mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-17 21:35:07 +00:00
d8ab9b415d
is used to assert that an *implicit* zext is performed. - Fix grammar-o in INSERT_SUBREG. (required reformatting) git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@105735 91177308-0d34-0410-b5e6-96231b3b80d8
80 lines
3.3 KiB
C++
80 lines
3.3 KiB
C++
//===-- llvm/Target/TargetOpcodes.h - Target Indep Opcodes ------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the target independent instruction opcodes.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TARGET_TARGETOPCODES_H
|
|
#define LLVM_TARGET_TARGETOPCODES_H
|
|
|
|
namespace llvm {
|
|
|
|
/// Invariant opcodes: All instruction sets have these as their low opcodes.
|
|
namespace TargetOpcode {
|
|
enum {
|
|
PHI = 0,
|
|
INLINEASM = 1,
|
|
DBG_LABEL = 2,
|
|
EH_LABEL = 3,
|
|
GC_LABEL = 4,
|
|
|
|
/// KILL - This instruction is a noop that is used only to adjust the
|
|
/// liveness of registers. This can be useful when dealing with
|
|
/// sub-registers.
|
|
KILL = 5,
|
|
|
|
/// EXTRACT_SUBREG - This instruction takes two operands: a register
|
|
/// that has subregisters, and a subregister index. It returns the
|
|
/// extracted subregister value. This is commonly used to implement
|
|
/// truncation operations on target architectures which support it.
|
|
EXTRACT_SUBREG = 6,
|
|
|
|
/// INSERT_SUBREG - This instruction takes three operands: a register that
|
|
/// has subregisters, a register providing an insert value, and a
|
|
/// subregister index. It returns the value of the first register with the
|
|
/// value of the second register inserted. The first register is often
|
|
/// defined by an IMPLICIT_DEF, because it is commonly used to implement
|
|
/// anyext operations on target architectures which support it.
|
|
INSERT_SUBREG = 7,
|
|
|
|
/// IMPLICIT_DEF - This is the MachineInstr-level equivalent of undef.
|
|
IMPLICIT_DEF = 8,
|
|
|
|
/// SUBREG_TO_REG - This instruction is similar to INSERT_SUBREG except that
|
|
/// the first operand is an immediate integer constant. This constant is
|
|
/// often zero, because it is commonly used to assert that the instruction
|
|
/// defining the register implicitly clears the high bits.
|
|
SUBREG_TO_REG = 9,
|
|
|
|
/// COPY_TO_REGCLASS - This instruction is a placeholder for a plain
|
|
/// register-to-register copy into a specific register class. This is only
|
|
/// used between instruction selection and MachineInstr creation, before
|
|
/// virtual registers have been created for all the instructions, and it's
|
|
/// only needed in cases where the register classes implied by the
|
|
/// instructions are insufficient. The actual MachineInstrs to perform
|
|
/// the copy are emitted with the TargetInstrInfo::copyRegToReg hook.
|
|
COPY_TO_REGCLASS = 10,
|
|
|
|
/// DBG_VALUE - a mapping of the llvm.dbg.value intrinsic
|
|
DBG_VALUE = 11,
|
|
|
|
/// REG_SEQUENCE - This variadic instruction is used to form a register that
|
|
/// represent a consecutive sequence of sub-registers. It's used as register
|
|
/// coalescing / allocation aid and must be eliminated before code emission.
|
|
/// e.g. v1027 = REG_SEQUENCE v1024, 3, v1025, 4, v1026, 5
|
|
/// After register coalescing references of v1024 should be replace with
|
|
/// v1027:3, v1025 with v1027:4, etc.
|
|
REG_SEQUENCE = 12
|
|
};
|
|
} // end namespace TargetOpcode
|
|
} // end namespace llvm
|
|
|
|
#endif
|