Sanjay Patel b89304eb7c Preserve IR flags (nsw, nuw, exact, fast-math) in SLP vectorizer (PR20802).
The SLP vectorizer should propagate IR-level optimization hints/flags (nsw, nuw, exact, fast-math)
when converting scalar instructions into vectors. But this isn't a simple copy - we need to take
the intersection (the logical 'and') of the sets of flags on the scalars.

The solution is further complicated because we can have non-uniform (non-SIMD) vector ops after:
http://reviews.llvm.org/D4015
http://llvm.org/viewvc/llvm-project?view=revision&revision=211339

The vast majority of changed files are existing tests that were not propagating IR flags, but I've
also added a new test file for focused testing of IR flag possibilities.

Differential Revision: http://reviews.llvm.org/D5172



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@217051 91177308-0d34-0410-b5e6-96231b3b80d8
2014-09-03 17:40:30 +00:00

53 lines
2.8 KiB
LLVM

; RUN: opt -S -mcpu=swift -mtriple=thumbv7-apple-ios -basicaa -slp-vectorizer < %s | FileCheck %s
target datalayout = "e-p:32:32:32-i1:8:32-i8:8:32-i16:16:32-i32:32:32-i64:32:64-f32:32:32-f64:32:64-v64:32:64-v128:32:128-a0:0:32-n32-S32"
%class.Complex = type { double, double }
; Code like this is the result of SROA. Make sure we don't vectorize this
; because the scalar version of the shl/or are handled by the
; backend and disappear, the vectorized code stays.
; CHECK-LABEL: SROAed
; CHECK-NOT: shl nuw <2 x i64>
; CHECK-NOT: or <2 x i64>
define void @SROAed(%class.Complex* noalias nocapture sret %agg.result, [4 x i32] %a.coerce, [4 x i32] %b.coerce) {
entry:
%a.coerce.fca.0.extract = extractvalue [4 x i32] %a.coerce, 0
%a.sroa.0.0.insert.ext = zext i32 %a.coerce.fca.0.extract to i64
%a.coerce.fca.1.extract = extractvalue [4 x i32] %a.coerce, 1
%a.sroa.0.4.insert.ext = zext i32 %a.coerce.fca.1.extract to i64
%a.sroa.0.4.insert.shift = shl nuw i64 %a.sroa.0.4.insert.ext, 32
%a.sroa.0.4.insert.insert = or i64 %a.sroa.0.4.insert.shift, %a.sroa.0.0.insert.ext
%0 = bitcast i64 %a.sroa.0.4.insert.insert to double
%a.coerce.fca.2.extract = extractvalue [4 x i32] %a.coerce, 2
%a.sroa.3.8.insert.ext = zext i32 %a.coerce.fca.2.extract to i64
%a.coerce.fca.3.extract = extractvalue [4 x i32] %a.coerce, 3
%a.sroa.3.12.insert.ext = zext i32 %a.coerce.fca.3.extract to i64
%a.sroa.3.12.insert.shift = shl nuw i64 %a.sroa.3.12.insert.ext, 32
%a.sroa.3.12.insert.insert = or i64 %a.sroa.3.12.insert.shift, %a.sroa.3.8.insert.ext
%1 = bitcast i64 %a.sroa.3.12.insert.insert to double
%b.coerce.fca.0.extract = extractvalue [4 x i32] %b.coerce, 0
%b.sroa.0.0.insert.ext = zext i32 %b.coerce.fca.0.extract to i64
%b.coerce.fca.1.extract = extractvalue [4 x i32] %b.coerce, 1
%b.sroa.0.4.insert.ext = zext i32 %b.coerce.fca.1.extract to i64
%b.sroa.0.4.insert.shift = shl nuw i64 %b.sroa.0.4.insert.ext, 32
%b.sroa.0.4.insert.insert = or i64 %b.sroa.0.4.insert.shift, %b.sroa.0.0.insert.ext
%2 = bitcast i64 %b.sroa.0.4.insert.insert to double
%b.coerce.fca.2.extract = extractvalue [4 x i32] %b.coerce, 2
%b.sroa.3.8.insert.ext = zext i32 %b.coerce.fca.2.extract to i64
%b.coerce.fca.3.extract = extractvalue [4 x i32] %b.coerce, 3
%b.sroa.3.12.insert.ext = zext i32 %b.coerce.fca.3.extract to i64
%b.sroa.3.12.insert.shift = shl nuw i64 %b.sroa.3.12.insert.ext, 32
%b.sroa.3.12.insert.insert = or i64 %b.sroa.3.12.insert.shift, %b.sroa.3.8.insert.ext
%3 = bitcast i64 %b.sroa.3.12.insert.insert to double
%add = fadd double %0, %2
%add3 = fadd double %1, %3
%re.i.i = getelementptr inbounds %class.Complex* %agg.result, i32 0, i32 0
store double %add, double* %re.i.i, align 4
%im.i.i = getelementptr inbounds %class.Complex* %agg.result, i32 0, i32 1
store double %add3, double* %im.i.i, align 4
ret void
}