); // Free strdup'd memory.
return BB;
}
// Otherwise this block has not been seen before.
BB = new BasicBlock("", CurFun.CurrentFunction);
if (ID.Type == ValID::NameVal) {
BB->setName(ID.Name);
} else {
CurFun.NumberedBlocks[ID.Num] = BB;
}
// If this is not a definition, keep track of it so we can use it as a forward
// reference.
if (!isDefinition) {
// Remember where this forward reference came from.
CurFun.BBForwardRefs[BB] = std::make_pair(ID, llvmAsmlineno);
} else {
// The forward declaration could have been inserted anywhere in the
// function: insert it into the correct place now.
CurFun.CurrentFunction->getBasicBlockList().remove(BB);
CurFun.CurrentFunction->getBasicBlockList().push_back(BB);
}
ID.destroy();
return BB;
}
//===----------------------------------------------------------------------===//
// Code to handle forward references in instructions
//===----------------------------------------------------------------------===//
//
// This code handles the late binding needed with statements that reference
// values not defined yet... for example, a forward branch, or the PHI node for
// a loop body.
//
// This keeps a table (CurFun.LateResolveValues) of all such forward references
// and back patchs after we are done.
//
// ResolveDefinitions - If we could not resolve some defs at parsing
// time (forward branches, phi functions for loops, etc...) resolve the
// defs now...
//
static void ResolveDefinitions(std::map<const Type*,ValueList> &LateResolvers,
std::map<const Type*,ValueList> *FutureLateResolvers) {
// Loop over LateResolveDefs fixing up stuff that couldn't be resolved
for (std::map<const Type*,ValueList>::iterator LRI = LateResolvers.begin(),
E = LateResolvers.end(); LRI != E; ++LRI) {
ValueList &List = LRI->second;
while (!List.empty()) {
Value *V = List.back();
List.pop_back();
std::map<Value*, std::pair<ValID, int> >::iterator PHI =
CurModule.PlaceHolderInfo.find(V);
assert(PHI != CurModule.PlaceHolderInfo.end() && "Placeholder error!");
ValID &DID = PHI->second.first;
Value *TheRealValue = getValNonImprovising(LRI->first, DID);
if (TheRealValue) {
V->replaceAllUsesWith(TheRealValue);
delete V;
CurModule.PlaceHolderInfo.erase(PHI);
} else if (FutureLateResolvers) {
// Functions have their unresolved items forwarded to the module late
// resolver table
InsertValue(V, *FutureLateResolvers);
} else {
if (DID.Type == ValID::NameVal)
ThrowException("Reference to an invalid definition: '" +DID.getName()+
"' of type '" + V->getType()->getDescription() + "'",
PHI->second.second);
else
ThrowException("Reference to an invalid definition: #" +
itostr(DID.Num) + " of type '" +
V->getType()->getDescription() + "'",
PHI->second.second);
}
}
}
LateResolvers.clear();
}
// ResolveTypeTo - A brand new type was just declared. This means that (if
// name is not null) things referencing Name can be resolved. Otherwise, things
// refering to the number can be resolved. Do this now.
//
static void ResolveTypeTo(char *Name, const Type *ToTy) {
std::vector<PATypeHolder> &Types = inFunctionScope() ?
CurFun.Types : CurModule.Types;
ValID D;
if (Name) D = ValID::create(Name);
else D = ValID::create((int)Types.size());
std::map<ValID, PATypeHolder> &LateResolver = inFunctionScope() ?
CurFun.LateResolveTypes : CurModule.LateResolveTypes;
std::map<ValID, PATypeHolder>::iterator I = LateResolver.find(D);
if (I != LateResolver.end()) {
((DerivedType*)I->second.get())->refineAbstractTypeTo(ToTy);
LateResolver.erase(I);
}
}
// ResolveTypes - At this point, all types should be resolved. Any that aren't
// are errors.
//
static void ResolveTypes(std::map<ValID, PATypeHolder> &LateResolveTypes) {
if (!LateResolveTypes.empty()) {
const ValID &DID = LateResolveTypes.begin()->first;
if (DID.Type == ValID::NameVal)
ThrowException("Reference to an invalid type: '" +DID.getName() + "'");
else
ThrowException("Reference to an invalid type: #" + itostr(DID.Num));
}
}
// setValueName - Set the specified value to the name given. The name may be
// null potentially, in which case this is a noop. The string passed in is
// assumed to be a malloc'd string buffer, and is free'd by this function.
//
static void setValueName(Value *V, char *NameStr) {
if (NameStr) {
std::string Name(NameStr); // Copy string
free(NameStr); // Free old string
if (V->getType() == Type::VoidTy)
ThrowException("Can't assign name '" + Name+"' to value with void type!");
assert(inFunctionScope() && "Must be in function scope!");
SymbolTable &ST = CurFun.CurrentFunction->getSymbolTable();
if (ST.lookup(V->getType(), Name))
ThrowException("Redefinition of value named '" + Name + "' in the '" +
V->getType()->getDescription() + "' type plane!");
// Set the name.
V->setName(Name, &ST);
}
}
/// ParseGlobalVariable - Handle parsing of a global. If Initializer is null,
/// this is a declaration, otherwise it is a definition.
static void ParseGlobalVariable(char *NameStr,GlobalValue::LinkageTypes Linkage,
bool isConstantGlobal, const Type *Ty,
Constant *Initializer) {
if (isa<FunctionType>(Ty))
ThrowException("Cannot declare global vars of function type!");
const PointerType *PTy = PointerType::get(Ty);
std::string Name;
if (NameStr) {
Name = NameStr; // Copy string
free(NameStr); // Free old string
}
// See if this global value was forward referenced. If so, recycle the
// object.
ValID ID;
if (!Name.empty()) {
ID = ValID::create((char*)Name.c_str());
} else {
ID = ValID::create((int)CurModule.Values[PTy].size());
}
if (GlobalValue *FWGV = CurModule.GetForwardRefForGlobal(PTy, ID)) {
// Move the global to the end of the list, from whereever it was
// previously inserted.
GlobalVariable *GV = cast<GlobalVariable>(FWGV);
CurModule.CurrentModule->getGlobalList().remove(GV);
CurModule.CurrentModule->getGlobalList().push_back(GV);
GV->setInitializer(Initializer);
GV->setLinkage(Linkage);
GV->setConstant(isConstantGlobal);
InsertValue(GV, CurModule.Values);
return;
}
// If this global has a name, check to see if there is already a definition
// of this global in the module. If so, merge as appropriate. Note that
// this is really just a hack around problems in the CFE. :(
if (!Name.empty()) {
// We are a simple redefinition of a value, check to see if it is defined
// the same as the old one.
if (GlobalVariable *EGV =
CurModule.CurrentModule->getGlobalVariable(Name, Ty)) {
// We are allowed to redefine a global variable in two circumstances:
// 1. If at least one of the globals is uninitialized or
// 2. If both initializers have the same value.
//
if (!EGV->hasInitializer() || !Initializer ||
EGV->getInitializer() == Initializer) {
// Make sure the existing global version gets the initializer! Make
// sure that it also gets marked const if the new version is.
if (Initializer && !EGV->hasInitializer())
EGV->setInitializer(Initializer);
if (isConstantGlobal)
EGV->setConstant(true);
EGV->setLinkage(Linkage);
return;
}
ThrowException("Redefinition of global variable named '" + Name +
"' in the '" + Ty->getDescription() + "' type plane!");
}
}
// Otherwise there is no existing GV to use, create one now.
GlobalVariable *GV =
new GlobalVariable(Ty, isConstantGlobal, Linkage, Initializer, Name,
CurModule.CurrentModule);
InsertValue(GV, CurModule.Values);
}
// setTypeName - Set the specified type to the name given. The name may be
// null potentially, in which case this is a noop. The string passed in is
// assumed to be a malloc'd string buffer, and is freed by this function.
//
// This function returns true if the type has already been defined, but is
// allowed to be redefined in the specified context. If the name is a new name
// for the type plane, it is inserted and false is returned.
static bool setTypeName(const Type *T, char *NameStr) {
assert(!inFunctionScope() && "Can't give types function-local names!");
if (NameStr == 0) return false;
std::string Name(NameStr); // Copy string
free(NameStr); // Free old string
// We don't allow assigning names to void type
if (T == Type::VoidTy)
ThrowException("Can't assign name '" + Name + "' to the void type!");
// Set the type name, checking for conflicts as we do so.
bool AlreadyExists = CurModule.CurrentModule->addTypeName(Name, T);
if (AlreadyExists) { // Inserting a name that is already defined???
const Type *Existing = CurModule.CurrentModule->getTypeByName(Name);
assert(Existing && "Conflict but no matching type?");
// There is only one case where this is allowed: when we are refining an
// opaque type. In this case, Existing will be an opaque type.
if (const OpaqueType *OpTy = dyn_cast<OpaqueType>(Existing)) {
// We ARE replacing an opaque type!
const_cast<OpaqueType*>(OpTy)->refineAbstractTypeTo(T);
return true;
}
// Otherwise, this is an attempt to redefine a type. That's okay if
// the redefinition is identical to the original. This will be so if
// Existing and T point to the same Type object. In this one case we
// allow the equivalent redefinition.
if (Existing == T) return true; // Yes, it's equal.
// Any other kind of (non-equivalent) redefinition is an error.
ThrowException("Redefinition of type named '" + Name + "' in the '" +
T->getDescription() + "' type plane!");
}
return false;
}
//===----------------------------------------------------------------------===//
// Code for handling upreferences in type names...
//
// TypeContains - Returns true if Ty directly contains E in it.
//
static bool TypeContains(const Type *Ty, const Type *E) {
return std::find(Ty->subtype_begin(), Ty->subtype_end(),
E) != Ty->subtype_end();
}
namespace {
struct UpRefRecord {
// NestingLevel - The number of nesting levels that need to be popped before
// this type is resolved.
unsigned NestingLevel;
// LastContainedTy - This is the type at the current binding level for the
// type. Every time we reduce the nesting level, this gets updated.
const Type *LastContainedTy;
// UpRefTy - This is the actual opaque type that the upreference is
// represented with.
OpaqueType *UpRefTy;
UpRefRecord(unsigned NL, OpaqueType *URTy)
: NestingLevel(NL), LastContainedTy(URTy), UpRefTy(URTy) {}
};
}
// UpRefs - A list of the outstanding upreferences that need to be resolved.
static std::vector<UpRefRecord> UpRefs;
/// HandleUpRefs - Every time we finish a new layer of types, this function is
/// called. It loops through the UpRefs vector, which is a list of the
/// currently active types. For each type, if the up reference is contained in
/// the newly completed type, we decrement the level count. When the level
/// count reaches zero, the upreferenced type is the type that is passed in:
/// thus we can complete the cycle.
///
static PATypeHolder HandleUpRefs(const Type *ty) {
if (!ty->isAbstract()) return ty;
PATypeHolder Ty(ty);
UR_OUT("Type '" << Ty->getDescription() <<
"' newly formed. Resolving upreferences.\n" <<
UpRefs.size() << " upreferences active!\n");
// If we find any resolvable upreferences (i.e., those whose NestingLevel goes
// to zero), we resolve them all together before we resolve them to Ty. At
// the end of the loop, if there is anything to resolve to Ty, it will be in
// this variable.
OpaqueType *TypeToResolve = 0;
for (unsigned i = 0; i != UpRefs.size(); ++i) {
UR_OUT(" UR#" << i << " - TypeContains(" << Ty->getDescription() << ", "
<< UpRefs[i].second->getDescription() << ") = "
<< (TypeContains(Ty, UpRefs[i].second) ? "true" : "false") << "\n");
if (TypeContains(Ty, UpRefs[i].LastContainedTy)) {
// Decrement level of upreference
unsigned Level = --UpRefs[i].NestingLevel;
UpRefs[i].LastContainedTy = Ty;
UR_OUT(" Uplevel Ref Level = " << Level << "\n");
if (Level == 0) { // Upreference should be resolved!
if (!TypeToResolve) {
TypeToResolve = UpRefs[i].UpRefTy;
} else {
UR_OUT(" * Resolving upreference for "
<< UpRefs[i].second->getDescription() << "\n";
std::string OldName = UpRefs[i].UpRefTy->getDescription());
UpRefs[i].UpRefTy->refineAbstractTypeTo(TypeToResolve);
UR_OUT(" * Type '" << OldName << "' refined upreference to: "
<< (const void*)Ty << ", " << Ty->getDescription() << "\n");
}
UpRefs.erase(UpRefs.begin()+i); // Remove from upreference list...
--i; // Do not skip the next element...
}
}
}
if (TypeToResolve) {
UR_OUT(" * Resolving upreference for "
<< UpRefs[i].second->getDescription() << "\n";
std::string OldName = TypeToResolve->getDescription());
TypeToResolve->refineAbstractTypeTo(Ty);
}
return Ty;
}
//===----------------------------------------------------------------------===//
// RunVMAsmParser - Define an interface to this parser
//===----------------------------------------------------------------------===//
//
Module *llvm::RunVMAsmParser(const std::string &Filename, FILE *F) {
llvmAsmin = F;
CurFilename = Filename;
llvmAsmlineno = 1; // Reset the current line number...
ObsoleteVarArgs = false;
// Allocate a new module to read
CurModule.CurrentModule = new Module(Filename);
yyparse(); // Parse the file, potentially throwing exception
Module *Result = ParserResult;
// Check to see if they called va_start but not va_arg..
if (!ObsoleteVarArgs)
if (Function *F = Result->getNamedFunction("llvm.va_start"))
if (F->asize() == 1) {
std::cerr << "WARNING: this file uses obsolete features. "
<< "Assemble and disassemble to update it.\n";
ObsoleteVarArgs = true;
}
if (ObsoleteVarArgs) {
// If the user is making use of obsolete varargs intrinsics, adjust them for
// the user.
if (Function *F = Result->getNamedFunction("llvm.va_start")) {
assert(F->asize() == 1 && "Obsolete va_start takes 1 argument!");
const Type *RetTy = F->getFunctionType()->getParamType(0);
RetTy = cast<PointerType>(RetTy)->getElementType();
Function *NF = Result->getOrInsertFunction("llvm.va_start", RetTy, 0);
while (!F->use_empty()) {
CallInst *CI = cast<CallInst>(F->use_back());
Value *V = new CallInst(NF, "", CI);
new StoreInst(V, CI->getOperand(1), CI);
CI->getParent()->getInstList().erase(CI);
}
Result->getFunctionList().erase(F);
}
if (Function *F = Result->getNamedFunction("llvm.va_end")) {
assert(F->asize() == 1 && "Obsolete va_end takes 1 argument!");
const Type *ArgTy = F->getFunctionType()->getParamType(0);
ArgTy = cast<PointerType>(ArgTy)->getElementType();
Function *NF = Result->getOrInsertFunction("llvm.va_end", Type::VoidTy,
ArgTy, 0);
while (!F->use_empty()) {
CallInst *CI = cast<CallInst>(F->use_back());
Value *V = new LoadInst(CI->getOperand(1), "", CI);
new CallInst(NF, V, "", CI);
CI->getParent()->getInstList().erase(CI);
}
Result->getFunctionList().erase(F);
}
if (Function *F = Result->getNamedFunction("llvm.va_copy")) {
assert(F->asize() == 2 && "Obsolete va_copy takes 2 argument!");
const Type *ArgTy = F->getFunctionType()->getParamType(0);
ArgTy = cast<PointerType>(ArgTy)->getElementType();
Function *NF = Result->getOrInsertFunction("llvm.va_copy", ArgTy,
ArgTy, 0);
while (!F->use_empty()) {
CallInst *CI = cast<CallInst>(F->use_back());
Value *V = new CallInst(NF, CI->getOperand(2), "", CI);
new StoreInst(V, CI->getOperand(1), CI);
CI->getParent()->getInstList().erase(CI);
}
Result->getFunctionList().erase(F);
}
}
llvmAsmin = stdin; // F is about to go away, don't use it anymore...
ParserResult = 0;
return Result;
}
%}
%union {
llvm::Module *ModuleVal;
llvm::Function *FunctionVal;
std::pair<llvm::PATypeHolder*, char*> *ArgVal;
llvm::BasicBlock *BasicBlockVal;
llvm::TerminatorInst *TermInstVal;
llvm::Instruction *InstVal;
llvm::Constant *ConstVal;
const llvm::Type *PrimType;
llvm::PATypeHolder *TypeVal;
llvm::Value *ValueVal;
std::vector<std::pair<llvm::PATypeHolder*,char*> > *ArgList;
std::vector<llvm::Value*> *ValueList;
std::list<llvm::PATypeHolder> *TypeList;
std::list<std::pair<llvm::Value*,
llvm::BasicBlock*> > *PHIList; // Represent the RHS of PHI node
std::vector<std::pair<llvm::Constant*, llvm::BasicBlock*> > *JumpTable;
std::vector<llvm::Constant*> *ConstVector;
llvm::GlobalValue::LinkageTypes Linkage;
int64_t SInt64Val;
uint64_t UInt64Val;
int SIntVal;
unsigned UIntVal;
double FPVal;
bool BoolVal;
char *StrVal; // This memory is strdup'd!
llvm::ValID ValIDVal; // strdup'd memory maybe!
llvm::Instruction::BinaryOps BinaryOpVal;
llvm::Instruction::TermOps TermOpVal;
llvm::Instruction::MemoryOps MemOpVal;
llvm::Instruction::OtherOps OtherOpVal;
llvm::Module::Endianness Endianness;
}
%type <ModuleVal> Module FunctionList
%type <FunctionVal> Function FunctionProto FunctionHeader BasicBlockList
%type <BasicBlockVal> BasicBlock InstructionList
%type <TermInstVal> BBTerminatorInst
%type <InstVal> Inst InstVal MemoryInst
%type <ConstVal> ConstVal ConstExpr
%type <ConstVector> ConstVector
%type <ArgList> ArgList ArgListH
%type <ArgVal> ArgVal
%type <PHIList> PHIList
%type <ValueList> ValueRefList ValueRefListE // For call param lists
%type <ValueList> IndexList // For GEP derived indices
%type <TypeList> TypeListI ArgTypeListI
%type <JumpTable> JumpTable
%type <BoolVal> GlobalType // GLOBAL or CONSTANT?
%type <BoolVal> OptVolatile // 'volatile' or not
%type <Linkage> OptLinkage
%type <Endianness> BigOrLittle
// ValueRef - Unresolved reference to a definition or BB
%type <ValIDVal> ValueRef ConstValueRef SymbolicValueRef
%type <ValueVal> ResolvedVal // <type> <valref> pair
// Tokens and types for handling constant integer values
//
// ESINT64VAL - A negative number within long long range
%token <SInt64Val> ESINT64VAL
// EUINT64VAL - A positive number within uns. long long range
%token <UInt64Val> EUINT64VAL
%type <SInt64Val> EINT64VAL
%token <SIntVal> SINTVAL // Signed 32 bit ints...
%token <UIntVal> UINTVAL // Unsigned 32 bit ints...
%type <SIntVal> INTVAL
%token <FPVal> FPVAL // Float or Double constant
// Built in types...
%type <TypeVal> Types TypesV UpRTypes UpRTypesV
%type <PrimType> SIntType UIntType IntType FPType PrimType // Classifications
%token <PrimType> VOID BOOL SBYTE UBYTE SHORT USHORT INT UINT LONG ULONG
%token <PrimType> FLOAT DOUBLE TYPE LABEL
%token <StrVal> VAR_ID LABELSTR STRINGCONSTANT
%type <StrVal> Name OptName OptAssign
%token IMPLEMENTATION ZEROINITIALIZER TRUETOK FALSETOK BEGINTOK ENDTOK
%token DECLARE GLOBAL CONSTANT VOLATILE
%token TO DOTDOTDOT NULL_TOK UNDEF CONST INTERNAL LINKONCE WEAK APPENDING
%token OPAQUE NOT EXTERNAL TARGET TRIPLE ENDIAN POINTERSIZE LITTLE BIG
%token DEPLIBS
// Basic Block Terminating Operators
%token <TermOpVal> RET BR SWITCH INVOKE UNWIND UNREACHABLE
// Binary Operators
%type <BinaryOpVal> ArithmeticOps LogicalOps SetCondOps // Binops Subcatagories
%token <BinaryOpVal> ADD SUB MUL DIV REM AND OR XOR
%token <BinaryOpVal> SETLE SETGE SETLT SETGT SETEQ SETNE // Binary Comarators
// Memory Instructions
%token <MemOpVal> MALLOC ALLOCA FREE LOAD STORE GETELEMENTPTR
// Other Operators
%type <OtherOpVal> ShiftOps
%token <OtherOpVal> PHI_TOK CALL CAST SELECT SHL SHR VAARG VANEXT
%token VA_ARG // FIXME: OBSOLETE
%start Module
%%
// Handle constant integer size restriction and conversion...
//
INTVAL : SINTVAL;
INTVAL : UINTVAL {
if ($1 > (uint32_t)INT32_MAX) // Outside of my range!
ThrowException("Value too large for type!");
$$ = (int32_t)$1;
};
EINT64VAL : ESINT64VAL; // These have same type and can't cause problems...
EINT64VAL : EUINT64VAL {
if ($1 > (uint64_t)INT64_MAX) // Outside of my range!
ThrowException("Value too large for type!");
$$ = (int64_t)$1;
};
// Operations that are notably excluded from this list include:
// RET, BR, & SWITCH because they end basic blocks and are treated specially.
//
ArithmeticOps: ADD | SUB | MUL | DIV | REM;
LogicalOps : AND | OR | XOR;
SetCondOps : SETLE | SETGE | SETLT | SETGT | SETEQ | SETNE;
ShiftOps : SHL | SHR;
// These are some types that allow classification if we only want a particular
// thing... for example, only a signed, unsigned, or integral type.
SIntType : LONG | INT | SHORT | SBYTE;
UIntType : ULONG | UINT | USHORT | UBYTE;
IntType : SIntType | UIntType;
FPType : FLOAT | DOUBLE;
// OptAssign - Value producing statements have an optional assignment component
OptAssign : Name '=' {
$$ = $1;
}
| /*empty*/ {
$$ = 0;
};
OptLinkage : INTERNAL { $$ = GlobalValue::InternalLinkage; } |
LINKONCE { $$ = GlobalValue::LinkOnceLinkage; } |
WEAK { $$ = GlobalValue::WeakLinkage; } |
APPENDING { $$ = GlobalValue::AppendingLinkage; } |
/*empty*/ { $$ = GlobalValue::ExternalLinkage; };
//===----------------------------------------------------------------------===//
// Types includes all predefined types... except void, because it can only be
// used in specific contexts (function returning void for example). To have
// access to it, a user must explicitly use TypesV.
//
// TypesV includes all of 'Types', but it also includes the void type.
TypesV : Types | VOID { $$ = new PATypeHolder($1); };
UpRTypesV : UpRTypes | VOID { $$ = new PATypeHolder($1); };
Types : UpRTypes {
if (!UpRefs.empty())
ThrowException("Invalid upreference in type: " + (*$1)->getDescription());
$$ = $1;
};
// Derived types are added later...
//
PrimType : BOOL | SBYTE | UBYTE | SHORT | USHORT | INT | UINT ;
PrimType : LONG | ULONG | FLOAT | DOUBLE | TYPE | LABEL;
UpRTypes : OPAQUE {
$$ = new PATypeHolder(OpaqueType::get());
}
| PrimType {
$$ = new PATypeHolder($1);
};
UpRTypes : SymbolicValueRef { // Named types are also simple types...
$$ = new PATypeHolder(getTypeVal($1));
};
// Include derived types in the Types production.
//
UpRTypes : '\\' EUINT64VAL { // Type UpReference
if ($2 > (uint64_t)~0U) ThrowException("Value out of range!");
OpaqueType *OT = OpaqueType::get(); // Use temporary placeholder
UpRefs.push_back(UpRefRecord((unsigned)$2, OT)); // Add to vector...
$$ = new PATypeHolder(OT);
UR_OUT("New Upreference!\n");
}
| UpRTypesV '(' ArgTypeListI ')' { // Function derived type?
std::vector<const Type*> Params;
mapto($3->begin(), $3->end(), std::back_inserter(Params),
std::mem_fun_ref(&PATypeHolder::get));
bool isVarArg = Params.size() && Params.back() == Type::VoidTy;
if (isVarArg) Params.pop_back();
$$ = new PATypeHolder(HandleUpRefs(FunctionType::get(*$1,Params,isVarArg)));
delete $3; // Delete the argument list
delete $1; // Delete the return type handle
}
| '[' EUINT64VAL 'x' UpRTypes ']' { // Sized array type?
$$ = new PATypeHolder(HandleUpRefs(ArrayType::get(*$4, (unsigned)$2)));
delete $4;
}
| '<' EUINT64VAL 'x' UpRTypes '>' { // Packed array type?
const llvm::Type* ElemTy = $4->get();
if ((unsigned)$2 != $2) {
ThrowException("Unsigned result not equal to signed result");
}
if(!ElemTy->isPrimitiveType()) {
ThrowException("Elemental type of a PackedType must be primitive");
}
$$ = new PATypeHolder(HandleUpRefs(PackedType::get(*$4, (unsigned)$2)));
delete $4;
}
| '{' TypeListI '}' { // Structure type?
std::vector<const Type*> Elements;
mapto($2->begin(), $2->end(), std::back_inserter(Elements),
std::mem_fun_ref(&PATypeHolder::get));
$$ = new PATypeHolder(HandleUpRefs(StructType::get(Elements)));
delete $2;
}
| '{' '}' { // Empty structure type?
$$ = new PATypeHolder(StructType::get(std::vector<const Type*>()));
}
| UpRTypes '*' { // Pointer type?
$$ = new PATypeHolder(HandleUpRefs(PointerType::get(*$1)));
delete $1;
};
// TypeList - Used for struct declarations and as a basis for function type
// declaration type lists
//
TypeListI : UpRTypes {
$$ = new std::list<PATypeHolder>();
$$->push_back(*$1); delete $1;
}
| TypeListI ',' UpRTypes {
($$=$1)->push_back(*$3); delete $3;
};
// ArgTypeList - List of types for a function type declaration...
ArgTypeListI : TypeListI
| TypeListI ',' DOTDOTDOT {
($$=$1)->push_back(Type::VoidTy);
}
| DOTDOTDOT {
($$ = new std::list<PATypeHolder>())->push_back(Type::VoidTy);
}
| /*empty*/ {
$$ = new std::list<PATypeHolder>();
};
// ConstVal - The various declarations that go into the constant pool. This
// production is used ONLY to represent constants that show up AFTER a 'const',
// 'constant' or 'global' token at global scope. Constants that can be inlined
// into other expressions (such as integers and constexprs) are handled by the
// ResolvedVal, ValueRef and ConstValueRef productions.
//
ConstVal: Types '[' ConstVector ']' { // Nonempty unsized arr
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
if (ATy == 0)
ThrowException("Cannot make array constant with type: '" +
(*$1)->getDescription() + "'!");
const Type *ETy = ATy->getElementType();
int NumElements = ATy->getNumElements();
// Verify that we have the correct size...
if (NumElements != -1 && NumElements != (int)$3->size())
ThrowException("Type mismatch: constant sized array initialized with " +
utostr($3->size()) + " arguments, but has size of " +
itostr(NumElements) + "!");
// Verify all elements are correct type!
for (unsigned i = 0; i < $3->size(); i++) {
if (ETy != (*$3)[i]->getType())
ThrowException("Element #" + utostr(i) + " is not of type '" +
ETy->getDescription() +"' as required!\nIt is of type '"+
(*$3)[i]->getType()->getDescription() + "'.");
}
$$ = ConstantArray::get(ATy, *$3);
delete $1; delete $3;
}
| Types '[' ']' {
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
if (ATy == 0)
ThrowException("Cannot make array constant with type: '" +
(*$1)->getDescription() + "'!");
int NumElements = ATy->getNumElements();
if (NumElements != -1 && NumElements != 0)
ThrowException("Type mismatch: constant sized array initialized with 0"
" arguments, but has size of " + itostr(NumElements) +"!");
$$ = ConstantArray::get(ATy, std::vector<Constant*>());
delete $1;
}
| Types 'c' STRINGCONSTANT {
const ArrayType *ATy = dyn_cast<ArrayType>($1->get());
if (ATy == 0)
ThrowException("Cannot make array constant with type: '" +
(*$1)->getDescription() + "'!");
int NumElements = ATy->getNumElements();
const Type *ETy = ATy->getElementType();
char *EndStr = UnEscapeLexed($3, true);
if (NumElements != -1 && NumElements != (EndStr-$3))
ThrowException("Can't build string constant of size " +
itostr((int)(EndStr-$3)) +
" when array has size " + itostr(NumElements) + "!");
std::vector<Constant*> Vals;
if (ETy == Type::SByteTy) {
for (char *C = $3; C != EndStr; ++C)
Vals.push_back(ConstantSInt::get(ETy, *C));
} else if (ETy == Type::UByteTy) {
for (char *C = $3; C != EndStr; ++C)
Vals.push_back(ConstantUInt::get(ETy, (unsigned char)*C));
} else {
free($3);
ThrowException("Cannot build string arrays of non byte sized elements!");
}
free($3);
$$ = ConstantArray::get(ATy, Vals);
delete $1;
}
| Types '<' ConstVector '>' { // Nonempty unsized arr
const PackedType *PTy = dyn_cast<PackedType>($1->get());
if (PTy == 0)
ThrowException("Cannot make packed constant with type: '" +
(*$1)->getDescription() + "'!");
const Type *ETy = PTy->getElementType();
int NumElements = PTy->getNumElements();
// Verify that we have the correct size...
if (NumElements != -1 && NumElements != (int)$3->size())
ThrowException("Type mismatch: constant sized packed initialized with " +
utostr($3->size()) + " arguments, but has size of " +
itostr(NumElements) + "!");
// Verify all elements are correct type!
for (unsigned i = 0; i < $3->size(); i++) {
if (ETy != (*$3)[i]->getType())
ThrowException("Element #" + utostr(i) + " is not of type '" +
ETy->getDescription() +"' as required!\nIt is of type '"+
(*$3)[i]->getType()->getDescription() + "'.");
}
$$ = ConstantPacked::get(PTy, *$3);
delete $1; delete $3;
}
| Types '{' ConstVector '}' {
const StructType *STy = dyn_cast<StructType>($1->get());
if (STy == 0)
ThrowException("Cannot make struct constant with type: '" +
(*$1)->getDescription() + "'!");
if ($3->size() != STy->getNumContainedTypes())
ThrowException("Illegal number of initializers for structure type!");
// Check to ensure that constants are compatible with the type initializer!
for (unsigned i = 0, e = $3->size(); i != e; ++i)
if ((*$3)[i]->getType() != STy->getElementType(i))
ThrowException("Expected type '" +
STy->getElementType(i)->getDescription() +
"' for element #" + utostr(i) +
" of structure initializer!");
$$ = ConstantStruct::get(STy, *$3);
delete $1; delete $3;
}
| Types '{' '}' {
const StructType *STy = dyn_cast<StructType>($1->get());
if (STy == 0)
ThrowException("Cannot make struct constant with type: '" +
(*$1)->getDescription() + "'!");
if (STy->getNumContainedTypes() != 0)
ThrowException("Illegal number of initializers for structure type!");
$$ = ConstantStruct::get(STy, std::vector<Constant*>());
delete $1;
}
| Types NULL_TOK {
const PointerType *PTy = dyn_cast<PointerType>($1->get());
if (PTy == 0)
ThrowException("Cannot make null pointer constant with type: '" +
(*$1)->getDescription() + "'!");
$$ = ConstantPointerNull::get(PTy);
delete $1;
}
| Types UNDEF {
$$ = UndefValue::get($1->get());
delete $1;
}
| Types SymbolicValueRef {
const PointerType *Ty = dyn_cast<PointerType>($1->get());
if (Ty == 0)
ThrowException("Global const reference must be a pointer type!");
// ConstExprs can exist in the body of a function, thus creating
// GlobalValues whenever they refer to a variable. Because we are in
// the context of a function, getValNonImprovising will search the functions
// symbol table instead of the module symbol table for the global symbol,
// which throws things all off. To get around this, we just tell
// getValNonImprovising that we are at global scope here.
//
Function *SavedCurFn = CurFun.CurrentFunction;
CurFun.CurrentFunction = 0;
Value *V = getValNonImprovising(Ty, $2);
CurFun.CurrentFunction = SavedCurFn;
// If this is an initializer for a constant pointer, which is referencing a
// (currently) undefined variable, create a stub now that shall be replaced
// in the future with the right type of variable.
//
if (V == 0) {
assert(isa<PointerType>(Ty) && "Globals may only be used as pointers!");
const PointerType *PT = cast<PointerType>(Ty);
// First check to see if the forward references value is already created!
PerModuleInfo::GlobalRefsType::iterator I =
CurModule.GlobalRefs.find(std::make_pair(PT, $2));
if (I != CurModule.GlobalRefs.end()) {
V = I->second; // Placeholder already exists, use it...
$2.destroy();
} else {
std::string Name;
if ($2.Type == ValID::NameVal) Name = $2.Name;
// Create the forward referenced global.
GlobalValue *GV;
if (const FunctionType *FTy =
dyn_cast<FunctionType>(PT->getElementType())) {
GV = new Function(FTy, GlobalValue::ExternalLinkage, Name,
CurModule.CurrentModule);
} else {
GV = new GlobalVariable(PT->getElementType(), false,
GlobalValue::ExternalLinkage, 0,
Name, CurModule.CurrentModule);
}
// Keep track of the fact that we have a forward ref to recycle it
CurModule.GlobalRefs.insert(std::make_pair(std::make_pair(PT, $2), GV));
V = GV;
}
}
$$ = cast<GlobalValue>(V);
delete $1; // Free the type handle
}
| Types ConstExpr {
if ($1->get() != $2->getType())
ThrowException("Mismatched types for constant expression!");
$$ = $2;
delete $1;
}
| Types ZEROINITIALIZER {
const Type *Ty = $1->get();
if (isa<FunctionType>(Ty) || Ty == Type::LabelTy || isa<OpaqueType>(Ty))
ThrowException("Cannot create a null initialized value of this type!");
$$ = Constant::getNullValue(Ty);
delete $1;
};
ConstVal : SIntType EINT64VAL { // integral constants
if (!ConstantSInt::isValueValidForType($1, $2))
ThrowException("Constant value doesn't fit in type!");
$$ = ConstantSInt::get($1, $2);
}
| UIntType EUINT64VAL { // integral constants
if (!ConstantUInt::isValueValidForType($1, $2))
ThrowException("Constant value doesn't fit in type!");
$$ = ConstantUInt::get($1, $2);
}
| BOOL TRUETOK { // Boolean constants
$$ = ConstantBool::True;
}
| BOOL FALSETOK { // Boolean constants
$$ = ConstantBool::False;
}
| FPType FPVAL { // Float & Double constants
if (!ConstantFP::isValueValidForType($1, $2))
ThrowException("Floating point constant invalid for type!!");
$$ = ConstantFP::get($1, $2);
};
ConstExpr: CAST '(' ConstVal TO Types ')' {
if (!$3->getType()->isFirstClassType())
ThrowException("cast constant expression from a non-primitive type: '" +
$3->getType()->getDescription() + "'!");
if (!$5->get()->isFirstClassType())
ThrowException("cast constant expression to a non-primitive type: '" +
$5->get()->getDescription() + "'!");
$$ = ConstantExpr::getCast($3, $5->get());
delete $5;
}
| GETELEMENTPTR '(' ConstVal IndexList ')' {
if (!isa<PointerType>($3->getType()))
ThrowException("GetElementPtr requires a pointer operand!");
// LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct
// indices to uint struct indices for compatibility.
generic_gep_type_iterator<std::vector<Value*>::iterator>
GTI = gep_type_begin($3->getType(), $4->begin(), $4->end()),
GTE = gep_type_end($3->getType(), $4->begin(), $4->end());
for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
if (isa<StructType>(*GTI)) // Only change struct indices
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
if (CUI->getType() == Type::UByteTy)
(*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
const Type *IdxTy =
GetElementPtrInst::getIndexedType($3->getType(), *$4, true);
if (!IdxTy)
ThrowException("Index list invalid for constant getelementptr!");
std::vector<Constant*> IdxVec;
for (unsigned i = 0, e = $4->size(); i != e; ++i)
if (Constant *C = dyn_cast<Constant>((*$4)[i]))
IdxVec.push_back(C);
else
ThrowException("Indices to constant getelementptr must be constants!");
delete $4;
$$ = ConstantExpr::getGetElementPtr($3, IdxVec);
}
| SELECT '(' ConstVal ',' ConstVal ',' ConstVal ')' {
if ($3->getType() != Type::BoolTy)
ThrowException("Select condition must be of boolean type!");
if ($5->getType() != $7->getType())
ThrowException("Select operand types must match!");
$$ = ConstantExpr::getSelect($3, $5, $7);
}
| ArithmeticOps '(' ConstVal ',' ConstVal ')' {
if ($3->getType() != $5->getType())
ThrowException("Binary operator types must match!");
// HACK: llvm 1.3 and earlier used to emit invalid pointer constant exprs.
// To retain backward compatibility with these early compilers, we emit a
// cast to the appropriate integer type automatically if we are in the
// broken case. See PR424 for more information.
if (!isa<PointerType>($3->getType())) {
$$ = ConstantExpr::get($1, $3, $5);
} else {
const Type *IntPtrTy = 0;
switch (CurModule.CurrentModule->getPointerSize()) {
case Module::Pointer32: IntPtrTy = Type::IntTy; break;
case Module::Pointer64: IntPtrTy = Type::LongTy; break;
default: ThrowException("invalid pointer binary constant expr!");
}
$$ = ConstantExpr::get($1, ConstantExpr::getCast($3, IntPtrTy),
ConstantExpr::getCast($5, IntPtrTy));
$$ = ConstantExpr::getCast($$, $3->getType());
}
}
| LogicalOps '(' ConstVal ',' ConstVal ')' {
if ($3->getType() != $5->getType())
ThrowException("Logical operator types must match!");
if (!$3->getType()->isIntegral())
ThrowException("Logical operands must have integral types!");
$$ = ConstantExpr::get($1, $3, $5);
}
| SetCondOps '(' ConstVal ',' ConstVal ')' {
if ($3->getType() != $5->getType())
ThrowException("setcc operand types must match!");
$$ = ConstantExpr::get($1, $3, $5);
}
| ShiftOps '(' ConstVal ',' ConstVal ')' {
if ($5->getType() != Type::UByteTy)
ThrowException("Shift count for shift constant must be unsigned byte!");
if (!$3->getType()->isInteger())
ThrowException("Shift constant expression requires integer operand!");
$$ = ConstantExpr::get($1, $3, $5);
};
// ConstVector - A list of comma separated constants.
ConstVector : ConstVector ',' ConstVal {
($$ = $1)->push_back($3);
}
| ConstVal {
$$ = new std::vector<Constant*>();
$$->push_back($1);
};
// GlobalType - Match either GLOBAL or CONSTANT for global declarations...
GlobalType : GLOBAL { $$ = false; } | CONSTANT { $$ = true; };
//===----------------------------------------------------------------------===//
// Rules to match Modules
//===----------------------------------------------------------------------===//
// Module rule: Capture the result of parsing the whole file into a result
// variable...
//
Module : FunctionList {
$$ = ParserResult = $1;
CurModule.ModuleDone();
};
// FunctionList - A list of functions, preceeded by a constant pool.
//
FunctionList : FunctionList Function {
$$ = $1;
CurFun.FunctionDone();
}
| FunctionList FunctionProto {
$$ = $1;
}
| FunctionList IMPLEMENTATION {
$$ = $1;
}
| ConstPool {
$$ = CurModule.CurrentModule;
// Resolve circular types before we parse the body of the module
ResolveTypes(CurModule.LateResolveTypes);
};
// ConstPool - Constants with optional names assigned to them.
ConstPool : ConstPool OptAssign TYPE TypesV { // Types can be defined in the const pool
// Eagerly resolve types. This is not an optimization, this is a
// requirement that is due to the fact that we could have this:
//
// %list = type { %list * }
// %list = type { %list * } ; repeated type decl
//
// If types are not resolved eagerly, then the two types will not be
// determined to be the same type!
//
ResolveTypeTo($2, *$4);
if (!setTypeName(*$4, $2) && !$2) {
// If this is a named type that is not a redefinition, add it to the slot
// table.
if (inFunctionScope())
CurFun.Types.push_back(*$4);
else
CurModule.Types.push_back(*$4);
}
delete $4;
}
| ConstPool FunctionProto { // Function prototypes can be in const pool
}
| ConstPool OptAssign OptLinkage GlobalType ConstVal {
if ($5 == 0) ThrowException("Global value initializer is not a constant!");
ParseGlobalVariable($2, $3, $4, $5->getType(), $5);
}
| ConstPool OptAssign EXTERNAL GlobalType Types {
ParseGlobalVariable($2, GlobalValue::ExternalLinkage, $4, *$5, 0);
delete $5;
}
| ConstPool TARGET TargetDefinition {
}
| ConstPool DEPLIBS '=' LibrariesDefinition {
}
| /* empty: end of list */ {
};
BigOrLittle : BIG { $$ = Module::BigEndian; };
BigOrLittle : LITTLE { $$ = Module::LittleEndian; };
TargetDefinition : ENDIAN '=' BigOrLittle {
CurModule.CurrentModule->setEndianness($3);
}
| POINTERSIZE '=' EUINT64VAL {
if ($3 == 32)
CurModule.CurrentModule->setPointerSize(Module::Pointer32);
else if ($3 == 64)
CurModule.CurrentModule->setPointerSize(Module::Pointer64);
else
ThrowException("Invalid pointer size: '" + utostr($3) + "'!");
}
| TRIPLE '=' STRINGCONSTANT {
CurModule.CurrentModule->setTargetTriple($3);
free($3);
};
LibrariesDefinition : '[' LibList ']';
LibList : LibList ',' STRINGCONSTANT {
CurModule.CurrentModule->addLibrary($3);
free($3);
}
| STRINGCONSTANT {
CurModule.CurrentModule->addLibrary($1);
free($1);
}
| /* empty: end of list */ {
}
;
//===----------------------------------------------------------------------===//
// Rules to match Function Headers
//===----------------------------------------------------------------------===//
Name : VAR_ID | STRINGCONSTANT;
OptName : Name | /*empty*/ { $$ = 0; };
ArgVal : Types OptName {
if (*$1 == Type::VoidTy)
ThrowException("void typed arguments are invalid!");
$$ = new std::pair<PATypeHolder*, char*>($1, $2);
};
ArgListH : ArgListH ',' ArgVal {
$$ = $1;
$1->push_back(*$3);
delete $3;
}
| ArgVal {
$$ = new std::vector<std::pair<PATypeHolder*,char*> >();
$$->push_back(*$1);
delete $1;
};
ArgList : ArgListH {
$$ = $1;
}
| ArgListH ',' DOTDOTDOT {
$$ = $1;
$$->push_back(std::pair<PATypeHolder*,
char*>(new PATypeHolder(Type::VoidTy), 0));
}
| DOTDOTDOT {
$$ = new std::vector<std::pair<PATypeHolder*,char*> >();
$$->push_back(std::make_pair(new PATypeHolder(Type::VoidTy), (char*)0));
}
| /* empty */ {
$$ = 0;
};
FunctionHeaderH : TypesV Name '(' ArgList ')' {
UnEscapeLexed($2);
std::string FunctionName($2);
free($2); // Free strdup'd memory!
if (!(*$1)->isFirstClassType() && *$1 != Type::VoidTy)
ThrowException("LLVM functions cannot return aggregate types!");
std::vector<const Type*> ParamTypeList;
if ($4) { // If there are arguments...
for (std::vector<std::pair<PATypeHolder*,char*> >::iterator I = $4->begin();
I != $4->end(); ++I)
ParamTypeList.push_back(I->first->get());
}
bool isVarArg = ParamTypeList.size() && ParamTypeList.back() == Type::VoidTy;
if (isVarArg) ParamTypeList.pop_back();
const FunctionType *FT = FunctionType::get(*$1, ParamTypeList, isVarArg);
const PointerType *PFT = PointerType::get(FT);
delete $1;
ValID ID;
if (!FunctionName.empty()) {
ID = ValID::create((char*)FunctionName.c_str());
} else {
ID = ValID::create((int)CurModule.Values[PFT].size());
}
Function *Fn = 0;
// See if this function was forward referenced. If so, recycle the object.
if (GlobalValue *FWRef = CurModule.GetForwardRefForGlobal(PFT, ID)) {
// Move the function to the end of the list, from whereever it was
// previously inserted.
Fn = cast<Function>(FWRef);
CurModule.CurrentModule->getFunctionList().remove(Fn);
CurModule.CurrentModule->getFunctionList().push_back(Fn);
} else if (!FunctionName.empty() && // Merge with an earlier prototype?
(Fn = CurModule.CurrentModule->getFunction(FunctionName, FT))) {
// If this is the case, either we need to be a forward decl, or it needs
// to be.
if (!CurFun.isDeclare && !Fn->isExternal())
ThrowException("Redefinition of function '" + FunctionName + "'!");
// Make sure to strip off any argument names so we can't get conflicts.
if (Fn->isExternal())
for (Function::aiterator AI = Fn->abegin(), AE = Fn->aend();
AI != AE; ++AI)
AI->setName("");
} else { // Not already defined?
Fn = new Function(FT, GlobalValue::ExternalLinkage, FunctionName,
CurModule.CurrentModule);
InsertValue(Fn, CurModule.Values);
}
CurFun.FunctionStart(Fn);
// Add all of the arguments we parsed to the function...
if ($4) { // Is null if empty...
if (isVarArg) { // Nuke the last entry
assert($4->back().first->get() == Type::VoidTy && $4->back().second == 0&&
"Not a varargs marker!");
delete $4->back().first;
$4->pop_back(); // Delete the last entry
}
Function::aiterator ArgIt = Fn->abegin();
for (std::vector<std::pair<PATypeHolder*, char*> >::iterator I =$4->begin();
I != $4->end(); ++I, ++ArgIt) {
delete I->first; // Delete the typeholder...
setValueName(ArgIt, I->second); // Insert arg into symtab...
InsertValue(ArgIt);
}
delete $4; // We're now done with the argument list
}
};
BEGIN : BEGINTOK | '{'; // Allow BEGIN or '{' to start a function
FunctionHeader : OptLinkage FunctionHeaderH BEGIN {
$$ = CurFun.CurrentFunction;
// Make sure that we keep track of the linkage type even if there was a
// previous "declare".
$$->setLinkage($1);
// Resolve circular types before we parse the body of the function.
ResolveTypes(CurFun.LateResolveTypes);
};
END : ENDTOK | '}'; // Allow end of '}' to end a function
Function : BasicBlockList END {
$$ = $1;
};
FunctionProto : DECLARE { CurFun.isDeclare = true; } FunctionHeaderH {
$$ = CurFun.CurrentFunction;
CurFun.FunctionDone();
};
//===----------------------------------------------------------------------===//
// Rules to match Basic Blocks
//===----------------------------------------------------------------------===//
ConstValueRef : ESINT64VAL { // A reference to a direct constant
$$ = ValID::create($1);
}
| EUINT64VAL {
$$ = ValID::create($1);
}
| FPVAL { // Perhaps it's an FP constant?
$$ = ValID::create($1);
}
| TRUETOK {
$$ = ValID::create(ConstantBool::True);
}
| FALSETOK {
$$ = ValID::create(ConstantBool::False);
}
| NULL_TOK {
$$ = ValID::createNull();
}
| UNDEF {
$$ = ValID::createUndef();
}
| '<' ConstVector '>' { // Nonempty unsized packed vector
const Type *ETy = (*$2)[0]->getType();
int NumElements = $2->size();
PackedType* pt = PackedType::get(ETy, NumElements);
PATypeHolder* PTy = new PATypeHolder(
HandleUpRefs(
PackedType::get(
ETy,
NumElements)
)
);
// Verify all elements are correct type!
for (unsigned i = 0; i < $2->size(); i++) {
if (ETy != (*$2)[i]->getType())
ThrowException("Element #" + utostr(i) + " is not of type '" +
ETy->getDescription() +"' as required!\nIt is of type '" +
(*$2)[i]->getType()->getDescription() + "'.");
}
$$ = ValID::create(ConstantPacked::get(pt, *$2));
delete PTy; delete $2;
}
| ConstExpr {
$$ = ValID::create($1);
};
// SymbolicValueRef - Reference to one of two ways of symbolically refering to
// another value.
//
SymbolicValueRef : INTVAL { // Is it an integer reference...?
$$ = ValID::create($1);
}
| Name { // Is it a named reference...?
$$ = ValID::create($1);
};
// ValueRef - A reference to a definition... either constant or symbolic
ValueRef : SymbolicValueRef | ConstValueRef;
// ResolvedVal - a <type> <value> pair. This is used only in cases where the
// type immediately preceeds the value reference, and allows complex constant
// pool references (for things like: 'ret [2 x int] [ int 12, int 42]')
ResolvedVal : Types ValueRef {
$$ = getVal(*$1, $2); delete $1;
};
BasicBlockList : BasicBlockList BasicBlock {
$$ = $1;
}
| FunctionHeader BasicBlock { // Do not allow functions with 0 basic blocks
$$ = $1;
};
// Basic blocks are terminated by branching instructions:
// br, br/cc, switch, ret
//
BasicBlock : InstructionList OptAssign BBTerminatorInst {
setValueName($3, $2);
InsertValue($3);
$1->getInstList().push_back($3);
InsertValue($1);
$$ = $1;
};
InstructionList : InstructionList Inst {
$1->getInstList().push_back($2);
$$ = $1;
}
| /* empty */ {
$$ = CurBB = getBBVal(ValID::create((int)CurFun.NextBBNum++), true);
// Make sure to move the basic block to the correct location in the
// function, instead of leaving it inserted wherever it was first
// referenced.
CurFun.CurrentFunction->getBasicBlockList().remove(CurBB);
CurFun.CurrentFunction->getBasicBlockList().push_back(CurBB);
}
| LABELSTR {
$$ = CurBB = getBBVal(ValID::create($1), true);
// Make sure to move the basic block to the correct location in the
// function, instead of leaving it inserted wherever it was first
// referenced.
CurFun.CurrentFunction->getBasicBlockList().remove(CurBB);
CurFun.CurrentFunction->getBasicBlockList().push_back(CurBB);
};
BBTerminatorInst : RET ResolvedVal { // Return with a result...
$$ = new ReturnInst($2);
}
| RET VOID { // Return with no result...
$$ = new ReturnInst();
}
| BR LABEL ValueRef { // Unconditional Branch...
$$ = new BranchInst(getBBVal($3));
} // Conditional Branch...
| BR BOOL ValueRef ',' LABEL ValueRef ',' LABEL ValueRef {
$$ = new BranchInst(getBBVal($6), getBBVal($9), getVal(Type::BoolTy, $3));
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' JumpTable ']' {
SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6));
$$ = S;
std::vector<std::pair<Constant*,BasicBlock*> >::iterator I = $8->begin(),
E = $8->end();
for (; I != E; ++I)
S->addCase(I->first, I->second);
delete $8;
}
| SWITCH IntType ValueRef ',' LABEL ValueRef '[' ']' {
SwitchInst *S = new SwitchInst(getVal($2, $3), getBBVal($6));
$$ = S;
}
| INVOKE TypesV ValueRef '(' ValueRefListE ')' TO LABEL ValueRef
UNWIND LABEL ValueRef {
const PointerType *PFTy;
const FunctionType *Ty;
if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
std::vector<const Type*> ParamTypes;
if ($5) {
for (std::vector<Value*>::iterator I = $5->begin(), E = $5->end();
I != E; ++I)
ParamTypes.push_back((*I)->getType());
}
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
if (isVarArg) ParamTypes.pop_back();
Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
PFTy = PointerType::get(Ty);
}
Value *V = getVal(PFTy, $3); // Get the function we're calling...
BasicBlock *Normal = getBBVal($9);
BasicBlock *Except = getBBVal($12);
// Create the call node...
if (!$5) { // Has no arguments?
$$ = new InvokeInst(V, Normal, Except, std::vector<Value*>());
} else { // Has arguments?
// Loop through FunctionType's arguments and ensure they are specified
// correctly!
//
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
std::vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
if ((*ArgI)->getType() != *I)
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
(*I)->getDescription() + "'!");
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
ThrowException("Invalid number of parameters detected!");
$$ = new InvokeInst(V, Normal, Except, *$5);
}
delete $2;
delete $5;
}
| UNWIND {
$$ = new UnwindInst();
}
| UNREACHABLE {
$$ = new UnreachableInst();
};
JumpTable : JumpTable IntType ConstValueRef ',' LABEL ValueRef {
$$ = $1;
Constant *V = cast<Constant>(getValNonImprovising($2, $3));
if (V == 0)
ThrowException("May only switch on a constant pool value!");
$$->push_back(std::make_pair(V, getBBVal($6)));
}
| IntType ConstValueRef ',' LABEL ValueRef {
$$ = new std::vector<std::pair<Constant*, BasicBlock*> >();
Constant *V = cast<Constant>(getValNonImprovising($1, $2));
if (V == 0)
ThrowException("May only switch on a constant pool value!");
$$->push_back(std::make_pair(V, getBBVal($5)));
};
Inst : OptAssign InstVal {
// Is this definition named?? if so, assign the name...
setValueName($2, $1);
InsertValue($2);
$$ = $2;
};
PHIList : Types '[' ValueRef ',' ValueRef ']' { // Used for PHI nodes
$$ = new std::list<std::pair<Value*, BasicBlock*> >();
$$->push_back(std::make_pair(getVal(*$1, $3), getBBVal($5)));
delete $1;
}
| PHIList ',' '[' ValueRef ',' ValueRef ']' {
$$ = $1;
$1->push_back(std::make_pair(getVal($1->front().first->getType(), $4),
getBBVal($6)));
};
ValueRefList : ResolvedVal { // Used for call statements, and memory insts...
$$ = new std::vector<Value*>();
$$->push_back($1);
}
| ValueRefList ',' ResolvedVal {
$$ = $1;
$1->push_back($3);
};
// ValueRefListE - Just like ValueRefList, except that it may also be empty!
ValueRefListE : ValueRefList | /*empty*/ { $$ = 0; };
InstVal : ArithmeticOps Types ValueRef ',' ValueRef {
if (!(*$2)->isInteger() && !(*$2)->isFloatingPoint() &&
!isa<PackedType>((*$2).get()))
ThrowException(
"Arithmetic operator requires integer, FP, or packed operands!");
if(isa<PackedType>((*$2).get()) && $1 == Instruction::Rem) {
ThrowException(
"Rem not supported on packed types!");
}
$$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
if ($$ == 0)
ThrowException("binary operator returned null!");
delete $2;
}
| LogicalOps Types ValueRef ',' ValueRef {
if (!(*$2)->isIntegral())
ThrowException("Logical operator requires integral operands!");
$$ = BinaryOperator::create($1, getVal(*$2, $3), getVal(*$2, $5));
if ($$ == 0)
ThrowException("binary operator returned null!");
delete $2;
}
| SetCondOps Types ValueRef ',' ValueRef {
if(isa<PackedType>((*$2).get())) {
ThrowException(
"PackedTypes currently not supported in setcc instructions!");
}
$$ = new SetCondInst($1, getVal(*$2, $3), getVal(*$2, $5));
if ($$ == 0)
ThrowException("binary operator returned null!");
delete $2;
}
| NOT ResolvedVal {
std::cerr << "WARNING: Use of eliminated 'not' instruction:"
<< " Replacing with 'xor'.\n";
Value *Ones = ConstantIntegral::getAllOnesValue($2->getType());
if (Ones == 0)
ThrowException("Expected integral type for not instruction!");
$$ = BinaryOperator::create(Instruction::Xor, $2, Ones);
if ($$ == 0)
ThrowException("Could not create a xor instruction!");
}
| ShiftOps ResolvedVal ',' ResolvedVal {
if ($4->getType() != Type::UByteTy)
ThrowException("Shift amount must be ubyte!");
if (!$2->getType()->isInteger())
ThrowException("Shift constant expression requires integer operand!");
$$ = new ShiftInst($1, $2, $4);
}
| CAST ResolvedVal TO Types {
if (!$4->get()->isFirstClassType())
ThrowException("cast instruction to a non-primitive type: '" +
$4->get()->getDescription() + "'!");
$$ = new CastInst($2, *$4);
delete $4;
}
| SELECT ResolvedVal ',' ResolvedVal ',' ResolvedVal {
if ($2->getType() != Type::BoolTy)
ThrowException("select condition must be boolean!");
if ($4->getType() != $6->getType())
ThrowException("select value types should match!");
$$ = new SelectInst($2, $4, $6);
}
| VA_ARG ResolvedVal ',' Types {
// FIXME: This is emulation code for an obsolete syntax. This should be
// removed at some point.
if (!ObsoleteVarArgs) {
std::cerr << "WARNING: this file uses obsolete features. "
<< "Assemble and disassemble to update it.\n";
ObsoleteVarArgs = true;
}
// First, load the valist...
Instruction *CurVAList = new LoadInst($2, "");
CurBB->getInstList().push_back(CurVAList);
// Emit the vaarg instruction.
$$ = new VAArgInst(CurVAList, *$4);
// Now we must advance the pointer and update it in memory.
Instruction *TheVANext = new VANextInst(CurVAList, *$4);
CurBB->getInstList().push_back(TheVANext);
CurBB->getInstList().push_back(new StoreInst(TheVANext, $2));
delete $4;
}
| VAARG ResolvedVal ',' Types {
$$ = new VAArgInst($2, *$4);
delete $4;
}
| VANEXT ResolvedVal ',' Types {
$$ = new VANextInst($2, *$4);
delete $4;
}
| PHI_TOK PHIList {
const Type *Ty = $2->front().first->getType();
if (!Ty->isFirstClassType())
ThrowException("PHI node operands must be of first class type!");
$$ = new PHINode(Ty);
$$->op_reserve($2->size()*2);
while ($2->begin() != $2->end()) {
if ($2->front().first->getType() != Ty)
ThrowException("All elements of a PHI node must be of the same type!");
cast<PHINode>($$)->addIncoming($2->front().first, $2->front().second);
$2->pop_front();
}
delete $2; // Free the list...
}
| CALL TypesV ValueRef '(' ValueRefListE ')' {
const PointerType *PFTy;
const FunctionType *Ty;
if (!(PFTy = dyn_cast<PointerType>($2->get())) ||
!(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) {
// Pull out the types of all of the arguments...
std::vector<const Type*> ParamTypes;
if ($5) {
for (std::vector<Value*>::iterator I = $5->begin(), E = $5->end();
I != E; ++I)
ParamTypes.push_back((*I)->getType());
}
bool isVarArg = ParamTypes.size() && ParamTypes.back() == Type::VoidTy;
if (isVarArg) ParamTypes.pop_back();
Ty = FunctionType::get($2->get(), ParamTypes, isVarArg);
PFTy = PointerType::get(Ty);
}
Value *V = getVal(PFTy, $3); // Get the function we're calling...
// Create the call node...
if (!$5) { // Has no arguments?
// Make sure no arguments is a good thing!
if (Ty->getNumParams() != 0)
ThrowException("No arguments passed to a function that "
"expects arguments!");
$$ = new CallInst(V, std::vector<Value*>());
} else { // Has arguments?
// Loop through FunctionType's arguments and ensure they are specified
// correctly!
//
FunctionType::param_iterator I = Ty->param_begin();
FunctionType::param_iterator E = Ty->param_end();
std::vector<Value*>::iterator ArgI = $5->begin(), ArgE = $5->end();
for (; ArgI != ArgE && I != E; ++ArgI, ++I)
if ((*ArgI)->getType() != *I)
ThrowException("Parameter " +(*ArgI)->getName()+ " is not of type '" +
(*I)->getDescription() + "'!");
if (I != E || (ArgI != ArgE && !Ty->isVarArg()))
ThrowException("Invalid number of parameters detected!");
$$ = new CallInst(V, *$5);
}
delete $2;
delete $5;
}
| MemoryInst {
$$ = $1;
};
// IndexList - List of indices for GEP based instructions...
IndexList : ',' ValueRefList {
$$ = $2;
} | /* empty */ {
$$ = new std::vector<Value*>();
};
OptVolatile : VOLATILE {
$$ = true;
}
| /* empty */ {
$$ = false;
};
MemoryInst : MALLOC Types {
$$ = new MallocInst(*$2);
delete $2;
}
| MALLOC Types ',' UINT ValueRef {
$$ = new MallocInst(*$2, getVal($4, $5));
delete $2;
}
| ALLOCA Types {
$$ = new AllocaInst(*$2);
delete $2;
}
| ALLOCA Types ',' UINT ValueRef {
$$ = new AllocaInst(*$2, getVal($4, $5));
delete $2;
}
| FREE ResolvedVal {
if (!isa<PointerType>($2->getType()))
ThrowException("Trying to free nonpointer type " +
$2->getType()->getDescription() + "!");
$$ = new FreeInst($2);
}
| OptVolatile LOAD Types ValueRef {
if (!isa<PointerType>($3->get()))
ThrowException("Can't load from nonpointer type: " +
(*$3)->getDescription());
if (!cast<PointerType>($3->get())->getElementType()->isFirstClassType())
ThrowException("Can't load from pointer of non-first-class type: " +
(*$3)->getDescription());
$$ = new LoadInst(getVal(*$3, $4), "", $1);
delete $3;
}
| OptVolatile STORE ResolvedVal ',' Types ValueRef {
const PointerType *PT = dyn_cast<PointerType>($5->get());
if (!PT)
ThrowException("Can't store to a nonpointer type: " +
(*$5)->getDescription());
const Type *ElTy = PT->getElementType();
if (ElTy != $3->getType())
ThrowException("Can't store '" + $3->getType()->getDescription() +
"' into space of type '" + ElTy->getDescription() + "'!");
$$ = new StoreInst($3, getVal(*$5, $6), $1);
delete $5;
}
| GETELEMENTPTR Types ValueRef IndexList {
if (!isa<PointerType>($2->get()))
ThrowException("getelementptr insn requires pointer operand!");
// LLVM 1.2 and earlier used ubyte struct indices. Convert any ubyte struct
// indices to uint struct indices for compatibility.
generic_gep_type_iterator<std::vector<Value*>::iterator>
GTI = gep_type_begin($2->get(), $4->begin(), $4->end()),
GTE = gep_type_end($2->get(), $4->begin(), $4->end());
for (unsigned i = 0, e = $4->size(); i != e && GTI != GTE; ++i, ++GTI)
if (isa<StructType>(*GTI)) // Only change struct indices
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>((*$4)[i]))
if (CUI->getType() == Type::UByteTy)
(*$4)[i] = ConstantExpr::getCast(CUI, Type::UIntTy);
if (!GetElementPtrInst::getIndexedType(*$2, *$4, true))
ThrowException("Invalid getelementptr indices for type '" +
(*$2)->getDescription()+ "'!");
$$ = new GetElementPtrInst(getVal(*$2, $3), *$4);
delete $2; delete $4;
};
%%
int yyerror(const char *ErrorMsg) {
std::string where
= std::string((CurFilename == "-") ? std::string("<stdin>") : CurFilename)
+ ":" + utostr((unsigned) llvmAsmlineno) + ": ";
std::string errMsg = std::string(ErrorMsg) + "\n" + where + " while reading ";
if (yychar == YYEMPTY || yychar == 0)
errMsg += "end-of-file.";
else
errMsg += "token: '" + std::string(llvmAsmtext, llvmAsmleng) + "'";
ThrowException(errMsg);
return 0;
}