mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
b0f4e389db
which prevented setcc's from being folded into branches. It appears that conditional branchinst's CC operand is actually operand(2), not operand(0) as we might expect. :( git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@16859 91177308-0d34-0410-b5e6-96231b3b80d8
3916 lines
149 KiB
C++
3916 lines
149 KiB
C++
//===-- X86ISelSimple.cpp - A simple instruction selector for x86 ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by the LLVM research group and is distributed under
|
|
// the University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines a simple peephole instruction selector for the x86 target
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86InstrInfo.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/CodeGen/IntrinsicLowering.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/SSARegMap.h"
|
|
#include "llvm/Target/MRegisterInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<>
|
|
NumFPKill("x86-codegen", "Number of FP_REG_KILL instructions added");
|
|
|
|
/// TypeClass - Used by the X86 backend to group LLVM types by their basic X86
|
|
/// Representation.
|
|
///
|
|
enum TypeClass {
|
|
cByte, cShort, cInt, cFP, cLong
|
|
};
|
|
}
|
|
|
|
/// getClass - Turn a primitive type into a "class" number which is based on the
|
|
/// size of the type, and whether or not it is floating point.
|
|
///
|
|
static inline TypeClass getClass(const Type *Ty) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::SByteTyID:
|
|
case Type::UByteTyID: return cByte; // Byte operands are class #0
|
|
case Type::ShortTyID:
|
|
case Type::UShortTyID: return cShort; // Short operands are class #1
|
|
case Type::IntTyID:
|
|
case Type::UIntTyID:
|
|
case Type::PointerTyID: return cInt; // Int's and pointers are class #2
|
|
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID: return cFP; // Floating Point is #3
|
|
|
|
case Type::LongTyID:
|
|
case Type::ULongTyID: return cLong; // Longs are class #4
|
|
default:
|
|
assert(0 && "Invalid type to getClass!");
|
|
return cByte; // not reached
|
|
}
|
|
}
|
|
|
|
// getClassB - Just like getClass, but treat boolean values as bytes.
|
|
static inline TypeClass getClassB(const Type *Ty) {
|
|
if (Ty == Type::BoolTy) return cByte;
|
|
return getClass(Ty);
|
|
}
|
|
|
|
namespace {
|
|
struct X86ISel : public FunctionPass, InstVisitor<X86ISel> {
|
|
TargetMachine &TM;
|
|
MachineFunction *F; // The function we are compiling into
|
|
MachineBasicBlock *BB; // The current MBB we are compiling
|
|
int VarArgsFrameIndex; // FrameIndex for start of varargs area
|
|
int ReturnAddressIndex; // FrameIndex for the return address
|
|
|
|
std::map<Value*, unsigned> RegMap; // Mapping between Val's and SSA Regs
|
|
|
|
// MBBMap - Mapping between LLVM BB -> Machine BB
|
|
std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
|
|
|
|
// AllocaMap - Mapping from fixed sized alloca instructions to the
|
|
// FrameIndex for the alloca.
|
|
std::map<AllocaInst*, unsigned> AllocaMap;
|
|
|
|
X86ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
|
|
|
|
/// runOnFunction - Top level implementation of instruction selection for
|
|
/// the entire function.
|
|
///
|
|
bool runOnFunction(Function &Fn) {
|
|
// First pass over the function, lower any unknown intrinsic functions
|
|
// with the IntrinsicLowering class.
|
|
LowerUnknownIntrinsicFunctionCalls(Fn);
|
|
|
|
F = &MachineFunction::construct(&Fn, TM);
|
|
|
|
// Create all of the machine basic blocks for the function...
|
|
for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
|
|
F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
|
|
|
|
BB = &F->front();
|
|
|
|
// Set up a frame object for the return address. This is used by the
|
|
// llvm.returnaddress & llvm.frameaddress intrinisics.
|
|
ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
|
|
|
|
// Copy incoming arguments off of the stack...
|
|
LoadArgumentsToVirtualRegs(Fn);
|
|
|
|
// Instruction select everything except PHI nodes
|
|
visit(Fn);
|
|
|
|
// Select the PHI nodes
|
|
SelectPHINodes();
|
|
|
|
// Insert the FP_REG_KILL instructions into blocks that need them.
|
|
InsertFPRegKills();
|
|
|
|
RegMap.clear();
|
|
MBBMap.clear();
|
|
AllocaMap.clear();
|
|
F = 0;
|
|
// We always build a machine code representation for the function
|
|
return true;
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 Simple Instruction Selection";
|
|
}
|
|
|
|
/// visitBasicBlock - This method is called when we are visiting a new basic
|
|
/// block. This simply creates a new MachineBasicBlock to emit code into
|
|
/// and adds it to the current MachineFunction. Subsequent visit* for
|
|
/// instructions will be invoked for all instructions in the basic block.
|
|
///
|
|
void visitBasicBlock(BasicBlock &LLVM_BB) {
|
|
BB = MBBMap[&LLVM_BB];
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void LowerUnknownIntrinsicFunctionCalls(Function &F);
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
|
|
/// from the stack into virtual registers.
|
|
///
|
|
void LoadArgumentsToVirtualRegs(Function &F);
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks,
|
|
/// not the current one.
|
|
///
|
|
void SelectPHINodes();
|
|
|
|
/// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks
|
|
/// that need them. This only occurs due to the floating point stackifier
|
|
/// not being aggressive enough to handle arbitrary global stackification.
|
|
///
|
|
void InsertFPRegKills();
|
|
|
|
// Visitation methods for various instructions. These methods simply emit
|
|
// fixed X86 code for each instruction.
|
|
//
|
|
|
|
// Control flow operators
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitBranchInst(BranchInst &BI);
|
|
|
|
struct ValueRecord {
|
|
Value *Val;
|
|
unsigned Reg;
|
|
const Type *Ty;
|
|
ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
|
|
ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
|
|
};
|
|
void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args);
|
|
void visitCallInst(CallInst &I);
|
|
void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
|
|
|
|
// Arithmetic operators
|
|
void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
|
|
void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
|
|
void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
|
|
void visitMul(BinaryOperator &B);
|
|
|
|
void visitDiv(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitRem(BinaryOperator &B) { visitDivRem(B); }
|
|
void visitDivRem(BinaryOperator &B);
|
|
|
|
// Bitwise operators
|
|
void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
|
|
void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
|
|
void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
|
|
|
|
// Comparison operators...
|
|
void visitSetCondInst(SetCondInst &I);
|
|
unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
|
|
|
|
// Memory Instructions
|
|
void visitLoadInst(LoadInst &I);
|
|
void visitStoreInst(StoreInst &I);
|
|
void visitGetElementPtrInst(GetElementPtrInst &I);
|
|
void visitAllocaInst(AllocaInst &I);
|
|
void visitMallocInst(MallocInst &I);
|
|
void visitFreeInst(FreeInst &I);
|
|
|
|
// Other operators
|
|
void visitShiftInst(ShiftInst &I);
|
|
void visitPHINode(PHINode &I) {} // PHI nodes handled by second pass
|
|
void visitCastInst(CastInst &I);
|
|
void visitVANextInst(VANextInst &I);
|
|
void visitVAArgInst(VAArgInst &I);
|
|
|
|
void visitInstruction(Instruction &I) {
|
|
std::cerr << "Cannot instruction select: " << I;
|
|
abort();
|
|
}
|
|
|
|
/// promote32 - Make a value 32-bits wide, and put it somewhere.
|
|
///
|
|
void promote32(unsigned targetReg, const ValueRecord &VR);
|
|
|
|
/// getAddressingMode - Get the addressing mode to use to address the
|
|
/// specified value. The returned value should be used with addFullAddress.
|
|
void getAddressingMode(Value *Addr, X86AddressMode &AM);
|
|
|
|
|
|
/// getGEPIndex - This is used to fold GEP instructions into X86 addressing
|
|
/// expressions.
|
|
void getGEPIndex(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
std::vector<Value*> &GEPOps,
|
|
std::vector<const Type*> &GEPTypes,
|
|
X86AddressMode &AM);
|
|
|
|
/// isGEPFoldable - Return true if the specified GEP can be completely
|
|
/// folded into the addressing mode of a load/store or lea instruction.
|
|
bool isGEPFoldable(MachineBasicBlock *MBB,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, X86AddressMode &AM);
|
|
|
|
/// emitGEPOperation - Common code shared between visitGetElementPtrInst and
|
|
/// constant expression GEP support.
|
|
///
|
|
void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg);
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and
|
|
/// constant expression cast support.
|
|
///
|
|
void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy, unsigned TargetReg);
|
|
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
///
|
|
void emitSimpleBinaryOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
/// emitBinaryFPOperation - This method handles emission of floating point
|
|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
|
|
void emitBinaryFPOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned TargetReg);
|
|
|
|
void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned TargetReg);
|
|
|
|
void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned Op0Reg, unsigned Op1Reg);
|
|
void doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned Op0Reg, unsigned Op1Val);
|
|
|
|
void emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, bool isDiv,
|
|
unsigned TargetReg);
|
|
|
|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitSetCCOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned Opcode,
|
|
unsigned TargetReg);
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
///
|
|
void emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount, bool isLeftShift,
|
|
const Type *ResultTy, unsigned DestReg);
|
|
|
|
/// emitSelectOperation - Common code shared between visitSelectInst and the
|
|
/// constant expression support.
|
|
void emitSelectOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Cond, Value *TrueVal, Value *FalseVal,
|
|
unsigned DestReg);
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
Constant *C, unsigned Reg);
|
|
|
|
void emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
|
|
unsigned LHS, unsigned RHS);
|
|
|
|
/// makeAnotherReg - This method returns the next register number we haven't
|
|
/// yet used.
|
|
///
|
|
/// Long values are handled somewhat specially. They are always allocated
|
|
/// as pairs of 32 bit integer values. The register number returned is the
|
|
/// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
|
|
/// of the long value.
|
|
///
|
|
unsigned makeAnotherReg(const Type *Ty) {
|
|
assert(dynamic_cast<const X86RegisterInfo*>(TM.getRegisterInfo()) &&
|
|
"Current target doesn't have X86 reg info??");
|
|
const X86RegisterInfo *MRI =
|
|
static_cast<const X86RegisterInfo*>(TM.getRegisterInfo());
|
|
if (Ty == Type::LongTy || Ty == Type::ULongTy) {
|
|
const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
|
|
// Create the lower part
|
|
F->getSSARegMap()->createVirtualRegister(RC);
|
|
// Create the upper part.
|
|
return F->getSSARegMap()->createVirtualRegister(RC)-1;
|
|
}
|
|
|
|
// Add the mapping of regnumber => reg class to MachineFunction
|
|
const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
|
|
return F->getSSARegMap()->createVirtualRegister(RC);
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number.
|
|
///
|
|
unsigned getReg(Value &V) { return getReg(&V); } // Allow references
|
|
unsigned getReg(Value *V) {
|
|
// Just append to the end of the current bb.
|
|
MachineBasicBlock::iterator It = BB->end();
|
|
return getReg(V, BB, It);
|
|
}
|
|
unsigned getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt);
|
|
|
|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
|
|
/// that is to be statically allocated with the initial stack frame
|
|
/// adjustment.
|
|
unsigned getFixedSizedAllocaFI(AllocaInst *AI);
|
|
};
|
|
}
|
|
|
|
/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
|
|
/// instruction in the entry block, return it. Otherwise, return a null
|
|
/// pointer.
|
|
static AllocaInst *dyn_castFixedAlloca(Value *V) {
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
|
|
BasicBlock *BB = AI->getParent();
|
|
if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
|
|
return AI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// getReg - This method turns an LLVM value into a register number.
|
|
///
|
|
unsigned X86ISel::getReg(Value *V, MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IPt) {
|
|
// If this operand is a constant, emit the code to copy the constant into
|
|
// the register here...
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
unsigned Reg = makeAnotherReg(V->getType());
|
|
copyConstantToRegister(MBB, IPt, C, Reg);
|
|
return Reg;
|
|
} else if (CastInst *CI = dyn_cast<CastInst>(V)) {
|
|
// Do not emit noop casts at all, unless it's a double -> float cast.
|
|
if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()) &&
|
|
(CI->getType() != Type::FloatTy ||
|
|
CI->getOperand(0)->getType() != Type::DoubleTy))
|
|
return getReg(CI->getOperand(0), MBB, IPt);
|
|
} else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
|
|
// If the alloca address couldn't be folded into the instruction addressing,
|
|
// emit an explicit LEA as appropriate.
|
|
unsigned Reg = makeAnotherReg(V->getType());
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(*MBB, IPt, X86::LEA32r, 4, Reg), FI);
|
|
return Reg;
|
|
}
|
|
|
|
unsigned &Reg = RegMap[V];
|
|
if (Reg == 0) {
|
|
Reg = makeAnotherReg(V->getType());
|
|
RegMap[V] = Reg;
|
|
}
|
|
|
|
return Reg;
|
|
}
|
|
|
|
/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
|
|
/// that is to be statically allocated with the initial stack frame
|
|
/// adjustment.
|
|
unsigned X86ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
|
|
// Already computed this?
|
|
std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
|
|
if (I != AllocaMap.end() && I->first == AI) return I->second;
|
|
|
|
const Type *Ty = AI->getAllocatedType();
|
|
ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
TySize *= CUI->getValue(); // Get total allocated size...
|
|
unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
|
|
|
|
// Create a new stack object using the frame manager...
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
|
|
AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
|
|
return FrameIdx;
|
|
}
|
|
|
|
|
|
/// copyConstantToRegister - Output the instructions required to put the
|
|
/// specified constant into the specified register.
|
|
///
|
|
void X86ISel::copyConstantToRegister(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Constant *C, unsigned R) {
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
|
|
unsigned Class = 0;
|
|
switch (CE->getOpcode()) {
|
|
case Instruction::GetElementPtr:
|
|
emitGEPOperation(MBB, IP, CE->getOperand(0),
|
|
CE->op_begin()+1, CE->op_end(), R);
|
|
return;
|
|
case Instruction::Cast:
|
|
emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
|
|
return;
|
|
|
|
case Instruction::Xor: ++Class; // FALL THROUGH
|
|
case Instruction::Or: ++Class; // FALL THROUGH
|
|
case Instruction::And: ++Class; // FALL THROUGH
|
|
case Instruction::Sub: ++Class; // FALL THROUGH
|
|
case Instruction::Add:
|
|
emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
Class, R);
|
|
return;
|
|
|
|
case Instruction::Mul:
|
|
emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
|
|
return;
|
|
|
|
case Instruction::Div:
|
|
case Instruction::Rem:
|
|
emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOpcode() == Instruction::Div, R);
|
|
return;
|
|
|
|
case Instruction::SetNE:
|
|
case Instruction::SetEQ:
|
|
case Instruction::SetLT:
|
|
case Instruction::SetGT:
|
|
case Instruction::SetLE:
|
|
case Instruction::SetGE:
|
|
emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOpcode(), R);
|
|
return;
|
|
|
|
case Instruction::Shl:
|
|
case Instruction::Shr:
|
|
emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOpcode() == Instruction::Shl, CE->getType(), R);
|
|
return;
|
|
|
|
case Instruction::Select:
|
|
emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
|
|
CE->getOperand(2), R);
|
|
return;
|
|
|
|
default:
|
|
std::cerr << "Offending expr: " << *C << "\n";
|
|
assert(0 && "Constant expression not yet handled!\n");
|
|
}
|
|
}
|
|
|
|
if (C->getType()->isIntegral()) {
|
|
unsigned Class = getClassB(C->getType());
|
|
|
|
if (Class == cLong) {
|
|
// Copy the value into the register pair.
|
|
uint64_t Val = cast<ConstantInt>(C)->getRawValue();
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(Val & 0xFFFFFFFF);
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, R+1).addImm(Val >> 32);
|
|
return;
|
|
}
|
|
|
|
assert(Class <= cInt && "Type not handled yet!");
|
|
|
|
static const unsigned IntegralOpcodeTab[] = {
|
|
X86::MOV8ri, X86::MOV16ri, X86::MOV32ri
|
|
};
|
|
|
|
if (C->getType() == Type::BoolTy) {
|
|
BuildMI(*MBB, IP, X86::MOV8ri, 1, R).addImm(C == ConstantBool::True);
|
|
} else {
|
|
ConstantInt *CI = cast<ConstantInt>(C);
|
|
BuildMI(*MBB, IP, IntegralOpcodeTab[Class],1,R).addImm(CI->getRawValue());
|
|
}
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
|
|
if (CFP->isExactlyValue(+0.0))
|
|
BuildMI(*MBB, IP, X86::FLD0, 0, R);
|
|
else if (CFP->isExactlyValue(+1.0))
|
|
BuildMI(*MBB, IP, X86::FLD1, 0, R);
|
|
else {
|
|
// Otherwise we need to spill the constant to memory...
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(CFP);
|
|
const Type *Ty = CFP->getType();
|
|
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned LoadOpcode = Ty == Type::FloatTy ? X86::FLD32m : X86::FLD64m;
|
|
addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 4, R), CPI);
|
|
}
|
|
|
|
} else if (isa<ConstantPointerNull>(C)) {
|
|
// Copy zero (null pointer) to the register.
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addImm(0);
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(C)) {
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, R).addGlobalAddress(GV);
|
|
} else {
|
|
std::cerr << "Offending constant: " << *C << "\n";
|
|
assert(0 && "Type not handled yet!");
|
|
}
|
|
}
|
|
|
|
/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
|
|
/// the stack into virtual registers.
|
|
///
|
|
void X86ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
|
|
// Emit instructions to load the arguments... On entry to a function on the
|
|
// X86, the stack frame looks like this:
|
|
//
|
|
// [ESP] -- return address
|
|
// [ESP + 4] -- first argument (leftmost lexically)
|
|
// [ESP + 8] -- second argument, if first argument is four bytes in size
|
|
// ...
|
|
//
|
|
unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot
|
|
MachineFrameInfo *MFI = F->getFrameInfo();
|
|
|
|
for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
|
|
bool ArgLive = !I->use_empty();
|
|
unsigned Reg = ArgLive ? getReg(*I) : 0;
|
|
int FI; // Frame object index
|
|
|
|
switch (getClassB(I->getType())) {
|
|
case cByte:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(1, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOV8rm, 4, Reg), FI);
|
|
}
|
|
break;
|
|
case cShort:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(2, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOV16rm, 4, Reg), FI);
|
|
}
|
|
break;
|
|
case cInt:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
|
|
}
|
|
break;
|
|
case cLong:
|
|
if (ArgLive) {
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg), FI);
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, Reg+1), FI, 4);
|
|
}
|
|
ArgOffset += 4; // longs require 4 additional bytes
|
|
break;
|
|
case cFP:
|
|
if (ArgLive) {
|
|
unsigned Opcode;
|
|
if (I->getType() == Type::FloatTy) {
|
|
Opcode = X86::FLD32m;
|
|
FI = MFI->CreateFixedObject(4, ArgOffset);
|
|
} else {
|
|
Opcode = X86::FLD64m;
|
|
FI = MFI->CreateFixedObject(8, ArgOffset);
|
|
}
|
|
addFrameReference(BuildMI(BB, Opcode, 4, Reg), FI);
|
|
}
|
|
if (I->getType() == Type::DoubleTy)
|
|
ArgOffset += 4; // doubles require 4 additional bytes
|
|
break;
|
|
default:
|
|
assert(0 && "Unhandled argument type!");
|
|
}
|
|
ArgOffset += 4; // Each argument takes at least 4 bytes on the stack...
|
|
}
|
|
|
|
// If the function takes variable number of arguments, add a frame offset for
|
|
// the start of the first vararg value... this is used to expand
|
|
// llvm.va_start.
|
|
if (Fn.getFunctionType()->isVarArg())
|
|
VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
|
|
}
|
|
|
|
|
|
/// SelectPHINodes - Insert machine code to generate phis. This is tricky
|
|
/// because we have to generate our sources into the source basic blocks, not
|
|
/// the current one.
|
|
///
|
|
void X86ISel::SelectPHINodes() {
|
|
const TargetInstrInfo &TII = *TM.getInstrInfo();
|
|
const Function &LF = *F->getFunction(); // The LLVM function...
|
|
for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
|
|
const BasicBlock *BB = I;
|
|
MachineBasicBlock &MBB = *MBBMap[I];
|
|
|
|
// Loop over all of the PHI nodes in the LLVM basic block...
|
|
MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
|
|
for (BasicBlock::const_iterator I = BB->begin(); isa<PHINode>(I); ++I) {
|
|
PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I));
|
|
|
|
// Create a new machine instr PHI node, and insert it.
|
|
unsigned PHIReg = getReg(*PN);
|
|
MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
X86::PHI, PN->getNumOperands(), PHIReg);
|
|
|
|
MachineInstr *LongPhiMI = 0;
|
|
if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
|
|
LongPhiMI = BuildMI(MBB, PHIInsertPoint,
|
|
X86::PHI, PN->getNumOperands(), PHIReg+1);
|
|
|
|
// PHIValues - Map of blocks to incoming virtual registers. We use this
|
|
// so that we only initialize one incoming value for a particular block,
|
|
// even if the block has multiple entries in the PHI node.
|
|
//
|
|
std::map<MachineBasicBlock*, unsigned> PHIValues;
|
|
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
|
MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
|
|
unsigned ValReg;
|
|
std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
|
|
PHIValues.lower_bound(PredMBB);
|
|
|
|
if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
|
|
// We already inserted an initialization of the register for this
|
|
// predecessor. Recycle it.
|
|
ValReg = EntryIt->second;
|
|
|
|
} else {
|
|
// Get the incoming value into a virtual register.
|
|
//
|
|
Value *Val = PN->getIncomingValue(i);
|
|
|
|
// If this is a constant or GlobalValue, we may have to insert code
|
|
// into the basic block to compute it into a virtual register.
|
|
if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val))) {
|
|
// Simple constants get emitted at the end of the basic block,
|
|
// before any terminator instructions. We "know" that the code to
|
|
// move a constant into a register will never clobber any flags.
|
|
ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
|
|
} else {
|
|
// Because we don't want to clobber any values which might be in
|
|
// physical registers with the computation of this constant (which
|
|
// might be arbitrarily complex if it is a constant expression),
|
|
// just insert the computation at the top of the basic block.
|
|
MachineBasicBlock::iterator PI = PredMBB->begin();
|
|
|
|
// Skip over any PHI nodes though!
|
|
while (PI != PredMBB->end() && PI->getOpcode() == X86::PHI)
|
|
++PI;
|
|
|
|
ValReg = getReg(Val, PredMBB, PI);
|
|
}
|
|
|
|
// Remember that we inserted a value for this PHI for this predecessor
|
|
PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
|
|
}
|
|
|
|
PhiMI->addRegOperand(ValReg);
|
|
PhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
if (LongPhiMI) {
|
|
LongPhiMI->addRegOperand(ValReg+1);
|
|
LongPhiMI->addMachineBasicBlockOperand(PredMBB);
|
|
}
|
|
}
|
|
|
|
// Now that we emitted all of the incoming values for the PHI node, make
|
|
// sure to reposition the InsertPoint after the PHI that we just added.
|
|
// This is needed because we might have inserted a constant into this
|
|
// block, right after the PHI's which is before the old insert point!
|
|
PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
|
|
++PHIInsertPoint;
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RequiresFPRegKill - The floating point stackifier pass cannot insert
|
|
/// compensation code on critical edges. As such, it requires that we kill all
|
|
/// FP registers on the exit from any blocks that either ARE critical edges, or
|
|
/// branch to a block that has incoming critical edges.
|
|
///
|
|
/// Note that this kill instruction will eventually be eliminated when
|
|
/// restrictions in the stackifier are relaxed.
|
|
///
|
|
static bool RequiresFPRegKill(const MachineBasicBlock *MBB) {
|
|
#if 0
|
|
const BasicBlock *BB = MBB->getBasicBlock ();
|
|
for (succ_const_iterator SI = succ_begin(BB), E = succ_end(BB); SI!=E; ++SI) {
|
|
const BasicBlock *Succ = *SI;
|
|
pred_const_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
|
|
++PI; // Block have at least one predecessory
|
|
if (PI != PE) { // If it has exactly one, this isn't crit edge
|
|
// If this block has more than one predecessor, check all of the
|
|
// predecessors to see if they have multiple successors. If so, then the
|
|
// block we are analyzing needs an FPRegKill.
|
|
for (PI = pred_begin(Succ); PI != PE; ++PI) {
|
|
const BasicBlock *Pred = *PI;
|
|
succ_const_iterator SI2 = succ_begin(Pred);
|
|
++SI2; // There must be at least one successor of this block.
|
|
if (SI2 != succ_end(Pred))
|
|
return true; // Yes, we must insert the kill on this edge.
|
|
}
|
|
}
|
|
}
|
|
// If we got this far, there is no need to insert the kill instruction.
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
// InsertFPRegKills - Insert FP_REG_KILL instructions into basic blocks that
|
|
// need them. This only occurs due to the floating point stackifier not being
|
|
// aggressive enough to handle arbitrary global stackification.
|
|
//
|
|
// Currently we insert an FP_REG_KILL instruction into each block that uses or
|
|
// defines a floating point virtual register.
|
|
//
|
|
// When the global register allocators (like linear scan) finally update live
|
|
// variable analysis, we can keep floating point values in registers across
|
|
// portions of the CFG that do not involve critical edges. This will be a big
|
|
// win, but we are waiting on the global allocators before we can do this.
|
|
//
|
|
// With a bit of work, the floating point stackifier pass can be enhanced to
|
|
// break critical edges as needed (to make a place to put compensation code),
|
|
// but this will require some infrastructure improvements as well.
|
|
//
|
|
void X86ISel::InsertFPRegKills() {
|
|
SSARegMap &RegMap = *F->getSSARegMap();
|
|
|
|
for (MachineFunction::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) {
|
|
for (MachineBasicBlock::iterator I = BB->begin(), E = BB->end(); I!=E; ++I)
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
|
|
MachineOperand& MO = I->getOperand(i);
|
|
if (MO.isRegister() && MO.getReg()) {
|
|
unsigned Reg = MO.getReg();
|
|
if (MRegisterInfo::isVirtualRegister(Reg))
|
|
if (RegMap.getRegClass(Reg)->getSize() == 10)
|
|
goto UsesFPReg;
|
|
}
|
|
}
|
|
// If we haven't found an FP register use or def in this basic block, check
|
|
// to see if any of our successors has an FP PHI node, which will cause a
|
|
// copy to be inserted into this block.
|
|
for (MachineBasicBlock::const_succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI) {
|
|
MachineBasicBlock *SBB = *SI;
|
|
for (MachineBasicBlock::iterator I = SBB->begin();
|
|
I != SBB->end() && I->getOpcode() == X86::PHI; ++I) {
|
|
if (RegMap.getRegClass(I->getOperand(0).getReg())->getSize() == 10)
|
|
goto UsesFPReg;
|
|
}
|
|
}
|
|
continue;
|
|
UsesFPReg:
|
|
// Okay, this block uses an FP register. If the block has successors (ie,
|
|
// it's not an unwind/return), insert the FP_REG_KILL instruction.
|
|
if (BB->succ_size () && RequiresFPRegKill(BB)) {
|
|
BuildMI(*BB, BB->getFirstTerminator(), X86::FP_REG_KILL, 0);
|
|
++NumFPKill;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void X86ISel::getAddressingMode(Value *Addr, X86AddressMode &AM) {
|
|
AM.BaseType = X86AddressMode::RegBase;
|
|
AM.Base.Reg = 0; AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) {
|
|
if (isGEPFoldable(BB, GEP->getOperand(0), GEP->op_begin()+1, GEP->op_end(),
|
|
AM))
|
|
return;
|
|
} else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
|
|
if (CE->getOpcode() == Instruction::GetElementPtr)
|
|
if (isGEPFoldable(BB, CE->getOperand(0), CE->op_begin()+1, CE->op_end(),
|
|
AM))
|
|
return;
|
|
} else if (AllocaInst *AI = dyn_castFixedAlloca(Addr)) {
|
|
AM.BaseType = X86AddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
|
|
return;
|
|
}
|
|
|
|
// If it's not foldable, reset addr mode.
|
|
AM.BaseType = X86AddressMode::RegBase;
|
|
AM.Base.Reg = getReg(Addr);
|
|
AM.Scale = 1; AM.IndexReg = 0; AM.Disp = 0;
|
|
}
|
|
|
|
// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
|
|
// it into the conditional branch or select instruction which is the only user
|
|
// of the cc instruction. This is the case if the conditional branch is the
|
|
// only user of the setcc. We also don't handle long arguments below, so we
|
|
// reject them here as well.
|
|
//
|
|
static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
|
|
if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
|
|
if (SCI->hasOneUse()) {
|
|
Instruction *User = cast<Instruction>(SCI->use_back());
|
|
if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
|
|
(getClassB(SCI->getOperand(0)->getType()) != cLong ||
|
|
SCI->getOpcode() == Instruction::SetEQ ||
|
|
SCI->getOpcode() == Instruction::SetNE) &&
|
|
(isa<BranchInst>(User) || User->getOperand(0) == V))
|
|
return SCI;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Return a fixed numbering for setcc instructions which does not depend on the
|
|
// order of the opcodes.
|
|
//
|
|
static unsigned getSetCCNumber(unsigned Opcode) {
|
|
switch(Opcode) {
|
|
default: assert(0 && "Unknown setcc instruction!");
|
|
case Instruction::SetEQ: return 0;
|
|
case Instruction::SetNE: return 1;
|
|
case Instruction::SetLT: return 2;
|
|
case Instruction::SetGE: return 3;
|
|
case Instruction::SetGT: return 4;
|
|
case Instruction::SetLE: return 5;
|
|
}
|
|
}
|
|
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ---------- ------------
|
|
// seteq -> sete sete
|
|
// setne -> setne setne
|
|
// setlt -> setl setb
|
|
// setge -> setge setae
|
|
// setgt -> setg seta
|
|
// setle -> setle setbe
|
|
// ----
|
|
// sets // Used by comparison with 0 optimization
|
|
// setns
|
|
static const unsigned SetCCOpcodeTab[2][8] = {
|
|
{ X86::SETEr, X86::SETNEr, X86::SETBr, X86::SETAEr, X86::SETAr, X86::SETBEr,
|
|
0, 0 },
|
|
{ X86::SETEr, X86::SETNEr, X86::SETLr, X86::SETGEr, X86::SETGr, X86::SETLEr,
|
|
X86::SETSr, X86::SETNSr },
|
|
};
|
|
|
|
/// emitUCOMr - In the future when we support processors before the P6, this
|
|
/// wraps the logic for emitting an FUCOMr vs FUCOMIr.
|
|
void X86ISel::emitUCOMr(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
|
|
unsigned LHS, unsigned RHS) {
|
|
if (0) { // for processors prior to the P6
|
|
BuildMI(*MBB, IP, X86::FUCOMr, 2).addReg(LHS).addReg(RHS);
|
|
BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
|
|
BuildMI(*MBB, IP, X86::SAHF, 1);
|
|
} else {
|
|
BuildMI(*MBB, IP, X86::FUCOMIr, 2).addReg(LHS).addReg(RHS);
|
|
}
|
|
}
|
|
|
|
// EmitComparison - This function emits a comparison of the two operands,
|
|
// returning the extended setcc code to use.
|
|
unsigned X86ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP) {
|
|
// The arguments are already supposed to be of the same type.
|
|
const Type *CompTy = Op0->getType();
|
|
unsigned Class = getClassB(CompTy);
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
|
|
// Special case handling of: cmp R, i
|
|
if (isa<ConstantPointerNull>(Op1)) {
|
|
if (OpNum < 2) // seteq/setne -> test
|
|
BuildMI(*MBB, IP, X86::TEST32rr, 2).addReg(Op0r).addReg(Op0r);
|
|
else
|
|
BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(0);
|
|
return OpNum;
|
|
|
|
} else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
if (Class == cByte || Class == cShort || Class == cInt) {
|
|
unsigned Op1v = CI->getRawValue();
|
|
|
|
// Mask off any upper bits of the constant, if there are any...
|
|
Op1v &= (1ULL << (8 << Class)) - 1;
|
|
|
|
// If this is a comparison against zero, emit more efficient code. We
|
|
// can't handle unsigned comparisons against zero unless they are == or
|
|
// !=. These should have been strength reduced already anyway.
|
|
if (Op1v == 0 && (CompTy->isSigned() || OpNum < 2)) {
|
|
static const unsigned TESTTab[] = {
|
|
X86::TEST8rr, X86::TEST16rr, X86::TEST32rr
|
|
};
|
|
BuildMI(*MBB, IP, TESTTab[Class], 2).addReg(Op0r).addReg(Op0r);
|
|
|
|
if (OpNum == 2) return 6; // Map jl -> js
|
|
if (OpNum == 3) return 7; // Map jg -> jns
|
|
return OpNum;
|
|
}
|
|
|
|
static const unsigned CMPTab[] = {
|
|
X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
|
|
};
|
|
|
|
BuildMI(*MBB, IP, CMPTab[Class], 2).addReg(Op0r).addImm(Op1v);
|
|
return OpNum;
|
|
} else {
|
|
assert(Class == cLong && "Unknown integer class!");
|
|
unsigned LowCst = CI->getRawValue();
|
|
unsigned HiCst = CI->getRawValue() >> 32;
|
|
if (OpNum < 2) { // seteq, setne
|
|
unsigned LoTmp = Op0r;
|
|
if (LowCst != 0) {
|
|
LoTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, X86::XOR32ri, 2, LoTmp).addReg(Op0r).addImm(LowCst);
|
|
}
|
|
unsigned HiTmp = Op0r+1;
|
|
if (HiCst != 0) {
|
|
HiTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, X86::XOR32ri, 2,HiTmp).addReg(Op0r+1).addImm(HiCst);
|
|
}
|
|
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
|
|
return OpNum;
|
|
} else {
|
|
// Emit a sequence of code which compares the high and low parts once
|
|
// each, then uses a conditional move to handle the overflow case. For
|
|
// example, a setlt for long would generate code like this:
|
|
//
|
|
// AL = lo(op1) < lo(op2) // Always unsigned comparison
|
|
// BL = hi(op1) < hi(op2) // Signedness depends on operands
|
|
// dest = hi(op1) == hi(op2) ? BL : AL;
|
|
//
|
|
|
|
// FIXME: This would be much better if we had hierarchical register
|
|
// classes! Until then, hardcode registers so that we can deal with
|
|
// their aliases (because we don't have conditional byte moves).
|
|
//
|
|
BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r).addImm(LowCst);
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
|
|
BuildMI(*MBB, IP, X86::CMP32ri, 2).addReg(Op0r+1).addImm(HiCst);
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0,X86::BL);
|
|
BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
|
|
BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
|
|
BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
|
|
.addReg(X86::AX);
|
|
// NOTE: visitSetCondInst knows that the value is dumped into the BL
|
|
// register at this point for long values...
|
|
return OpNum;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Special case handling of comparison against +/- 0.0
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op1))
|
|
if (CFP->isExactlyValue(+0.0) || CFP->isExactlyValue(-0.0)) {
|
|
BuildMI(*MBB, IP, X86::FTST, 1).addReg(Op0r);
|
|
BuildMI(*MBB, IP, X86::FNSTSW8r, 0);
|
|
BuildMI(*MBB, IP, X86::SAHF, 1);
|
|
return OpNum;
|
|
}
|
|
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown type class!");
|
|
// Emit: cmp <var1>, <var2> (do the comparison). We can
|
|
// compare 8-bit with 8-bit, 16-bit with 16-bit, 32-bit with
|
|
// 32-bit.
|
|
case cByte:
|
|
BuildMI(*MBB, IP, X86::CMP8rr, 2).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
case cShort:
|
|
BuildMI(*MBB, IP, X86::CMP16rr, 2).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
case cInt:
|
|
BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
|
|
break;
|
|
case cFP:
|
|
emitUCOMr(MBB, IP, Op0r, Op1r);
|
|
break;
|
|
|
|
case cLong:
|
|
if (OpNum < 2) { // seteq, setne
|
|
unsigned LoTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned HiTmp = makeAnotherReg(Type::IntTy);
|
|
unsigned FinalTmp = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, X86::XOR32rr, 2, LoTmp).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, X86::XOR32rr, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, X86::OR32rr, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
|
|
break; // Allow the sete or setne to be generated from flags set by OR
|
|
} else {
|
|
// Emit a sequence of code which compares the high and low parts once
|
|
// each, then uses a conditional move to handle the overflow case. For
|
|
// example, a setlt for long would generate code like this:
|
|
//
|
|
// AL = lo(op1) < lo(op2) // Signedness depends on operands
|
|
// BL = hi(op1) < hi(op2) // Always unsigned comparison
|
|
// dest = hi(op1) == hi(op2) ? BL : AL;
|
|
//
|
|
|
|
// FIXME: This would be much better if we had hierarchical register
|
|
// classes! Until then, hardcode registers so that we can deal with their
|
|
// aliases (because we don't have conditional byte moves).
|
|
//
|
|
BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r).addReg(Op1r);
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[0][OpNum], 0, X86::AL);
|
|
BuildMI(*MBB, IP, X86::CMP32rr, 2).addReg(Op0r+1).addReg(Op1r+1);
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[CompTy->isSigned()][OpNum], 0, X86::BL);
|
|
BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::BH);
|
|
BuildMI(*MBB, IP, X86::IMPLICIT_DEF, 0, X86::AH);
|
|
BuildMI(*MBB, IP, X86::CMOVE16rr, 2, X86::BX).addReg(X86::BX)
|
|
.addReg(X86::AX);
|
|
// NOTE: visitSetCondInst knows that the value is dumped into the BL
|
|
// register at this point for long values...
|
|
return OpNum;
|
|
}
|
|
}
|
|
return OpNum;
|
|
}
|
|
|
|
/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
|
|
/// register, then move it to wherever the result should be.
|
|
///
|
|
void X86ISel::visitSetCondInst(SetCondInst &I) {
|
|
if (canFoldSetCCIntoBranchOrSelect(&I))
|
|
return; // Fold this into a branch or select.
|
|
|
|
unsigned DestReg = getReg(I);
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),
|
|
DestReg);
|
|
}
|
|
|
|
/// emitSetCCOperation - Common code shared between visitSetCondInst and
|
|
/// constant expression support.
|
|
///
|
|
void X86ISel::emitSetCCOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned Opcode,
|
|
unsigned TargetReg) {
|
|
unsigned OpNum = getSetCCNumber(Opcode);
|
|
OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
|
|
|
|
const Type *CompTy = Op0->getType();
|
|
unsigned CompClass = getClassB(CompTy);
|
|
bool isSigned = CompTy->isSigned() && CompClass != cFP;
|
|
|
|
if (CompClass != cLong || OpNum < 2) {
|
|
// Handle normal comparisons with a setcc instruction...
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, TargetReg);
|
|
} else {
|
|
// Handle long comparisons by copying the value which is already in BL into
|
|
// the register we want...
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, TargetReg).addReg(X86::BL);
|
|
}
|
|
}
|
|
|
|
void X86ISel::visitSelectInst(SelectInst &SI) {
|
|
unsigned DestReg = getReg(SI);
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),
|
|
SI.getFalseValue(), DestReg);
|
|
}
|
|
|
|
/// emitSelect - Common code shared between visitSelectInst and the constant
|
|
/// expression support.
|
|
void X86ISel::emitSelectOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Cond, Value *TrueVal, Value *FalseVal,
|
|
unsigned DestReg) {
|
|
unsigned SelectClass = getClassB(TrueVal->getType());
|
|
|
|
// We don't support 8-bit conditional moves. If we have incoming constants,
|
|
// transform them into 16-bit constants to avoid having a run-time conversion.
|
|
if (SelectClass == cByte) {
|
|
if (Constant *T = dyn_cast<Constant>(TrueVal))
|
|
TrueVal = ConstantExpr::getCast(T, Type::ShortTy);
|
|
if (Constant *F = dyn_cast<Constant>(FalseVal))
|
|
FalseVal = ConstantExpr::getCast(F, Type::ShortTy);
|
|
}
|
|
|
|
unsigned TrueReg = getReg(TrueVal, MBB, IP);
|
|
unsigned FalseReg = getReg(FalseVal, MBB, IP);
|
|
if (TrueReg == FalseReg) {
|
|
static const unsigned Opcode[] = {
|
|
X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
|
|
};
|
|
BuildMI(*MBB, IP, Opcode[SelectClass], 1, DestReg).addReg(TrueReg);
|
|
if (SelectClass == cLong)
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(TrueReg+1);
|
|
return;
|
|
}
|
|
|
|
unsigned Opcode;
|
|
if (SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(Cond)) {
|
|
// We successfully folded the setcc into the select instruction.
|
|
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), MBB,
|
|
IP);
|
|
|
|
const Type *CompTy = SCI->getOperand(0)->getType();
|
|
bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
|
|
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ---------- ------------
|
|
// seteq -> cmovNE cmovNE
|
|
// setne -> cmovE cmovE
|
|
// setlt -> cmovGE cmovAE
|
|
// setge -> cmovL cmovB
|
|
// setgt -> cmovLE cmovBE
|
|
// setle -> cmovG cmovA
|
|
// ----
|
|
// cmovNS // Used by comparison with 0 optimization
|
|
// cmovS
|
|
|
|
switch (SelectClass) {
|
|
default: assert(0 && "Unknown value class!");
|
|
case cFP: {
|
|
// Annoyingly, we don't have a full set of floating point conditional
|
|
// moves. :(
|
|
static const unsigned OpcodeTab[2][8] = {
|
|
{ X86::FCMOVNE, X86::FCMOVE, X86::FCMOVAE, X86::FCMOVB,
|
|
X86::FCMOVBE, X86::FCMOVA, 0, 0 },
|
|
{ X86::FCMOVNE, X86::FCMOVE, 0, 0, 0, 0, 0, 0 },
|
|
};
|
|
Opcode = OpcodeTab[isSigned][OpNum];
|
|
|
|
// If opcode == 0, we hit a case that we don't support. Output a setcc
|
|
// and compare the result against zero.
|
|
if (Opcode == 0) {
|
|
unsigned CompClass = getClassB(CompTy);
|
|
unsigned CondReg;
|
|
if (CompClass != cLong || OpNum < 2) {
|
|
CondReg = makeAnotherReg(Type::BoolTy);
|
|
// Handle normal comparisons with a setcc instruction...
|
|
BuildMI(*MBB, IP, SetCCOpcodeTab[isSigned][OpNum], 0, CondReg);
|
|
} else {
|
|
// Long comparisons end up in the BL register.
|
|
CondReg = X86::BL;
|
|
}
|
|
|
|
BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
|
|
Opcode = X86::FCMOVE;
|
|
}
|
|
break;
|
|
}
|
|
case cByte:
|
|
case cShort: {
|
|
static const unsigned OpcodeTab[2][8] = {
|
|
{ X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVAE16rr, X86::CMOVB16rr,
|
|
X86::CMOVBE16rr, X86::CMOVA16rr, 0, 0 },
|
|
{ X86::CMOVNE16rr, X86::CMOVE16rr, X86::CMOVGE16rr, X86::CMOVL16rr,
|
|
X86::CMOVLE16rr, X86::CMOVG16rr, X86::CMOVNS16rr, X86::CMOVS16rr },
|
|
};
|
|
Opcode = OpcodeTab[isSigned][OpNum];
|
|
break;
|
|
}
|
|
case cInt:
|
|
case cLong: {
|
|
static const unsigned OpcodeTab[2][8] = {
|
|
{ X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVAE32rr, X86::CMOVB32rr,
|
|
X86::CMOVBE32rr, X86::CMOVA32rr, 0, 0 },
|
|
{ X86::CMOVNE32rr, X86::CMOVE32rr, X86::CMOVGE32rr, X86::CMOVL32rr,
|
|
X86::CMOVLE32rr, X86::CMOVG32rr, X86::CMOVNS32rr, X86::CMOVS32rr },
|
|
};
|
|
Opcode = OpcodeTab[isSigned][OpNum];
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// Get the value being branched on, and use it to set the condition codes.
|
|
unsigned CondReg = getReg(Cond, MBB, IP);
|
|
BuildMI(*MBB, IP, X86::TEST8rr, 2).addReg(CondReg).addReg(CondReg);
|
|
switch (SelectClass) {
|
|
default: assert(0 && "Unknown value class!");
|
|
case cFP: Opcode = X86::FCMOVE; break;
|
|
case cByte:
|
|
case cShort: Opcode = X86::CMOVE16rr; break;
|
|
case cInt:
|
|
case cLong: Opcode = X86::CMOVE32rr; break;
|
|
}
|
|
}
|
|
|
|
unsigned RealDestReg = DestReg;
|
|
|
|
|
|
// Annoyingly enough, X86 doesn't HAVE 8-bit conditional moves. Because of
|
|
// this, we have to promote the incoming values to 16 bits, perform a 16-bit
|
|
// cmove, then truncate the result.
|
|
if (SelectClass == cByte) {
|
|
DestReg = makeAnotherReg(Type::ShortTy);
|
|
if (getClassB(TrueVal->getType()) == cByte) {
|
|
// Promote the true value, by storing it into AL, and reading from AX.
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::AL).addReg(TrueReg);
|
|
BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::AH).addImm(0);
|
|
TrueReg = makeAnotherReg(Type::ShortTy);
|
|
BuildMI(*MBB, IP, X86::MOV16rr, 1, TrueReg).addReg(X86::AX);
|
|
}
|
|
if (getClassB(FalseVal->getType()) == cByte) {
|
|
// Promote the true value, by storing it into CL, and reading from CX.
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(FalseReg);
|
|
BuildMI(*MBB, IP, X86::MOV8ri, 1, X86::CH).addImm(0);
|
|
FalseReg = makeAnotherReg(Type::ShortTy);
|
|
BuildMI(*MBB, IP, X86::MOV16rr, 1, FalseReg).addReg(X86::CX);
|
|
}
|
|
}
|
|
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(TrueReg).addReg(FalseReg);
|
|
|
|
switch (SelectClass) {
|
|
case cByte:
|
|
// We did the computation with 16-bit registers. Truncate back to our
|
|
// result by copying into AX then copying out AL.
|
|
BuildMI(*MBB, IP, X86::MOV16rr, 1, X86::AX).addReg(DestReg);
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, RealDestReg).addReg(X86::AL);
|
|
break;
|
|
case cLong:
|
|
// Move the upper half of the value as well.
|
|
BuildMI(*MBB, IP, Opcode, 2,DestReg+1).addReg(TrueReg+1).addReg(FalseReg+1);
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
|
|
/// operand, in the specified target register.
|
|
///
|
|
void X86ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
|
|
bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
|
|
|
|
Value *Val = VR.Val;
|
|
const Type *Ty = VR.Ty;
|
|
if (Val) {
|
|
if (Constant *C = dyn_cast<Constant>(Val)) {
|
|
Val = ConstantExpr::getCast(C, Type::IntTy);
|
|
Ty = Type::IntTy;
|
|
}
|
|
|
|
// If this is a simple constant, just emit a MOVri directly to avoid the
|
|
// copy.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
|
|
int TheVal = CI->getRawValue() & 0xFFFFFFFF;
|
|
BuildMI(BB, X86::MOV32ri, 1, targetReg).addImm(TheVal);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Make sure we have the register number for this value...
|
|
unsigned Reg = Val ? getReg(Val) : VR.Reg;
|
|
|
|
switch (getClassB(Ty)) {
|
|
case cByte:
|
|
// Extend value into target register (8->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, X86::MOVZX32rr8, 1, targetReg).addReg(Reg);
|
|
else
|
|
BuildMI(BB, X86::MOVSX32rr8, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cShort:
|
|
// Extend value into target register (16->32)
|
|
if (isUnsigned)
|
|
BuildMI(BB, X86::MOVZX32rr16, 1, targetReg).addReg(Reg);
|
|
else
|
|
BuildMI(BB, X86::MOVSX32rr16, 1, targetReg).addReg(Reg);
|
|
break;
|
|
case cInt:
|
|
// Move value into target register (32->32)
|
|
BuildMI(BB, X86::MOV32rr, 1, targetReg).addReg(Reg);
|
|
break;
|
|
default:
|
|
assert(0 && "Unpromotable operand class in promote32");
|
|
}
|
|
}
|
|
|
|
/// 'ret' instruction - Here we are interested in meeting the x86 ABI. As such,
|
|
/// we have the following possibilities:
|
|
///
|
|
/// ret void: No return value, simply emit a 'ret' instruction
|
|
/// ret sbyte, ubyte : Extend value into EAX and return
|
|
/// ret short, ushort: Extend value into EAX and return
|
|
/// ret int, uint : Move value into EAX and return
|
|
/// ret pointer : Move value into EAX and return
|
|
/// ret long, ulong : Move value into EAX/EDX and return
|
|
/// ret float/double : Top of FP stack
|
|
///
|
|
void X86ISel::visitReturnInst(ReturnInst &I) {
|
|
if (I.getNumOperands() == 0) {
|
|
BuildMI(BB, X86::RET, 0); // Just emit a 'ret' instruction
|
|
return;
|
|
}
|
|
|
|
Value *RetVal = I.getOperand(0);
|
|
switch (getClassB(RetVal->getType())) {
|
|
case cByte: // integral return values: extend or move into EAX and return
|
|
case cShort:
|
|
case cInt:
|
|
promote32(X86::EAX, ValueRecord(RetVal));
|
|
// Declare that EAX is live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::EAX).addReg(X86::ESP);
|
|
break;
|
|
case cFP: { // Floats & Doubles: Return in ST(0)
|
|
unsigned RetReg = getReg(RetVal);
|
|
BuildMI(BB, X86::FpSETRESULT, 1).addReg(RetReg);
|
|
// Declare that top-of-stack is live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 2).addReg(X86::ST0).addReg(X86::ESP);
|
|
break;
|
|
}
|
|
case cLong: {
|
|
unsigned RetReg = getReg(RetVal);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(RetReg);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDX).addReg(RetReg+1);
|
|
// Declare that EAX & EDX are live on exit
|
|
BuildMI(BB, X86::IMPLICIT_USE, 3).addReg(X86::EAX).addReg(X86::EDX)
|
|
.addReg(X86::ESP);
|
|
break;
|
|
}
|
|
default:
|
|
visitInstruction(I);
|
|
}
|
|
// Emit a 'ret' instruction
|
|
BuildMI(BB, X86::RET, 0);
|
|
}
|
|
|
|
// getBlockAfter - Return the basic block which occurs lexically after the
|
|
// specified one.
|
|
static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
|
|
Function::iterator I = BB; ++I; // Get iterator to next block
|
|
return I != BB->getParent()->end() ? &*I : 0;
|
|
}
|
|
|
|
/// visitBranchInst - Handle conditional and unconditional branches here. Note
|
|
/// that since code layout is frozen at this point, that if we are trying to
|
|
/// jump to a block that is the immediate successor of the current block, we can
|
|
/// just make a fall-through (but we don't currently).
|
|
///
|
|
void X86ISel::visitBranchInst(BranchInst &BI) {
|
|
// Update machine-CFG edges
|
|
BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
|
|
if (BI.isConditional())
|
|
BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
|
|
|
|
BasicBlock *NextBB = getBlockAfter(BI.getParent()); // BB after current one
|
|
|
|
if (!BI.isConditional()) { // Unconditional branch?
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
return;
|
|
}
|
|
|
|
// See if we can fold the setcc into the branch itself...
|
|
SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
|
|
if (SCI == 0) {
|
|
// Nope, cannot fold setcc into this branch. Emit a branch on a condition
|
|
// computed some other way...
|
|
unsigned condReg = getReg(BI.getCondition());
|
|
BuildMI(BB, X86::TEST8rr, 2).addReg(condReg).addReg(condReg);
|
|
if (BI.getSuccessor(1) == NextBB) {
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JNE, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
} else {
|
|
BuildMI(BB, X86::JE, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
|
|
if (BI.getSuccessor(0) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
}
|
|
return;
|
|
}
|
|
|
|
unsigned OpNum = getSetCCNumber(SCI->getOpcode());
|
|
MachineBasicBlock::iterator MII = BB->end();
|
|
OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
|
|
|
|
const Type *CompTy = SCI->getOperand(0)->getType();
|
|
bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
|
|
|
|
|
|
// LLVM -> X86 signed X86 unsigned
|
|
// ----- ---------- ------------
|
|
// seteq -> je je
|
|
// setne -> jne jne
|
|
// setlt -> jl jb
|
|
// setge -> jge jae
|
|
// setgt -> jg ja
|
|
// setle -> jle jbe
|
|
// ----
|
|
// js // Used by comparison with 0 optimization
|
|
// jns
|
|
|
|
static const unsigned OpcodeTab[2][8] = {
|
|
{ X86::JE, X86::JNE, X86::JB, X86::JAE, X86::JA, X86::JBE, 0, 0 },
|
|
{ X86::JE, X86::JNE, X86::JL, X86::JGE, X86::JG, X86::JLE,
|
|
X86::JS, X86::JNS },
|
|
};
|
|
|
|
if (BI.getSuccessor(0) != NextBB) {
|
|
BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
|
|
.addMBB(MBBMap[BI.getSuccessor(0)]);
|
|
if (BI.getSuccessor(1) != NextBB)
|
|
BuildMI(BB, X86::JMP, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
} else {
|
|
// Change to the inverse condition...
|
|
if (BI.getSuccessor(1) != NextBB) {
|
|
OpNum ^= 1;
|
|
BuildMI(BB, OpcodeTab[isSigned][OpNum], 1)
|
|
.addMBB(MBBMap[BI.getSuccessor(1)]);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// doCall - This emits an abstract call instruction, setting up the arguments
|
|
/// and the return value as appropriate. For the actual function call itself,
|
|
/// it inserts the specified CallMI instruction into the stream.
|
|
///
|
|
void X86ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
|
|
const std::vector<ValueRecord> &Args) {
|
|
// Count how many bytes are to be pushed on the stack...
|
|
unsigned NumBytes = 0;
|
|
|
|
if (!Args.empty()) {
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i)
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte: case cShort: case cInt:
|
|
NumBytes += 4; break;
|
|
case cLong:
|
|
NumBytes += 8; break;
|
|
case cFP:
|
|
NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
// Adjust the stack pointer for the new arguments...
|
|
BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
|
|
|
|
// Arguments go on the stack in reverse order, as specified by the ABI.
|
|
unsigned ArgOffset = 0;
|
|
for (unsigned i = 0, e = Args.size(); i != e; ++i) {
|
|
unsigned ArgReg;
|
|
switch (getClassB(Args[i].Ty)) {
|
|
case cByte:
|
|
if (Args[i].Val && isa<ConstantBool>(Args[i].Val)) {
|
|
addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
|
|
.addImm(Args[i].Val == ConstantBool::True);
|
|
break;
|
|
}
|
|
// FALL THROUGH
|
|
case cShort:
|
|
if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
|
|
// Zero/Sign extend constant, then stuff into memory.
|
|
ConstantInt *Val = cast<ConstantInt>(Args[i].Val);
|
|
Val = cast<ConstantInt>(ConstantExpr::getCast(Val, Type::IntTy));
|
|
addRegOffset(BuildMI(BB, X86::MOV32mi, 5), X86::ESP, ArgOffset)
|
|
.addImm(Val->getRawValue() & 0xFFFFFFFF);
|
|
} else {
|
|
// Promote arg to 32 bits wide into a temporary register...
|
|
ArgReg = makeAnotherReg(Type::UIntTy);
|
|
promote32(ArgReg, Args[i]);
|
|
addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
}
|
|
break;
|
|
case cInt:
|
|
if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
|
|
unsigned Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
|
|
addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
|
|
X86::ESP, ArgOffset).addImm(Val);
|
|
} else if (Args[i].Val && isa<ConstantPointerNull>(Args[i].Val)) {
|
|
addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
|
|
X86::ESP, ArgOffset).addImm(0);
|
|
} else {
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
}
|
|
break;
|
|
case cLong:
|
|
if (Args[i].Val && isa<ConstantInt>(Args[i].Val)) {
|
|
uint64_t Val = cast<ConstantInt>(Args[i].Val)->getRawValue();
|
|
addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
|
|
X86::ESP, ArgOffset).addImm(Val & ~0U);
|
|
addRegOffset(BuildMI(BB, X86::MOV32mi, 5),
|
|
X86::ESP, ArgOffset+4).addImm(Val >> 32ULL);
|
|
} else {
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
addRegOffset(BuildMI(BB, X86::MOV32mr, 5),
|
|
X86::ESP, ArgOffset+4).addReg(ArgReg+1);
|
|
}
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
break;
|
|
|
|
case cFP:
|
|
ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
|
|
if (Args[i].Ty == Type::FloatTy) {
|
|
addRegOffset(BuildMI(BB, X86::FST32m, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
} else {
|
|
assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
|
|
addRegOffset(BuildMI(BB, X86::FST64m, 5),
|
|
X86::ESP, ArgOffset).addReg(ArgReg);
|
|
ArgOffset += 4; // 8 byte entry, not 4.
|
|
}
|
|
break;
|
|
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
ArgOffset += 4;
|
|
}
|
|
} else {
|
|
BuildMI(BB, X86::ADJCALLSTACKDOWN, 1).addImm(0);
|
|
}
|
|
|
|
BB->push_back(CallMI);
|
|
|
|
BuildMI(BB, X86::ADJCALLSTACKUP, 1).addImm(NumBytes);
|
|
|
|
// If there is a return value, scavenge the result from the location the call
|
|
// leaves it in...
|
|
//
|
|
if (Ret.Ty != Type::VoidTy) {
|
|
unsigned DestClass = getClassB(Ret.Ty);
|
|
switch (DestClass) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt: {
|
|
// Integral results are in %eax, or the appropriate portion
|
|
// thereof.
|
|
static const unsigned regRegMove[] = {
|
|
X86::MOV8rr, X86::MOV16rr, X86::MOV32rr
|
|
};
|
|
static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX };
|
|
BuildMI(BB, regRegMove[DestClass], 1, Ret.Reg).addReg(AReg[DestClass]);
|
|
break;
|
|
}
|
|
case cFP: // Floating-point return values live in %ST(0)
|
|
BuildMI(BB, X86::FpGETRESULT, 1, Ret.Reg);
|
|
break;
|
|
case cLong: // Long values are left in EDX:EAX
|
|
BuildMI(BB, X86::MOV32rr, 1, Ret.Reg).addReg(X86::EAX);
|
|
BuildMI(BB, X86::MOV32rr, 1, Ret.Reg+1).addReg(X86::EDX);
|
|
break;
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// visitCallInst - Push args on stack and do a procedure call instruction.
|
|
void X86ISel::visitCallInst(CallInst &CI) {
|
|
MachineInstr *TheCall;
|
|
if (Function *F = CI.getCalledFunction()) {
|
|
// Is it an intrinsic function call?
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
|
|
visitIntrinsicCall(ID, CI); // Special intrinsics are not handled here
|
|
return;
|
|
}
|
|
|
|
// Emit a CALL instruction with PC-relative displacement.
|
|
TheCall = BuildMI(X86::CALLpcrel32, 1).addGlobalAddress(F, true);
|
|
} else { // Emit an indirect call...
|
|
unsigned Reg = getReg(CI.getCalledValue());
|
|
TheCall = BuildMI(X86::CALL32r, 1).addReg(Reg);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
|
|
Args.push_back(ValueRecord(CI.getOperand(i)));
|
|
|
|
unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
|
|
doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
|
|
}
|
|
|
|
/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
|
|
/// function, lowering any calls to unknown intrinsic functions into the
|
|
/// equivalent LLVM code.
|
|
///
|
|
void X86ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
|
|
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
|
|
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
|
|
if (CallInst *CI = dyn_cast<CallInst>(I++))
|
|
if (Function *F = CI->getCalledFunction())
|
|
switch (F->getIntrinsicID()) {
|
|
case Intrinsic::not_intrinsic:
|
|
case Intrinsic::vastart:
|
|
case Intrinsic::vacopy:
|
|
case Intrinsic::vaend:
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
case Intrinsic::memcpy:
|
|
case Intrinsic::memset:
|
|
case Intrinsic::isunordered:
|
|
case Intrinsic::readport:
|
|
case Intrinsic::writeport:
|
|
// We directly implement these intrinsics
|
|
break;
|
|
case Intrinsic::readio: {
|
|
// On X86, memory operations are in-order. Lower this intrinsic
|
|
// into a volatile load.
|
|
Instruction *Before = CI->getPrev();
|
|
LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
|
|
CI->replaceAllUsesWith(LI);
|
|
BB->getInstList().erase(CI);
|
|
break;
|
|
}
|
|
case Intrinsic::writeio: {
|
|
// On X86, memory operations are in-order. Lower this intrinsic
|
|
// into a volatile store.
|
|
Instruction *Before = CI->getPrev();
|
|
StoreInst *LI = new StoreInst(CI->getOperand(1),
|
|
CI->getOperand(2), true, CI);
|
|
CI->replaceAllUsesWith(LI);
|
|
BB->getInstList().erase(CI);
|
|
break;
|
|
}
|
|
default:
|
|
// All other intrinsic calls we must lower.
|
|
Instruction *Before = CI->getPrev();
|
|
TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
|
|
if (Before) { // Move iterator to instruction after call
|
|
I = Before; ++I;
|
|
} else {
|
|
I = BB->begin();
|
|
}
|
|
}
|
|
}
|
|
|
|
void X86ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
|
|
unsigned TmpReg1, TmpReg2;
|
|
switch (ID) {
|
|
case Intrinsic::vastart:
|
|
// Get the address of the first vararg value...
|
|
TmpReg1 = getReg(CI);
|
|
addFrameReference(BuildMI(BB, X86::LEA32r, 5, TmpReg1), VarArgsFrameIndex);
|
|
return;
|
|
|
|
case Intrinsic::vacopy:
|
|
TmpReg1 = getReg(CI);
|
|
TmpReg2 = getReg(CI.getOperand(1));
|
|
BuildMI(BB, X86::MOV32rr, 1, TmpReg1).addReg(TmpReg2);
|
|
return;
|
|
case Intrinsic::vaend: return; // Noop on X86
|
|
|
|
case Intrinsic::returnaddress:
|
|
case Intrinsic::frameaddress:
|
|
TmpReg1 = getReg(CI);
|
|
if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
|
|
if (ID == Intrinsic::returnaddress) {
|
|
// Just load the return address
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, TmpReg1),
|
|
ReturnAddressIndex);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, X86::LEA32r, 4, TmpReg1),
|
|
ReturnAddressIndex, -4);
|
|
}
|
|
} else {
|
|
// Values other than zero are not implemented yet.
|
|
BuildMI(BB, X86::MOV32ri, 1, TmpReg1).addImm(0);
|
|
}
|
|
return;
|
|
|
|
case Intrinsic::isunordered:
|
|
TmpReg1 = getReg(CI.getOperand(1));
|
|
TmpReg2 = getReg(CI.getOperand(2));
|
|
emitUCOMr(BB, BB->end(), TmpReg2, TmpReg1);
|
|
TmpReg2 = getReg(CI);
|
|
BuildMI(BB, X86::SETPr, 0, TmpReg2);
|
|
return;
|
|
|
|
case Intrinsic::memcpy: {
|
|
assert(CI.getNumOperands() == 5 && "Illegal llvm.memcpy call!");
|
|
unsigned Align = 1;
|
|
if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
|
|
Align = AlignC->getRawValue();
|
|
if (Align == 0) Align = 1;
|
|
}
|
|
|
|
// Turn the byte code into # iterations
|
|
unsigned CountReg;
|
|
unsigned Opcode;
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
|
|
CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
|
|
} else {
|
|
CountReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ByteReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
|
|
}
|
|
Opcode = X86::REP_MOVSW;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
|
|
CountReg = getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
|
|
} else {
|
|
CountReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ByteReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
|
|
}
|
|
Opcode = X86::REP_MOVSD;
|
|
break;
|
|
default: // BYTE aligned
|
|
CountReg = getReg(CI.getOperand(3));
|
|
Opcode = X86::REP_MOVSB;
|
|
break;
|
|
}
|
|
|
|
// No matter what the alignment is, we put the source in ESI, the
|
|
// destination in EDI, and the count in ECX.
|
|
TmpReg1 = getReg(CI.getOperand(1));
|
|
TmpReg2 = getReg(CI.getOperand(2));
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ESI).addReg(TmpReg2);
|
|
BuildMI(BB, Opcode, 0);
|
|
return;
|
|
}
|
|
case Intrinsic::memset: {
|
|
assert(CI.getNumOperands() == 5 && "Illegal llvm.memset call!");
|
|
unsigned Align = 1;
|
|
if (ConstantInt *AlignC = dyn_cast<ConstantInt>(CI.getOperand(4))) {
|
|
Align = AlignC->getRawValue();
|
|
if (Align == 0) Align = 1;
|
|
}
|
|
|
|
// Turn the byte code into # iterations
|
|
unsigned CountReg;
|
|
unsigned Opcode;
|
|
if (ConstantInt *ValC = dyn_cast<ConstantInt>(CI.getOperand(2))) {
|
|
unsigned Val = ValC->getRawValue() & 255;
|
|
|
|
// If the value is a constant, then we can potentially use larger copies.
|
|
switch (Align & 3) {
|
|
case 2: // WORD aligned
|
|
if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
|
|
CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/2));
|
|
} else {
|
|
CountReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ByteReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(1);
|
|
}
|
|
BuildMI(BB, X86::MOV16ri, 1, X86::AX).addImm((Val << 8) | Val);
|
|
Opcode = X86::REP_STOSW;
|
|
break;
|
|
case 0: // DWORD aligned
|
|
if (ConstantInt *I = dyn_cast<ConstantInt>(CI.getOperand(3))) {
|
|
CountReg =getReg(ConstantUInt::get(Type::UIntTy, I->getRawValue()/4));
|
|
} else {
|
|
CountReg = makeAnotherReg(Type::IntTy);
|
|
unsigned ByteReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::SHR32ri, 2, CountReg).addReg(ByteReg).addImm(2);
|
|
}
|
|
Val = (Val << 8) | Val;
|
|
BuildMI(BB, X86::MOV32ri, 1, X86::EAX).addImm((Val << 16) | Val);
|
|
Opcode = X86::REP_STOSD;
|
|
break;
|
|
default: // BYTE aligned
|
|
CountReg = getReg(CI.getOperand(3));
|
|
BuildMI(BB, X86::MOV8ri, 1, X86::AL).addImm(Val);
|
|
Opcode = X86::REP_STOSB;
|
|
break;
|
|
}
|
|
} else {
|
|
// If it's not a constant value we are storing, just fall back. We could
|
|
// try to be clever to form 16 bit and 32 bit values, but we don't yet.
|
|
unsigned ValReg = getReg(CI.getOperand(2));
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
|
|
CountReg = getReg(CI.getOperand(3));
|
|
Opcode = X86::REP_STOSB;
|
|
}
|
|
|
|
// No matter what the alignment is, we put the source in ESI, the
|
|
// destination in EDI, and the count in ECX.
|
|
TmpReg1 = getReg(CI.getOperand(1));
|
|
//TmpReg2 = getReg(CI.getOperand(2));
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::ECX).addReg(CountReg);
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EDI).addReg(TmpReg1);
|
|
BuildMI(BB, Opcode, 0);
|
|
return;
|
|
}
|
|
|
|
case Intrinsic::readport: {
|
|
// First, determine that the size of the operand falls within the acceptable
|
|
// range for this architecture.
|
|
//
|
|
if (getClassB(CI.getOperand(1)->getType()) != cShort) {
|
|
std::cerr << "llvm.readport: Address size is not 16 bits\n";
|
|
exit(1);
|
|
}
|
|
|
|
// Now, move the I/O port address into the DX register and use the IN
|
|
// instruction to get the input data.
|
|
//
|
|
unsigned Class = getClass(CI.getCalledFunction()->getReturnType());
|
|
unsigned DestReg = getReg(CI);
|
|
|
|
// If the port is a single-byte constant, use the immediate form.
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(1)))
|
|
if ((C->getRawValue() & 255) == C->getRawValue()) {
|
|
switch (Class) {
|
|
case cByte:
|
|
BuildMI(BB, X86::IN8ri, 1).addImm((unsigned char)C->getRawValue());
|
|
BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
|
|
return;
|
|
case cShort:
|
|
BuildMI(BB, X86::IN16ri, 1).addImm((unsigned char)C->getRawValue());
|
|
BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
|
|
return;
|
|
case cInt:
|
|
BuildMI(BB, X86::IN32ri, 1).addImm((unsigned char)C->getRawValue());
|
|
BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
|
|
return;
|
|
}
|
|
}
|
|
|
|
unsigned Reg = getReg(CI.getOperand(1));
|
|
BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
|
|
switch (Class) {
|
|
case cByte:
|
|
BuildMI(BB, X86::IN8rr, 0);
|
|
BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
|
|
break;
|
|
case cShort:
|
|
BuildMI(BB, X86::IN16rr, 0);
|
|
BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::AX);
|
|
break;
|
|
case cInt:
|
|
BuildMI(BB, X86::IN32rr, 0);
|
|
BuildMI(BB, X86::MOV8rr, 1, DestReg).addReg(X86::EAX);
|
|
break;
|
|
default:
|
|
std::cerr << "Cannot do input on this data type";
|
|
exit (1);
|
|
}
|
|
return;
|
|
}
|
|
|
|
case Intrinsic::writeport: {
|
|
// First, determine that the size of the operand falls within the
|
|
// acceptable range for this architecture.
|
|
if (getClass(CI.getOperand(2)->getType()) != cShort) {
|
|
std::cerr << "llvm.writeport: Address size is not 16 bits\n";
|
|
exit(1);
|
|
}
|
|
|
|
unsigned Class = getClassB(CI.getOperand(1)->getType());
|
|
unsigned ValReg = getReg(CI.getOperand(1));
|
|
switch (Class) {
|
|
case cByte:
|
|
BuildMI(BB, X86::MOV8rr, 1, X86::AL).addReg(ValReg);
|
|
break;
|
|
case cShort:
|
|
BuildMI(BB, X86::MOV16rr, 1, X86::AX).addReg(ValReg);
|
|
break;
|
|
case cInt:
|
|
BuildMI(BB, X86::MOV32rr, 1, X86::EAX).addReg(ValReg);
|
|
break;
|
|
default:
|
|
std::cerr << "llvm.writeport: invalid data type for X86 target";
|
|
exit(1);
|
|
}
|
|
|
|
|
|
// If the port is a single-byte constant, use the immediate form.
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(CI.getOperand(2)))
|
|
if ((C->getRawValue() & 255) == C->getRawValue()) {
|
|
static const unsigned O[] = { X86::OUT8ir, X86::OUT16ir, X86::OUT32ir };
|
|
BuildMI(BB, O[Class], 1).addImm((unsigned char)C->getRawValue());
|
|
return;
|
|
}
|
|
|
|
// Otherwise, move the I/O port address into the DX register and the value
|
|
// to write into the AL/AX/EAX register.
|
|
static const unsigned Opc[] = { X86::OUT8rr, X86::OUT16rr, X86::OUT32rr };
|
|
unsigned Reg = getReg(CI.getOperand(2));
|
|
BuildMI(BB, X86::MOV16rr, 1, X86::DX).addReg(Reg);
|
|
BuildMI(BB, Opc[Class], 0);
|
|
return;
|
|
}
|
|
|
|
default: assert(0 && "Error: unknown intrinsics should have been lowered!");
|
|
}
|
|
}
|
|
|
|
static bool isSafeToFoldLoadIntoInstruction(LoadInst &LI, Instruction &User) {
|
|
if (LI.getParent() != User.getParent())
|
|
return false;
|
|
BasicBlock::iterator It = &LI;
|
|
// Check all of the instructions between the load and the user. We should
|
|
// really use alias analysis here, but for now we just do something simple.
|
|
for (++It; It != BasicBlock::iterator(&User); ++It) {
|
|
switch (It->getOpcode()) {
|
|
case Instruction::Free:
|
|
case Instruction::Store:
|
|
case Instruction::Call:
|
|
case Instruction::Invoke:
|
|
return false;
|
|
case Instruction::Load:
|
|
if (cast<LoadInst>(It)->isVolatile() && LI.isVolatile())
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// visitSimpleBinary - Implement simple binary operators for integral types...
|
|
/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
|
|
/// Xor.
|
|
///
|
|
void X86ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
|
|
unsigned DestReg = getReg(B);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
|
|
unsigned Class = getClassB(B.getType());
|
|
|
|
// Special case: op Reg, load [mem]
|
|
if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1) && Class != cLong &&
|
|
Op0->hasOneUse() &&
|
|
isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B))
|
|
if (!B.swapOperands())
|
|
std::swap(Op0, Op1); // Make sure any loads are in the RHS.
|
|
|
|
if (isa<LoadInst>(Op1) && Class != cLong && Op1->hasOneUse() &&
|
|
isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op1), B)) {
|
|
|
|
unsigned Opcode;
|
|
if (Class != cFP) {
|
|
static const unsigned OpcodeTab[][3] = {
|
|
// Arithmetic operators
|
|
{ X86::ADD8rm, X86::ADD16rm, X86::ADD32rm }, // ADD
|
|
{ X86::SUB8rm, X86::SUB16rm, X86::SUB32rm }, // SUB
|
|
|
|
// Bitwise operators
|
|
{ X86::AND8rm, X86::AND16rm, X86::AND32rm }, // AND
|
|
{ X86:: OR8rm, X86:: OR16rm, X86:: OR32rm }, // OR
|
|
{ X86::XOR8rm, X86::XOR16rm, X86::XOR32rm }, // XOR
|
|
};
|
|
Opcode = OpcodeTab[OperatorClass][Class];
|
|
} else {
|
|
static const unsigned OpcodeTab[][2] = {
|
|
{ X86::FADD32m, X86::FADD64m }, // ADD
|
|
{ X86::FSUB32m, X86::FSUB64m }, // SUB
|
|
};
|
|
const Type *Ty = Op0->getType();
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
Opcode = OpcodeTab[OperatorClass][Ty == Type::DoubleTy];
|
|
}
|
|
|
|
unsigned Op0r = getReg(Op0);
|
|
if (AllocaInst *AI =
|
|
dyn_castFixedAlloca(cast<LoadInst>(Op1)->getOperand(0))) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), FI);
|
|
|
|
} else {
|
|
X86AddressMode AM;
|
|
getAddressingMode(cast<LoadInst>(Op1)->getOperand(0), AM);
|
|
|
|
addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op0r), AM);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If this is a floating point subtract, check to see if we can fold the first
|
|
// operand in.
|
|
if (Class == cFP && OperatorClass == 1 &&
|
|
isa<LoadInst>(Op0) &&
|
|
isSafeToFoldLoadIntoInstruction(*cast<LoadInst>(Op0), B)) {
|
|
const Type *Ty = Op0->getType();
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned Opcode = Ty == Type::FloatTy ? X86::FSUBR32m : X86::FSUBR64m;
|
|
|
|
unsigned Op1r = getReg(Op1);
|
|
if (AllocaInst *AI =
|
|
dyn_castFixedAlloca(cast<LoadInst>(Op0)->getOperand(0))) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), FI);
|
|
} else {
|
|
X86AddressMode AM;
|
|
getAddressingMode(cast<LoadInst>(Op0)->getOperand(0), AM);
|
|
|
|
addFullAddress(BuildMI(BB, Opcode, 5, DestReg).addReg(Op1r), AM);
|
|
}
|
|
return;
|
|
}
|
|
|
|
emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
|
|
}
|
|
|
|
|
|
/// emitBinaryFPOperation - This method handles emission of floating point
|
|
/// Add (0), Sub (1), Mul (2), and Div (3) operations.
|
|
void X86ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass, unsigned DestReg) {
|
|
// Special case: op Reg, <const fp>
|
|
if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1))
|
|
if (!Op1C->isExactlyValue(+0.0) && !Op1C->isExactlyValue(+1.0)) {
|
|
// Create a constant pool entry for this constant.
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(Op1C);
|
|
const Type *Ty = Op1->getType();
|
|
|
|
static const unsigned OpcodeTab[][4] = {
|
|
{ X86::FADD32m, X86::FSUB32m, X86::FMUL32m, X86::FDIV32m }, // Float
|
|
{ X86::FADD64m, X86::FSUB64m, X86::FMUL64m, X86::FDIV64m }, // Double
|
|
};
|
|
|
|
assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
|
|
unsigned Op0r = getReg(Op0, BB, IP);
|
|
addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
|
|
DestReg).addReg(Op0r), CPI);
|
|
return;
|
|
}
|
|
|
|
// Special case: R1 = op <const fp>, R2
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
|
|
if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
|
|
// -0.0 - X === -X
|
|
unsigned op1Reg = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, X86::FCHS, 1, DestReg).addReg(op1Reg);
|
|
return;
|
|
} else if (!CFP->isExactlyValue(+0.0) && !CFP->isExactlyValue(+1.0)) {
|
|
// R1 = op CST, R2 --> R1 = opr R2, CST
|
|
|
|
// Create a constant pool entry for this constant.
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned CPI = CP->getConstantPoolIndex(CFP);
|
|
const Type *Ty = CFP->getType();
|
|
|
|
static const unsigned OpcodeTab[][4] = {
|
|
{ X86::FADD32m, X86::FSUBR32m, X86::FMUL32m, X86::FDIVR32m }, // Float
|
|
{ X86::FADD64m, X86::FSUBR64m, X86::FMUL64m, X86::FDIVR64m }, // Double
|
|
};
|
|
|
|
assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
|
|
unsigned Op1r = getReg(Op1, BB, IP);
|
|
addConstantPoolReference(BuildMI(*BB, IP, Opcode, 5,
|
|
DestReg).addReg(Op1r), CPI);
|
|
return;
|
|
}
|
|
|
|
// General case.
|
|
static const unsigned OpcodeTab[4] = {
|
|
X86::FpADD, X86::FpSUB, X86::FpMUL, X86::FpDIV
|
|
};
|
|
|
|
unsigned Opcode = OpcodeTab[OperatorClass];
|
|
unsigned Op0r = getReg(Op0, BB, IP);
|
|
unsigned Op1r = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
}
|
|
|
|
/// emitSimpleBinaryOperation - Implement simple binary operators for integral
|
|
/// types... OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
|
|
/// Or, 4 for Xor.
|
|
///
|
|
/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
|
|
/// and constant expression support.
|
|
///
|
|
void X86ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1,
|
|
unsigned OperatorClass,
|
|
unsigned DestReg) {
|
|
unsigned Class = getClassB(Op0->getType());
|
|
|
|
if (Class == cFP) {
|
|
assert(OperatorClass < 2 && "No logical ops for FP!");
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
|
|
return;
|
|
}
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
|
|
if (OperatorClass == 1) {
|
|
static unsigned const NEGTab[] = {
|
|
X86::NEG8r, X86::NEG16r, X86::NEG32r, 0, X86::NEG32r
|
|
};
|
|
|
|
// sub 0, X -> neg X
|
|
if (CI->isNullValue()) {
|
|
unsigned op1Reg = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, NEGTab[Class], 1, DestReg).addReg(op1Reg);
|
|
|
|
if (Class == cLong) {
|
|
// We just emitted: Dl = neg Sl
|
|
// Now emit : T = addc Sh, 0
|
|
// : Dh = neg T
|
|
unsigned T = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*MBB, IP, X86::ADC32ri, 2, T).addReg(op1Reg+1).addImm(0);
|
|
BuildMI(*MBB, IP, X86::NEG32r, 1, DestReg+1).addReg(T);
|
|
}
|
|
return;
|
|
} else if (Op1->hasOneUse() && Class != cLong) {
|
|
// sub C, X -> tmp = neg X; DestReg = add tmp, C. This is better
|
|
// than copying C into a temporary register, because of register
|
|
// pressure (tmp and destreg can share a register.
|
|
static unsigned const ADDRITab[] = {
|
|
X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri
|
|
};
|
|
unsigned op1Reg = getReg(Op1, MBB, IP);
|
|
unsigned Tmp = makeAnotherReg(Op0->getType());
|
|
BuildMI(*MBB, IP, NEGTab[Class], 1, Tmp).addReg(op1Reg);
|
|
BuildMI(*MBB, IP, ADDRITab[Class], 2,
|
|
DestReg).addReg(Tmp).addImm(CI->getRawValue());
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Special case: op Reg, <const int>
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
|
|
// xor X, -1 -> not X
|
|
if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
|
|
static unsigned const NOTTab[] = {
|
|
X86::NOT8r, X86::NOT16r, X86::NOT32r, 0, X86::NOT32r
|
|
};
|
|
BuildMI(*MBB, IP, NOTTab[Class], 1, DestReg).addReg(Op0r);
|
|
if (Class == cLong) // Invert the top part too
|
|
BuildMI(*MBB, IP, X86::NOT32r, 1, DestReg+1).addReg(Op0r+1);
|
|
return;
|
|
}
|
|
|
|
// add X, -1 -> dec X
|
|
if (OperatorClass == 0 && Op1C->isAllOnesValue() && Class != cLong) {
|
|
// Note that we can't use dec for 64-bit decrements, because it does not
|
|
// set the carry flag!
|
|
static unsigned const DECTab[] = { X86::DEC8r, X86::DEC16r, X86::DEC32r };
|
|
BuildMI(*MBB, IP, DECTab[Class], 1, DestReg).addReg(Op0r);
|
|
return;
|
|
}
|
|
|
|
// add X, 1 -> inc X
|
|
if (OperatorClass == 0 && Op1C->equalsInt(1) && Class != cLong) {
|
|
// Note that we can't use inc for 64-bit increments, because it does not
|
|
// set the carry flag!
|
|
static unsigned const INCTab[] = { X86::INC8r, X86::INC16r, X86::INC32r };
|
|
BuildMI(*MBB, IP, INCTab[Class], 1, DestReg).addReg(Op0r);
|
|
return;
|
|
}
|
|
|
|
static const unsigned OpcodeTab[][5] = {
|
|
// Arithmetic operators
|
|
{ X86::ADD8ri, X86::ADD16ri, X86::ADD32ri, 0, X86::ADD32ri }, // ADD
|
|
{ X86::SUB8ri, X86::SUB16ri, X86::SUB32ri, 0, X86::SUB32ri }, // SUB
|
|
|
|
// Bitwise operators
|
|
{ X86::AND8ri, X86::AND16ri, X86::AND32ri, 0, X86::AND32ri }, // AND
|
|
{ X86:: OR8ri, X86:: OR16ri, X86:: OR32ri, 0, X86::OR32ri }, // OR
|
|
{ X86::XOR8ri, X86::XOR16ri, X86::XOR32ri, 0, X86::XOR32ri }, // XOR
|
|
};
|
|
|
|
unsigned Opcode = OpcodeTab[OperatorClass][Class];
|
|
unsigned Op1l = cast<ConstantInt>(Op1C)->getRawValue();
|
|
|
|
if (Class != cLong) {
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
|
|
return;
|
|
}
|
|
|
|
// If this is a long value and the high or low bits have a special
|
|
// property, emit some special cases.
|
|
unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
|
|
|
|
// If the constant is zero in the low 32-bits, just copy the low part
|
|
// across and apply the normal 32-bit operation to the high parts. There
|
|
// will be no carry or borrow into the top.
|
|
if (Op1l == 0) {
|
|
if (OperatorClass != 2) // All but and...
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0r);
|
|
else
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
|
|
BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg+1)
|
|
.addReg(Op0r+1).addImm(Op1h);
|
|
return;
|
|
}
|
|
|
|
// If this is a logical operation and the top 32-bits are zero, just
|
|
// operate on the lower 32.
|
|
if (Op1h == 0 && OperatorClass > 1) {
|
|
BuildMI(*MBB, IP, OpcodeTab[OperatorClass][cLong], 2, DestReg)
|
|
.addReg(Op0r).addImm(Op1l);
|
|
if (OperatorClass != 2) // All but and
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(Op0r+1);
|
|
else
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
|
|
return;
|
|
}
|
|
|
|
// TODO: We could handle lots of other special cases here, such as AND'ing
|
|
// with 0xFFFFFFFF00000000 -> noop, etc.
|
|
|
|
// Otherwise, code generate the full operation with a constant.
|
|
static const unsigned TopTab[] = {
|
|
X86::ADC32ri, X86::SBB32ri, X86::AND32ri, X86::OR32ri, X86::XOR32ri
|
|
};
|
|
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addImm(Op1l);
|
|
BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1)
|
|
.addReg(Op0r+1).addImm(Op1h);
|
|
return;
|
|
}
|
|
|
|
// Finally, handle the general case now.
|
|
static const unsigned OpcodeTab[][5] = {
|
|
// Arithmetic operators
|
|
{ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr, 0, X86::ADD32rr }, // ADD
|
|
{ X86::SUB8rr, X86::SUB16rr, X86::SUB32rr, 0, X86::SUB32rr }, // SUB
|
|
|
|
// Bitwise operators
|
|
{ X86::AND8rr, X86::AND16rr, X86::AND32rr, 0, X86::AND32rr }, // AND
|
|
{ X86:: OR8rr, X86:: OR16rr, X86:: OR32rr, 0, X86:: OR32rr }, // OR
|
|
{ X86::XOR8rr, X86::XOR16rr, X86::XOR32rr, 0, X86::XOR32rr }, // XOR
|
|
};
|
|
|
|
unsigned Opcode = OpcodeTab[OperatorClass][Class];
|
|
unsigned Op0r = getReg(Op0, MBB, IP);
|
|
unsigned Op1r = getReg(Op1, MBB, IP);
|
|
BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
|
|
|
|
if (Class == cLong) { // Handle the upper 32 bits of long values...
|
|
static const unsigned TopTab[] = {
|
|
X86::ADC32rr, X86::SBB32rr, X86::AND32rr, X86::OR32rr, X86::XOR32rr
|
|
};
|
|
BuildMI(*MBB, IP, TopTab[OperatorClass], 2,
|
|
DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
|
|
}
|
|
}
|
|
|
|
/// doMultiply - Emit appropriate instructions to multiply together the
|
|
/// registers op0Reg and op1Reg, and put the result in DestReg. The type of the
|
|
/// result should be given as DestTy.
|
|
///
|
|
void X86ISel::doMultiply(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator MBBI,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned op0Reg, unsigned op1Reg) {
|
|
unsigned Class = getClass(DestTy);
|
|
switch (Class) {
|
|
case cInt:
|
|
case cShort:
|
|
BuildMI(*MBB, MBBI, Class == cInt ? X86::IMUL32rr:X86::IMUL16rr, 2, DestReg)
|
|
.addReg(op0Reg).addReg(op1Reg);
|
|
return;
|
|
case cByte:
|
|
// Must use the MUL instruction, which forces use of AL...
|
|
BuildMI(*MBB, MBBI, X86::MOV8rr, 1, X86::AL).addReg(op0Reg);
|
|
BuildMI(*MBB, MBBI, X86::MUL8r, 1).addReg(op1Reg);
|
|
BuildMI(*MBB, MBBI, X86::MOV8rr, 1, DestReg).addReg(X86::AL);
|
|
return;
|
|
default:
|
|
case cLong: assert(0 && "doMultiply cannot operate on LONG values!");
|
|
}
|
|
}
|
|
|
|
// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N. It
|
|
// returns zero when the input is not exactly a power of two.
|
|
static unsigned ExactLog2(unsigned Val) {
|
|
if (Val == 0 || (Val & (Val-1))) return 0;
|
|
unsigned Count = 0;
|
|
while (Val != 1) {
|
|
Val >>= 1;
|
|
++Count;
|
|
}
|
|
return Count+1;
|
|
}
|
|
|
|
|
|
/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
|
|
/// 16, or 32-bit integer multiply by a constant.
|
|
void X86ISel::doMultiplyConst(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
unsigned DestReg, const Type *DestTy,
|
|
unsigned op0Reg, unsigned ConstRHS) {
|
|
static const unsigned MOVrrTab[] = {X86::MOV8rr, X86::MOV16rr, X86::MOV32rr};
|
|
static const unsigned MOVriTab[] = {X86::MOV8ri, X86::MOV16ri, X86::MOV32ri};
|
|
static const unsigned ADDrrTab[] = {X86::ADD8rr, X86::ADD16rr, X86::ADD32rr};
|
|
static const unsigned NEGrTab[] = {X86::NEG8r , X86::NEG16r , X86::NEG32r };
|
|
|
|
unsigned Class = getClass(DestTy);
|
|
unsigned TmpReg;
|
|
|
|
// Handle special cases here.
|
|
switch (ConstRHS) {
|
|
case -2:
|
|
TmpReg = makeAnotherReg(DestTy);
|
|
BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
|
|
BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(TmpReg).addReg(TmpReg);
|
|
return;
|
|
case -1:
|
|
BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(op0Reg);
|
|
return;
|
|
case 0:
|
|
BuildMI(*MBB, IP, MOVriTab[Class], 1, DestReg).addImm(0);
|
|
return;
|
|
case 1:
|
|
BuildMI(*MBB, IP, MOVrrTab[Class], 1, DestReg).addReg(op0Reg);
|
|
return;
|
|
case 2:
|
|
BuildMI(*MBB, IP, ADDrrTab[Class], 1,DestReg).addReg(op0Reg).addReg(op0Reg);
|
|
return;
|
|
case 3:
|
|
case 5:
|
|
case 9:
|
|
if (Class == cInt) {
|
|
X86AddressMode AM;
|
|
AM.BaseType = X86AddressMode::RegBase;
|
|
AM.Base.Reg = op0Reg;
|
|
AM.Scale = ConstRHS-1;
|
|
AM.IndexReg = op0Reg;
|
|
AM.Disp = 0;
|
|
addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, DestReg), AM);
|
|
return;
|
|
}
|
|
case -3:
|
|
case -5:
|
|
case -9:
|
|
if (Class == cInt) {
|
|
TmpReg = makeAnotherReg(DestTy);
|
|
X86AddressMode AM;
|
|
AM.BaseType = X86AddressMode::RegBase;
|
|
AM.Base.Reg = op0Reg;
|
|
AM.Scale = -ConstRHS-1;
|
|
AM.IndexReg = op0Reg;
|
|
AM.Disp = 0;
|
|
addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TmpReg), AM);
|
|
BuildMI(*MBB, IP, NEGrTab[Class], 1, DestReg).addReg(TmpReg);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If the element size is exactly a power of 2, use a shift to get it.
|
|
if (unsigned Shift = ExactLog2(ConstRHS)) {
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown class for this function!");
|
|
case cByte:
|
|
BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
|
|
return;
|
|
case cShort:
|
|
BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
|
|
return;
|
|
case cInt:
|
|
BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(op0Reg).addImm(Shift-1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// If the element size is a negative power of 2, use a shift/neg to get it.
|
|
if (unsigned Shift = ExactLog2(-ConstRHS)) {
|
|
TmpReg = makeAnotherReg(DestTy);
|
|
BuildMI(*MBB, IP, NEGrTab[Class], 1, TmpReg).addReg(op0Reg);
|
|
switch (Class) {
|
|
default: assert(0 && "Unknown class for this function!");
|
|
case cByte:
|
|
BuildMI(*MBB, IP, X86::SHL8ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
|
|
return;
|
|
case cShort:
|
|
BuildMI(*MBB, IP, X86::SHL16ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
|
|
return;
|
|
case cInt:
|
|
BuildMI(*MBB, IP, X86::SHL32ri,2, DestReg).addReg(TmpReg).addImm(Shift-1);
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (Class == cShort) {
|
|
BuildMI(*MBB, IP, X86::IMUL16rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
|
|
return;
|
|
} else if (Class == cInt) {
|
|
BuildMI(*MBB, IP, X86::IMUL32rri,2,DestReg).addReg(op0Reg).addImm(ConstRHS);
|
|
return;
|
|
}
|
|
|
|
// Most general case, emit a normal multiply...
|
|
TmpReg = makeAnotherReg(DestTy);
|
|
BuildMI(*MBB, IP, MOVriTab[Class], 1, TmpReg).addImm(ConstRHS);
|
|
|
|
// Emit a MUL to multiply the register holding the index by
|
|
// elementSize, putting the result in OffsetReg.
|
|
doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg);
|
|
}
|
|
|
|
/// visitMul - Multiplies are not simple binary operators because they must deal
|
|
/// with the EAX register explicitly.
|
|
///
|
|
void X86ISel::visitMul(BinaryOperator &I) {
|
|
unsigned ResultReg = getReg(I);
|
|
|
|
Value *Op0 = I.getOperand(0);
|
|
Value *Op1 = I.getOperand(1);
|
|
|
|
// Fold loads into floating point multiplies.
|
|
if (getClass(Op0->getType()) == cFP) {
|
|
if (isa<LoadInst>(Op0) && !isa<LoadInst>(Op1))
|
|
if (!I.swapOperands())
|
|
std::swap(Op0, Op1); // Make sure any loads are in the RHS.
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
|
|
if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
|
|
const Type *Ty = Op0->getType();
|
|
assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned Opcode = Ty == Type::FloatTy ? X86::FMUL32m : X86::FMUL64m;
|
|
|
|
unsigned Op0r = getReg(Op0);
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
|
|
} else {
|
|
X86AddressMode AM;
|
|
getAddressingMode(LI->getOperand(0), AM);
|
|
|
|
addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitMultiply(BB, IP, Op0, Op1, ResultReg);
|
|
}
|
|
|
|
void X86ISel::emitMultiply(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, unsigned DestReg) {
|
|
MachineBasicBlock &BB = *MBB;
|
|
TypeClass Class = getClass(Op0->getType());
|
|
|
|
// Simple scalar multiply?
|
|
unsigned Op0Reg = getReg(Op0, &BB, IP);
|
|
switch (Class) {
|
|
case cByte:
|
|
case cShort:
|
|
case cInt:
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
|
|
doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
|
|
} else {
|
|
unsigned Op1Reg = getReg(Op1, &BB, IP);
|
|
doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
|
|
}
|
|
return;
|
|
case cFP:
|
|
emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
|
|
return;
|
|
case cLong:
|
|
break;
|
|
}
|
|
|
|
// Long value. We have to do things the hard way...
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
|
|
unsigned CLow = CI->getRawValue();
|
|
unsigned CHi = CI->getRawValue() >> 32;
|
|
|
|
if (CLow == 0) {
|
|
// If the low part of the constant is all zeros, things are simple.
|
|
BuildMI(BB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
|
|
doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
|
|
return;
|
|
}
|
|
|
|
// Multiply the two low parts... capturing carry into EDX
|
|
unsigned OverflowReg = 0;
|
|
if (CLow == 1) {
|
|
BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(Op0Reg);
|
|
} else {
|
|
unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
|
|
OverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, IP, X86::MOV32ri, 1, Op1RegL).addImm(CLow);
|
|
BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
|
|
BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1RegL); // AL*BL
|
|
|
|
BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
|
|
BuildMI(BB, IP, X86::MOV32rr, 1,
|
|
OverflowReg).addReg(X86::EDX); // AL*BL >> 32
|
|
}
|
|
|
|
unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
|
|
doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
|
|
|
|
unsigned AHBLplusOverflowReg;
|
|
if (OverflowReg) {
|
|
AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
|
|
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
|
|
} else {
|
|
AHBLplusOverflowReg = AHBLReg;
|
|
}
|
|
|
|
if (CHi == 0) {
|
|
BuildMI(BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(AHBLplusOverflowReg);
|
|
} else {
|
|
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
|
|
doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
|
|
|
|
BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
|
|
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// General 64x64 multiply
|
|
|
|
unsigned Op1Reg = getReg(Op1, &BB, IP);
|
|
// Multiply the two low parts... capturing carry into EDX
|
|
BuildMI(BB, IP, X86::MOV32rr, 1, X86::EAX).addReg(Op0Reg);
|
|
BuildMI(BB, IP, X86::MUL32r, 1).addReg(Op1Reg); // AL*BL
|
|
|
|
unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, IP, X86::MOV32rr, 1, DestReg).addReg(X86::EAX); // AL*BL
|
|
BuildMI(BB, IP, X86::MOV32rr, 1,
|
|
OverflowReg).addReg(X86::EDX); // AL*BL >> 32
|
|
|
|
unsigned AHBLReg = makeAnotherReg(Type::UIntTy); // AH*BL
|
|
BuildMI(BB, IP, X86::IMUL32rr, 2,
|
|
AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
|
|
|
|
unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, IP, X86::ADD32rr, 2, // AH*BL+(AL*BL >> 32)
|
|
AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
|
|
|
|
unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
|
|
BuildMI(BB, IP, X86::IMUL32rr, 2,
|
|
ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
|
|
|
|
BuildMI(BB, IP, X86::ADD32rr, 2, // AL*BH + AH*BL + (AL*BL >> 32)
|
|
DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
|
|
}
|
|
|
|
|
|
/// visitDivRem - Handle division and remainder instructions... these
|
|
/// instruction both require the same instructions to be generated, they just
|
|
/// select the result from a different register. Note that both of these
|
|
/// instructions work differently for signed and unsigned operands.
|
|
///
|
|
void X86ISel::visitDivRem(BinaryOperator &I) {
|
|
unsigned ResultReg = getReg(I);
|
|
Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
|
|
|
|
// Fold loads into floating point divides.
|
|
if (getClass(Op0->getType()) == cFP) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Op1))
|
|
if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
|
|
const Type *Ty = Op0->getType();
|
|
assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned Opcode = Ty == Type::FloatTy ? X86::FDIV32m : X86::FDIV64m;
|
|
|
|
unsigned Op0r = getReg(Op0);
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), FI);
|
|
} else {
|
|
X86AddressMode AM;
|
|
getAddressingMode(LI->getOperand(0), AM);
|
|
|
|
addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op0r), AM);
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(Op0))
|
|
if (isSafeToFoldLoadIntoInstruction(*LI, I)) {
|
|
const Type *Ty = Op0->getType();
|
|
assert(Ty == Type::FloatTy||Ty == Type::DoubleTy && "Unknown FP type!");
|
|
unsigned Opcode = Ty == Type::FloatTy ? X86::FDIVR32m : X86::FDIVR64m;
|
|
|
|
unsigned Op1r = getReg(Op1);
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(LI->getOperand(0))) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), FI);
|
|
} else {
|
|
X86AddressMode AM;
|
|
getAddressingMode(LI->getOperand(0), AM);
|
|
addFullAddress(BuildMI(BB, Opcode, 5, ResultReg).addReg(Op1r), AM);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
|
|
MachineBasicBlock::iterator IP = BB->end();
|
|
emitDivRemOperation(BB, IP, Op0, Op1,
|
|
I.getOpcode() == Instruction::Div, ResultReg);
|
|
}
|
|
|
|
void X86ISel::emitDivRemOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op0, Value *Op1, bool isDiv,
|
|
unsigned ResultReg) {
|
|
const Type *Ty = Op0->getType();
|
|
unsigned Class = getClass(Ty);
|
|
switch (Class) {
|
|
case cFP: // Floating point divide
|
|
if (isDiv) {
|
|
emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
|
|
return;
|
|
} else { // Floating point remainder...
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
MachineInstr *TheCall =
|
|
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol("fmod", true);
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
|
|
doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
|
|
}
|
|
return;
|
|
case cLong: {
|
|
static const char *FnName[] =
|
|
{ "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
|
|
MachineInstr *TheCall =
|
|
BuildMI(X86::CALLpcrel32, 1).addExternalSymbol(FnName[NameIdx], true);
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
|
|
Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
|
|
doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
|
|
return;
|
|
}
|
|
case cByte: case cShort: case cInt:
|
|
break; // Small integrals, handled below...
|
|
default: assert(0 && "Unknown class!");
|
|
}
|
|
|
|
static const unsigned MovOpcode[]={ X86::MOV8rr, X86::MOV16rr, X86::MOV32rr };
|
|
static const unsigned NEGOpcode[]={ X86::NEG8r, X86::NEG16r, X86::NEG32r };
|
|
static const unsigned SAROpcode[]={ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri };
|
|
static const unsigned SHROpcode[]={ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri };
|
|
static const unsigned ADDOpcode[]={ X86::ADD8rr, X86::ADD16rr, X86::ADD32rr };
|
|
|
|
// Special case signed division by power of 2.
|
|
if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1))
|
|
if (isDiv) {
|
|
assert(Class != cLong && "This doesn't handle 64-bit divides!");
|
|
int V = CI->getValue();
|
|
|
|
if (V == 1) { // X /s 1 => X
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
if (V == -1) { // X /s -1 => -X
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(Op0Reg);
|
|
return;
|
|
}
|
|
|
|
if (V == 2 || V == -2) { // X /s 2
|
|
static const unsigned CMPOpcode[] = {
|
|
X86::CMP8ri, X86::CMP16ri, X86::CMP32ri
|
|
};
|
|
static const unsigned SBBOpcode[] = {
|
|
X86::SBB8ri, X86::SBB16ri, X86::SBB32ri
|
|
};
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned SignBit = 1 << (CI->getType()->getPrimitiveSize()*8-1);
|
|
BuildMI(*BB, IP, CMPOpcode[Class], 2).addReg(Op0Reg).addImm(SignBit);
|
|
|
|
unsigned TmpReg = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, SBBOpcode[Class], 2, TmpReg).addReg(Op0Reg).addImm(-1);
|
|
|
|
unsigned TmpReg2 = V == 2 ? ResultReg : makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg2).addReg(TmpReg).addImm(1);
|
|
if (V == -2) {
|
|
BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg2);
|
|
}
|
|
return;
|
|
}
|
|
|
|
bool isNeg = false;
|
|
if (V < 0) { // Not a positive power of 2?
|
|
V = -V;
|
|
isNeg = true; // Maybe it's a negative power of 2.
|
|
}
|
|
if (unsigned Log = ExactLog2(V)) {
|
|
--Log;
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned TmpReg = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg)
|
|
.addReg(Op0Reg).addImm(Log-1);
|
|
unsigned TmpReg2 = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, SHROpcode[Class], 2, TmpReg2)
|
|
.addReg(TmpReg).addImm(32-Log);
|
|
unsigned TmpReg3 = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, ADDOpcode[Class], 2, TmpReg3)
|
|
.addReg(Op0Reg).addReg(TmpReg2);
|
|
|
|
unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
|
|
BuildMI(*BB, IP, SAROpcode[Class], 2, TmpReg4)
|
|
.addReg(TmpReg3).addImm(Log);
|
|
if (isNeg)
|
|
BuildMI(*BB, IP, NEGOpcode[Class], 1, ResultReg).addReg(TmpReg4);
|
|
return;
|
|
}
|
|
} else { // X % C
|
|
assert(Class != cLong && "This doesn't handle 64-bit remainder!");
|
|
int V = CI->getValue();
|
|
|
|
if (V == 2 || V == -2) { // X % 2, X % -2
|
|
static const unsigned SExtOpcode[] = { X86::CBW, X86::CWD, X86::CDQ };
|
|
static const unsigned BaseReg[] = { X86::AL , X86::AX , X86::EAX };
|
|
static const unsigned SExtReg[] = { X86::AH , X86::DX , X86::EDX };
|
|
static const unsigned ANDOpcode[] = {
|
|
X86::AND8ri, X86::AND16ri, X86::AND32ri
|
|
};
|
|
static const unsigned XOROpcode[] = {
|
|
X86::XOR8rr, X86::XOR16rr, X86::XOR32rr
|
|
};
|
|
static const unsigned SUBOpcode[] = {
|
|
X86::SUB8rr, X86::SUB16rr, X86::SUB32rr
|
|
};
|
|
|
|
// Sign extend result into reg of -1 or 0.
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, BaseReg[Class]).addReg(Op0Reg);
|
|
BuildMI(*BB, IP, SExtOpcode[Class], 0);
|
|
unsigned TmpReg0 = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, TmpReg0).addReg(SExtReg[Class]);
|
|
|
|
unsigned TmpReg1 = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, ANDOpcode[Class], 2, TmpReg1).addReg(Op0Reg).addImm(1);
|
|
|
|
unsigned TmpReg2 = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, XOROpcode[Class], 2,
|
|
TmpReg2).addReg(TmpReg1).addReg(TmpReg0);
|
|
BuildMI(*BB, IP, SUBOpcode[Class], 2,
|
|
ResultReg).addReg(TmpReg2).addReg(TmpReg0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static const unsigned Regs[] ={ X86::AL , X86::AX , X86::EAX };
|
|
static const unsigned ClrOpcode[]={ X86::MOV8ri, X86::MOV16ri, X86::MOV32ri };
|
|
static const unsigned ExtRegs[] ={ X86::AH , X86::DX , X86::EDX };
|
|
|
|
static const unsigned DivOpcode[][4] = {
|
|
{ X86::DIV8r , X86::DIV16r , X86::DIV32r , 0 }, // Unsigned division
|
|
{ X86::IDIV8r, X86::IDIV16r, X86::IDIV32r, 0 }, // Signed division
|
|
};
|
|
|
|
unsigned Reg = Regs[Class];
|
|
unsigned ExtReg = ExtRegs[Class];
|
|
|
|
// Put the first operand into one of the A registers...
|
|
unsigned Op0Reg = getReg(Op0, BB, IP);
|
|
unsigned Op1Reg = getReg(Op1, BB, IP);
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, Reg).addReg(Op0Reg);
|
|
|
|
if (Ty->isSigned()) {
|
|
// Emit a sign extension instruction...
|
|
unsigned ShiftResult = makeAnotherReg(Op0->getType());
|
|
BuildMI(*BB, IP, SAROpcode[Class], 2,ShiftResult).addReg(Op0Reg).addImm(31);
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, ExtReg).addReg(ShiftResult);
|
|
|
|
// Emit the appropriate divide or remainder instruction...
|
|
BuildMI(*BB, IP, DivOpcode[1][Class], 1).addReg(Op1Reg);
|
|
} else {
|
|
// If unsigned, emit a zeroing instruction... (reg = 0)
|
|
BuildMI(*BB, IP, ClrOpcode[Class], 2, ExtReg).addImm(0);
|
|
|
|
// Emit the appropriate divide or remainder instruction...
|
|
BuildMI(*BB, IP, DivOpcode[0][Class], 1).addReg(Op1Reg);
|
|
}
|
|
|
|
// Figure out which register we want to pick the result out of...
|
|
unsigned DestReg = isDiv ? Reg : ExtReg;
|
|
|
|
// Put the result into the destination register...
|
|
BuildMI(*BB, IP, MovOpcode[Class], 1, ResultReg).addReg(DestReg);
|
|
}
|
|
|
|
|
|
/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
|
|
/// for constant immediate shift values, and for constant immediate
|
|
/// shift values equal to 1. Even the general case is sort of special,
|
|
/// because the shift amount has to be in CL, not just any old register.
|
|
///
|
|
void X86ISel::visitShiftInst(ShiftInst &I) {
|
|
MachineBasicBlock::iterator IP = BB->end ();
|
|
emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
|
|
I.getOpcode () == Instruction::Shl, I.getType (),
|
|
getReg (I));
|
|
}
|
|
|
|
/// emitShiftOperation - Common code shared between visitShiftInst and
|
|
/// constant expression support.
|
|
void X86ISel::emitShiftOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Op, Value *ShiftAmount,
|
|
bool isLeftShift, const Type *ResultTy,
|
|
unsigned DestReg) {
|
|
unsigned SrcReg = getReg (Op, MBB, IP);
|
|
bool isSigned = ResultTy->isSigned ();
|
|
unsigned Class = getClass (ResultTy);
|
|
|
|
static const unsigned ConstantOperand[][4] = {
|
|
{ X86::SHR8ri, X86::SHR16ri, X86::SHR32ri, X86::SHRD32rri8 }, // SHR
|
|
{ X86::SAR8ri, X86::SAR16ri, X86::SAR32ri, X86::SHRD32rri8 }, // SAR
|
|
{ X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SHL
|
|
{ X86::SHL8ri, X86::SHL16ri, X86::SHL32ri, X86::SHLD32rri8 }, // SAL = SHL
|
|
};
|
|
|
|
static const unsigned NonConstantOperand[][4] = {
|
|
{ X86::SHR8rCL, X86::SHR16rCL, X86::SHR32rCL }, // SHR
|
|
{ X86::SAR8rCL, X86::SAR16rCL, X86::SAR32rCL }, // SAR
|
|
{ X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SHL
|
|
{ X86::SHL8rCL, X86::SHL16rCL, X86::SHL32rCL }, // SAL = SHL
|
|
};
|
|
|
|
// Longs, as usual, are handled specially...
|
|
if (Class == cLong) {
|
|
// If we have a constant shift, we can generate much more efficient code
|
|
// than otherwise...
|
|
//
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
unsigned Amount = CUI->getValue();
|
|
if (Amount < 32) {
|
|
const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
|
|
if (isLeftShift) {
|
|
BuildMI(*MBB, IP, Opc[3], 3,
|
|
DestReg+1).addReg(SrcReg+1).addReg(SrcReg).addImm(Amount);
|
|
BuildMI(*MBB, IP, Opc[2], 2, DestReg).addReg(SrcReg).addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, Opc[3], 3,
|
|
DestReg).addReg(SrcReg ).addReg(SrcReg+1).addImm(Amount);
|
|
BuildMI(*MBB, IP, Opc[2],2,DestReg+1).addReg(SrcReg+1).addImm(Amount);
|
|
}
|
|
} else { // Shifting more than 32 bits
|
|
Amount -= 32;
|
|
if (isLeftShift) {
|
|
if (Amount != 0) {
|
|
BuildMI(*MBB, IP, X86::SHL32ri, 2,
|
|
DestReg + 1).addReg(SrcReg).addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg);
|
|
}
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg).addImm(0);
|
|
} else {
|
|
if (Amount != 0) {
|
|
BuildMI(*MBB, IP, isSigned ? X86::SAR32ri : X86::SHR32ri, 2,
|
|
DestReg).addReg(SrcReg+1).addImm(Amount);
|
|
} else {
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg+1);
|
|
}
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
|
|
}
|
|
}
|
|
} else {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
|
|
if (!isLeftShift && isSigned) {
|
|
// If this is a SHR of a Long, then we need to do funny sign extension
|
|
// stuff. TmpReg gets the value to use as the high-part if we are
|
|
// shifting more than 32 bits.
|
|
BuildMI(*MBB, IP, X86::SAR32ri, 2, TmpReg).addReg(SrcReg).addImm(31);
|
|
} else {
|
|
// Other shifts use a fixed zero value if the shift is more than 32
|
|
// bits.
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, TmpReg).addImm(0);
|
|
}
|
|
|
|
// Initialize CL with the shift amount...
|
|
unsigned ShiftAmountReg = getReg(ShiftAmount, MBB, IP);
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
|
|
|
|
unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
|
|
unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
|
|
if (isLeftShift) {
|
|
// TmpReg2 = shld inHi, inLo
|
|
BuildMI(*MBB, IP, X86::SHLD32rrCL,2,TmpReg2).addReg(SrcReg+1)
|
|
.addReg(SrcReg);
|
|
// TmpReg3 = shl inLo, CL
|
|
BuildMI(*MBB, IP, X86::SHL32rCL, 1, TmpReg3).addReg(SrcReg);
|
|
|
|
// Set the flags to indicate whether the shift was by more than 32 bits.
|
|
BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
|
|
|
|
// DestHi = (>32) ? TmpReg3 : TmpReg2;
|
|
BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
|
|
DestReg+1).addReg(TmpReg2).addReg(TmpReg3);
|
|
// DestLo = (>32) ? TmpReg : TmpReg3;
|
|
BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
|
|
DestReg).addReg(TmpReg3).addReg(TmpReg);
|
|
} else {
|
|
// TmpReg2 = shrd inLo, inHi
|
|
BuildMI(*MBB, IP, X86::SHRD32rrCL,2,TmpReg2).addReg(SrcReg)
|
|
.addReg(SrcReg+1);
|
|
// TmpReg3 = s[ah]r inHi, CL
|
|
BuildMI(*MBB, IP, isSigned ? X86::SAR32rCL : X86::SHR32rCL, 1, TmpReg3)
|
|
.addReg(SrcReg+1);
|
|
|
|
// Set the flags to indicate whether the shift was by more than 32 bits.
|
|
BuildMI(*MBB, IP, X86::TEST8ri, 2).addReg(X86::CL).addImm(32);
|
|
|
|
// DestLo = (>32) ? TmpReg3 : TmpReg2;
|
|
BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
|
|
DestReg).addReg(TmpReg2).addReg(TmpReg3);
|
|
|
|
// DestHi = (>32) ? TmpReg : TmpReg3;
|
|
BuildMI(*MBB, IP, X86::CMOVNE32rr, 2,
|
|
DestReg+1).addReg(TmpReg3).addReg(TmpReg);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
|
|
// The shift amount is constant, guaranteed to be a ubyte. Get its value.
|
|
assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
|
|
|
|
const unsigned *Opc = ConstantOperand[isLeftShift*2+isSigned];
|
|
BuildMI(*MBB, IP, Opc[Class], 2,
|
|
DestReg).addReg(SrcReg).addImm(CUI->getValue());
|
|
} else { // The shift amount is non-constant.
|
|
unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
|
|
BuildMI(*MBB, IP, X86::MOV8rr, 1, X86::CL).addReg(ShiftAmountReg);
|
|
|
|
const unsigned *Opc = NonConstantOperand[isLeftShift*2+isSigned];
|
|
BuildMI(*MBB, IP, Opc[Class], 1, DestReg).addReg(SrcReg);
|
|
}
|
|
}
|
|
|
|
|
|
/// visitLoadInst - Implement LLVM load instructions in terms of the x86 'mov'
|
|
/// instruction. The load and store instructions are the only place where we
|
|
/// need to worry about the memory layout of the target machine.
|
|
///
|
|
void X86ISel::visitLoadInst(LoadInst &I) {
|
|
// Check to see if this load instruction is going to be folded into a binary
|
|
// instruction, like add. If so, we don't want to emit it. Wouldn't a real
|
|
// pattern matching instruction selector be nice?
|
|
unsigned Class = getClassB(I.getType());
|
|
if (I.hasOneUse()) {
|
|
Instruction *User = cast<Instruction>(I.use_back());
|
|
switch (User->getOpcode()) {
|
|
case Instruction::Cast:
|
|
// If this is a cast from a signed-integer type to a floating point type,
|
|
// fold the cast here.
|
|
if (getClassB(User->getType()) == cFP &&
|
|
(I.getType() == Type::ShortTy || I.getType() == Type::IntTy ||
|
|
I.getType() == Type::LongTy)) {
|
|
unsigned DestReg = getReg(User);
|
|
static const unsigned Opcode[] = {
|
|
0/*BYTE*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m
|
|
};
|
|
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
addFrameReference(BuildMI(BB, Opcode[Class], 4, DestReg), FI);
|
|
} else {
|
|
X86AddressMode AM;
|
|
getAddressingMode(I.getOperand(0), AM);
|
|
addFullAddress(BuildMI(BB, Opcode[Class], 4, DestReg), AM);
|
|
}
|
|
return;
|
|
} else {
|
|
User = 0;
|
|
}
|
|
break;
|
|
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
if (Class == cLong) User = 0;
|
|
break;
|
|
case Instruction::Mul:
|
|
case Instruction::Div:
|
|
if (Class != cFP) User = 0;
|
|
break; // Folding only implemented for floating point.
|
|
default: User = 0; break;
|
|
}
|
|
|
|
if (User) {
|
|
// Okay, we found a user. If the load is the first operand and there is
|
|
// no second operand load, reverse the operand ordering. Note that this
|
|
// can fail for a subtract (ie, no change will be made).
|
|
bool Swapped = false;
|
|
if (!isa<LoadInst>(User->getOperand(1)))
|
|
Swapped = !cast<BinaryOperator>(User)->swapOperands();
|
|
|
|
// Okay, now that everything is set up, if this load is used by the second
|
|
// operand, and if there are no instructions that invalidate the load
|
|
// before the binary operator, eliminate the load.
|
|
if (User->getOperand(1) == &I &&
|
|
isSafeToFoldLoadIntoInstruction(I, *User))
|
|
return; // Eliminate the load!
|
|
|
|
// If this is a floating point sub or div, we won't be able to swap the
|
|
// operands, but we will still be able to eliminate the load.
|
|
if (Class == cFP && User->getOperand(0) == &I &&
|
|
!isa<LoadInst>(User->getOperand(1)) &&
|
|
(User->getOpcode() == Instruction::Sub ||
|
|
User->getOpcode() == Instruction::Div) &&
|
|
isSafeToFoldLoadIntoInstruction(I, *User))
|
|
return; // Eliminate the load!
|
|
|
|
// If we swapped the operands to the instruction, but couldn't fold the
|
|
// load anyway, swap them back. We don't want to break add X, int
|
|
// folding.
|
|
if (Swapped) cast<BinaryOperator>(User)->swapOperands();
|
|
}
|
|
}
|
|
|
|
static const unsigned Opcodes[] = {
|
|
X86::MOV8rm, X86::MOV16rm, X86::MOV32rm, X86::FLD32m, X86::MOV32rm
|
|
};
|
|
unsigned Opcode = Opcodes[Class];
|
|
if (I.getType() == Type::DoubleTy) Opcode = X86::FLD64m;
|
|
|
|
unsigned DestReg = getReg(I);
|
|
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
|
|
unsigned FI = getFixedSizedAllocaFI(AI);
|
|
if (Class == cLong) {
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg), FI);
|
|
addFrameReference(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), FI, 4);
|
|
} else {
|
|
addFrameReference(BuildMI(BB, Opcode, 4, DestReg), FI);
|
|
}
|
|
} else {
|
|
X86AddressMode AM;
|
|
getAddressingMode(I.getOperand(0), AM);
|
|
|
|
if (Class == cLong) {
|
|
addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg), AM);
|
|
AM.Disp += 4;
|
|
addFullAddress(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), AM);
|
|
} else {
|
|
addFullAddress(BuildMI(BB, Opcode, 4, DestReg), AM);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// visitStoreInst - Implement LLVM store instructions in terms of the x86 'mov'
|
|
/// instruction.
|
|
///
|
|
void X86ISel::visitStoreInst(StoreInst &I) {
|
|
X86AddressMode AM;
|
|
getAddressingMode(I.getOperand(1), AM);
|
|
|
|
const Type *ValTy = I.getOperand(0)->getType();
|
|
unsigned Class = getClassB(ValTy);
|
|
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(0))) {
|
|
uint64_t Val = CI->getRawValue();
|
|
if (Class == cLong) {
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val & ~0U);
|
|
AM.Disp += 4;
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(Val>>32);
|
|
} else {
|
|
static const unsigned Opcodes[] = {
|
|
X86::MOV8mi, X86::MOV16mi, X86::MOV32mi
|
|
};
|
|
unsigned Opcode = Opcodes[Class];
|
|
addFullAddress(BuildMI(BB, Opcode, 5), AM).addImm(Val);
|
|
}
|
|
} else if (isa<ConstantPointerNull>(I.getOperand(0))) {
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(0);
|
|
} else if (ConstantBool *CB = dyn_cast<ConstantBool>(I.getOperand(0))) {
|
|
addFullAddress(BuildMI(BB, X86::MOV8mi, 5), AM).addImm(CB->getValue());
|
|
} else if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0))) {
|
|
// Store constant FP values with integer instructions to avoid having to
|
|
// load the constants from the constant pool then do a store.
|
|
if (CFP->getType() == Type::FloatTy) {
|
|
union {
|
|
unsigned I;
|
|
float F;
|
|
} V;
|
|
V.F = CFP->getValue();
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(V.I);
|
|
} else {
|
|
union {
|
|
uint64_t I;
|
|
double F;
|
|
} V;
|
|
V.F = CFP->getValue();
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm((unsigned)V.I);
|
|
AM.Disp += 4;
|
|
addFullAddress(BuildMI(BB, X86::MOV32mi, 5), AM).addImm(
|
|
unsigned(V.I >> 32));
|
|
}
|
|
|
|
} else if (Class == cLong) {
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg);
|
|
AM.Disp += 4;
|
|
addFullAddress(BuildMI(BB, X86::MOV32mr, 5), AM).addReg(ValReg+1);
|
|
} else {
|
|
unsigned ValReg = getReg(I.getOperand(0));
|
|
static const unsigned Opcodes[] = {
|
|
X86::MOV8mr, X86::MOV16mr, X86::MOV32mr, X86::FST32m
|
|
};
|
|
unsigned Opcode = Opcodes[Class];
|
|
if (ValTy == Type::DoubleTy) Opcode = X86::FST64m;
|
|
|
|
addFullAddress(BuildMI(BB, Opcode, 1+4), AM).addReg(ValReg);
|
|
}
|
|
}
|
|
|
|
|
|
/// visitCastInst - Here we have various kinds of copying with or without sign
|
|
/// extension going on.
|
|
///
|
|
void X86ISel::visitCastInst(CastInst &CI) {
|
|
Value *Op = CI.getOperand(0);
|
|
|
|
unsigned SrcClass = getClassB(Op->getType());
|
|
unsigned DestClass = getClassB(CI.getType());
|
|
// Noop casts are not emitted: getReg will return the source operand as the
|
|
// register to use for any uses of the noop cast.
|
|
if (DestClass == SrcClass) {
|
|
// The only detail in this plan is that casts from double -> float are
|
|
// truncating operations that we have to codegen through memory (despite
|
|
// the fact that the source/dest registers are the same class).
|
|
if (CI.getType() != Type::FloatTy || Op->getType() != Type::DoubleTy)
|
|
return;
|
|
}
|
|
|
|
// If this is a cast from a 32-bit integer to a Long type, and the only uses
|
|
// of the case are GEP instructions, then the cast does not need to be
|
|
// generated explicitly, it will be folded into the GEP.
|
|
if (DestClass == cLong && SrcClass == cInt) {
|
|
bool AllUsesAreGEPs = true;
|
|
for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
|
|
if (!isa<GetElementPtrInst>(*I)) {
|
|
AllUsesAreGEPs = false;
|
|
break;
|
|
}
|
|
|
|
// No need to codegen this cast if all users are getelementptr instrs...
|
|
if (AllUsesAreGEPs) return;
|
|
}
|
|
|
|
// If this cast converts a load from a short,int, or long integer to a FP
|
|
// value, we will have folded this cast away.
|
|
if (DestClass == cFP && isa<LoadInst>(Op) && Op->hasOneUse() &&
|
|
(Op->getType() == Type::ShortTy || Op->getType() == Type::IntTy ||
|
|
Op->getType() == Type::LongTy))
|
|
return;
|
|
|
|
|
|
unsigned DestReg = getReg(CI);
|
|
MachineBasicBlock::iterator MI = BB->end();
|
|
emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
|
|
}
|
|
|
|
/// emitCastOperation - Common code shared between visitCastInst and constant
|
|
/// expression cast support.
|
|
///
|
|
void X86ISel::emitCastOperation(MachineBasicBlock *BB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, const Type *DestTy,
|
|
unsigned DestReg) {
|
|
const Type *SrcTy = Src->getType();
|
|
unsigned SrcClass = getClassB(SrcTy);
|
|
unsigned DestClass = getClassB(DestTy);
|
|
unsigned SrcReg = getReg(Src, BB, IP);
|
|
|
|
// Implement casts to bool by using compare on the operand followed by set if
|
|
// not zero on the result.
|
|
if (DestTy == Type::BoolTy) {
|
|
switch (SrcClass) {
|
|
case cByte:
|
|
BuildMI(*BB, IP, X86::TEST8rr, 2).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
case cShort:
|
|
BuildMI(*BB, IP, X86::TEST16rr, 2).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
case cInt:
|
|
BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg).addReg(SrcReg);
|
|
break;
|
|
case cLong: {
|
|
unsigned TmpReg = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, IP, X86::OR32rr, 2, TmpReg).addReg(SrcReg).addReg(SrcReg+1);
|
|
break;
|
|
}
|
|
case cFP:
|
|
BuildMI(*BB, IP, X86::FTST, 1).addReg(SrcReg);
|
|
BuildMI(*BB, IP, X86::FNSTSW8r, 0);
|
|
BuildMI(*BB, IP, X86::SAHF, 1);
|
|
break;
|
|
}
|
|
|
|
// If the zero flag is not set, then the value is true, set the byte to
|
|
// true.
|
|
BuildMI(*BB, IP, X86::SETNEr, 1, DestReg);
|
|
return;
|
|
}
|
|
|
|
static const unsigned RegRegMove[] = {
|
|
X86::MOV8rr, X86::MOV16rr, X86::MOV32rr, X86::FpMOV, X86::MOV32rr
|
|
};
|
|
|
|
// Implement casts between values of the same type class (as determined by
|
|
// getClass) by using a register-to-register move.
|
|
if (SrcClass == DestClass) {
|
|
if (SrcClass <= cInt || (SrcClass == cFP && SrcTy == DestTy)) {
|
|
BuildMI(*BB, IP, RegRegMove[SrcClass], 1, DestReg).addReg(SrcReg);
|
|
} else if (SrcClass == cFP) {
|
|
if (SrcTy == Type::FloatTy) { // double -> float
|
|
assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
|
|
BuildMI(*BB, IP, X86::FpMOV, 1, DestReg).addReg(SrcReg);
|
|
} else { // float -> double
|
|
assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
|
|
"Unknown cFP member!");
|
|
// Truncate from double to float by storing to memory as short, then
|
|
// reading it back.
|
|
unsigned FltAlign = TM.getTargetData().getFloatAlignment();
|
|
int FrameIdx = F->getFrameInfo()->CreateStackObject(4, FltAlign);
|
|
addFrameReference(BuildMI(*BB, IP, X86::FST32m, 5), FrameIdx).addReg(SrcReg);
|
|
addFrameReference(BuildMI(*BB, IP, X86::FLD32m, 5, DestReg), FrameIdx);
|
|
}
|
|
} else if (SrcClass == cLong) {
|
|
BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
|
|
BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg+1).addReg(SrcReg+1);
|
|
} else {
|
|
assert(0 && "Cannot handle this type of cast instruction!");
|
|
abort();
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Handle cast of SMALLER int to LARGER int using a move with sign extension
|
|
// or zero extension, depending on whether the source type was signed.
|
|
if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
|
|
SrcClass < DestClass) {
|
|
bool isLong = DestClass == cLong;
|
|
if (isLong) DestClass = cInt;
|
|
|
|
static const unsigned Opc[][4] = {
|
|
{ X86::MOVSX16rr8, X86::MOVSX32rr8, X86::MOVSX32rr16, X86::MOV32rr }, // s
|
|
{ X86::MOVZX16rr8, X86::MOVZX32rr8, X86::MOVZX32rr16, X86::MOV32rr } // u
|
|
};
|
|
|
|
bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
|
|
BuildMI(*BB, IP, Opc[isUnsigned][SrcClass + DestClass - 1], 1,
|
|
DestReg).addReg(SrcReg);
|
|
|
|
if (isLong) { // Handle upper 32 bits as appropriate...
|
|
if (isUnsigned) // Zero out top bits...
|
|
BuildMI(*BB, IP, X86::MOV32ri, 1, DestReg+1).addImm(0);
|
|
else // Sign extend bottom half...
|
|
BuildMI(*BB, IP, X86::SAR32ri, 2, DestReg+1).addReg(DestReg).addImm(31);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Special case long -> int ...
|
|
if (SrcClass == cLong && DestClass == cInt) {
|
|
BuildMI(*BB, IP, X86::MOV32rr, 1, DestReg).addReg(SrcReg);
|
|
return;
|
|
}
|
|
|
|
// Handle cast of LARGER int to SMALLER int using a move to EAX followed by a
|
|
// move out of AX or AL.
|
|
if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
|
|
&& SrcClass > DestClass) {
|
|
static const unsigned AReg[] = { X86::AL, X86::AX, X86::EAX, 0, X86::EAX };
|
|
BuildMI(*BB, IP, RegRegMove[SrcClass], 1, AReg[SrcClass]).addReg(SrcReg);
|
|
BuildMI(*BB, IP, RegRegMove[DestClass], 1, DestReg).addReg(AReg[DestClass]);
|
|
return;
|
|
}
|
|
|
|
// Handle casts from integer to floating point now...
|
|
if (DestClass == cFP) {
|
|
// Promote the integer to a type supported by FLD. We do this because there
|
|
// are no unsigned FLD instructions, so we must promote an unsigned value to
|
|
// a larger signed value, then use FLD on the larger value.
|
|
//
|
|
const Type *PromoteType = 0;
|
|
unsigned PromoteOpcode = 0;
|
|
unsigned RealDestReg = DestReg;
|
|
switch (SrcTy->getTypeID()) {
|
|
case Type::BoolTyID:
|
|
case Type::SByteTyID:
|
|
// We don't have the facilities for directly loading byte sized data from
|
|
// memory (even signed). Promote it to 16 bits.
|
|
PromoteType = Type::ShortTy;
|
|
PromoteOpcode = X86::MOVSX16rr8;
|
|
break;
|
|
case Type::UByteTyID:
|
|
PromoteType = Type::ShortTy;
|
|
PromoteOpcode = X86::MOVZX16rr8;
|
|
break;
|
|
case Type::UShortTyID:
|
|
PromoteType = Type::IntTy;
|
|
PromoteOpcode = X86::MOVZX32rr16;
|
|
break;
|
|
case Type::UIntTyID: {
|
|
// Make a 64 bit temporary... and zero out the top of it...
|
|
unsigned TmpReg = makeAnotherReg(Type::LongTy);
|
|
BuildMI(*BB, IP, X86::MOV32rr, 1, TmpReg).addReg(SrcReg);
|
|
BuildMI(*BB, IP, X86::MOV32ri, 1, TmpReg+1).addImm(0);
|
|
SrcTy = Type::LongTy;
|
|
SrcClass = cLong;
|
|
SrcReg = TmpReg;
|
|
break;
|
|
}
|
|
case Type::ULongTyID:
|
|
// Don't fild into the read destination.
|
|
DestReg = makeAnotherReg(Type::DoubleTy);
|
|
break;
|
|
default: // No promotion needed...
|
|
break;
|
|
}
|
|
|
|
if (PromoteType) {
|
|
unsigned TmpReg = makeAnotherReg(PromoteType);
|
|
BuildMI(*BB, IP, PromoteOpcode, 1, TmpReg).addReg(SrcReg);
|
|
SrcTy = PromoteType;
|
|
SrcClass = getClass(PromoteType);
|
|
SrcReg = TmpReg;
|
|
}
|
|
|
|
// Spill the integer to memory and reload it from there...
|
|
int FrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(SrcTy, TM.getTargetData());
|
|
|
|
if (SrcClass == cLong) {
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
|
|
FrameIdx).addReg(SrcReg);
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV32mr, 5),
|
|
FrameIdx, 4).addReg(SrcReg+1);
|
|
} else {
|
|
static const unsigned Op1[] = { X86::MOV8mr, X86::MOV16mr, X86::MOV32mr };
|
|
addFrameReference(BuildMI(*BB, IP, Op1[SrcClass], 5),
|
|
FrameIdx).addReg(SrcReg);
|
|
}
|
|
|
|
static const unsigned Op2[] =
|
|
{ 0/*byte*/, X86::FILD16m, X86::FILD32m, 0/*FP*/, X86::FILD64m };
|
|
addFrameReference(BuildMI(*BB, IP, Op2[SrcClass], 5, DestReg), FrameIdx);
|
|
|
|
// We need special handling for unsigned 64-bit integer sources. If the
|
|
// input number has the "sign bit" set, then we loaded it incorrectly as a
|
|
// negative 64-bit number. In this case, add an offset value.
|
|
if (SrcTy == Type::ULongTy) {
|
|
// Emit a test instruction to see if the dynamic input value was signed.
|
|
BuildMI(*BB, IP, X86::TEST32rr, 2).addReg(SrcReg+1).addReg(SrcReg+1);
|
|
|
|
// If the sign bit is set, get a pointer to an offset, otherwise get a
|
|
// pointer to a zero.
|
|
MachineConstantPool *CP = F->getConstantPool();
|
|
unsigned Zero = makeAnotherReg(Type::IntTy);
|
|
Constant *Null = Constant::getNullValue(Type::UIntTy);
|
|
addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Zero),
|
|
CP->getConstantPoolIndex(Null));
|
|
unsigned Offset = makeAnotherReg(Type::IntTy);
|
|
Constant *OffsetCst = ConstantUInt::get(Type::UIntTy, 0x5f800000);
|
|
|
|
addConstantPoolReference(BuildMI(*BB, IP, X86::LEA32r, 5, Offset),
|
|
CP->getConstantPoolIndex(OffsetCst));
|
|
unsigned Addr = makeAnotherReg(Type::IntTy);
|
|
BuildMI(*BB, IP, X86::CMOVS32rr, 2, Addr).addReg(Zero).addReg(Offset);
|
|
|
|
// Load the constant for an add. FIXME: this could make an 'fadd' that
|
|
// reads directly from memory, but we don't support these yet.
|
|
unsigned ConstReg = makeAnotherReg(Type::DoubleTy);
|
|
addDirectMem(BuildMI(*BB, IP, X86::FLD32m, 4, ConstReg), Addr);
|
|
|
|
BuildMI(*BB, IP, X86::FpADD, 2, RealDestReg)
|
|
.addReg(ConstReg).addReg(DestReg);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
// Handle casts from floating point to integer now...
|
|
if (SrcClass == cFP) {
|
|
// Change the floating point control register to use "round towards zero"
|
|
// mode when truncating to an integer value.
|
|
//
|
|
int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2);
|
|
addFrameReference(BuildMI(*BB, IP, X86::FNSTCW16m, 4), CWFrameIdx);
|
|
|
|
// Load the old value of the high byte of the control word...
|
|
unsigned HighPartOfCW = makeAnotherReg(Type::UByteTy);
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV8rm, 4, HighPartOfCW),
|
|
CWFrameIdx, 1);
|
|
|
|
// Set the high part to be round to zero...
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV8mi, 5),
|
|
CWFrameIdx, 1).addImm(12);
|
|
|
|
// Reload the modified control word now...
|
|
addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
|
|
|
|
// Restore the memory image of control word to original value
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV8mr, 5),
|
|
CWFrameIdx, 1).addReg(HighPartOfCW);
|
|
|
|
// We don't have the facilities for directly storing byte sized data to
|
|
// memory. Promote it to 16 bits. We also must promote unsigned values to
|
|
// larger classes because we only have signed FP stores.
|
|
unsigned StoreClass = DestClass;
|
|
const Type *StoreTy = DestTy;
|
|
if (StoreClass == cByte || DestTy->isUnsigned())
|
|
switch (StoreClass) {
|
|
case cByte: StoreTy = Type::ShortTy; StoreClass = cShort; break;
|
|
case cShort: StoreTy = Type::IntTy; StoreClass = cInt; break;
|
|
case cInt: StoreTy = Type::LongTy; StoreClass = cLong; break;
|
|
// The following treatment of cLong may not be perfectly right,
|
|
// but it survives chains of casts of the form
|
|
// double->ulong->double.
|
|
case cLong: StoreTy = Type::LongTy; StoreClass = cLong; break;
|
|
default: assert(0 && "Unknown store class!");
|
|
}
|
|
|
|
// Spill the integer to memory and reload it from there...
|
|
int FrameIdx =
|
|
F->getFrameInfo()->CreateStackObject(StoreTy, TM.getTargetData());
|
|
|
|
static const unsigned Op1[] =
|
|
{ 0, X86::FIST16m, X86::FIST32m, 0, X86::FISTP64m };
|
|
addFrameReference(BuildMI(*BB, IP, Op1[StoreClass], 5),
|
|
FrameIdx).addReg(SrcReg);
|
|
|
|
if (DestClass == cLong) {
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg), FrameIdx);
|
|
addFrameReference(BuildMI(*BB, IP, X86::MOV32rm, 4, DestReg+1),
|
|
FrameIdx, 4);
|
|
} else {
|
|
static const unsigned Op2[] = { X86::MOV8rm, X86::MOV16rm, X86::MOV32rm };
|
|
addFrameReference(BuildMI(*BB, IP, Op2[DestClass], 4, DestReg), FrameIdx);
|
|
}
|
|
|
|
// Reload the original control word now...
|
|
addFrameReference(BuildMI(*BB, IP, X86::FLDCW16m, 4), CWFrameIdx);
|
|
return;
|
|
}
|
|
|
|
// Anything we haven't handled already, we can't (yet) handle at all.
|
|
assert(0 && "Unhandled cast instruction!");
|
|
abort();
|
|
}
|
|
|
|
/// visitVANextInst - Implement the va_next instruction...
|
|
///
|
|
void X86ISel::visitVANextInst(VANextInst &I) {
|
|
unsigned VAList = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
unsigned Size;
|
|
switch (I.getArgType()->getTypeID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
Size = 4;
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
case Type::DoubleTyID:
|
|
Size = 8;
|
|
break;
|
|
}
|
|
|
|
// Increment the VAList pointer...
|
|
BuildMI(BB, X86::ADD32ri, 2, DestReg).addReg(VAList).addImm(Size);
|
|
}
|
|
|
|
void X86ISel::visitVAArgInst(VAArgInst &I) {
|
|
unsigned VAList = getReg(I.getOperand(0));
|
|
unsigned DestReg = getReg(I);
|
|
|
|
switch (I.getType()->getTypeID()) {
|
|
default:
|
|
std::cerr << I;
|
|
assert(0 && "Error: bad type for va_next instruction!");
|
|
return;
|
|
case Type::PointerTyID:
|
|
case Type::UIntTyID:
|
|
case Type::IntTyID:
|
|
addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
|
|
break;
|
|
case Type::ULongTyID:
|
|
case Type::LongTyID:
|
|
addDirectMem(BuildMI(BB, X86::MOV32rm, 4, DestReg), VAList);
|
|
addRegOffset(BuildMI(BB, X86::MOV32rm, 4, DestReg+1), VAList, 4);
|
|
break;
|
|
case Type::DoubleTyID:
|
|
addDirectMem(BuildMI(BB, X86::FLD64m, 4, DestReg), VAList);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// visitGetElementPtrInst - instruction-select GEP instructions
|
|
///
|
|
void X86ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
|
|
// If this GEP instruction will be folded into all of its users, we don't need
|
|
// to explicitly calculate it!
|
|
X86AddressMode AM;
|
|
if (isGEPFoldable(0, I.getOperand(0), I.op_begin()+1, I.op_end(), AM)) {
|
|
// Check all of the users of the instruction to see if they are loads and
|
|
// stores.
|
|
bool AllWillFold = true;
|
|
for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI)
|
|
if (cast<Instruction>(*UI)->getOpcode() != Instruction::Load)
|
|
if (cast<Instruction>(*UI)->getOpcode() != Instruction::Store ||
|
|
cast<Instruction>(*UI)->getOperand(0) == &I) {
|
|
AllWillFold = false;
|
|
break;
|
|
}
|
|
|
|
// If the instruction is foldable, and will be folded into all users, don't
|
|
// emit it!
|
|
if (AllWillFold) return;
|
|
}
|
|
|
|
unsigned outputReg = getReg(I);
|
|
emitGEPOperation(BB, BB->end(), I.getOperand(0),
|
|
I.op_begin()+1, I.op_end(), outputReg);
|
|
}
|
|
|
|
/// getGEPIndex - Inspect the getelementptr operands specified with GEPOps and
|
|
/// GEPTypes (the derived types being stepped through at each level). On return
|
|
/// from this function, if some indexes of the instruction are representable as
|
|
/// an X86 lea instruction, the machine operands are put into the Ops
|
|
/// instruction and the consumed indexes are poped from the GEPOps/GEPTypes
|
|
/// lists. Otherwise, GEPOps.size() is returned. If this returns a an
|
|
/// addressing mode that only partially consumes the input, the BaseReg input of
|
|
/// the addressing mode must be left free.
|
|
///
|
|
/// Note that there is one fewer entry in GEPTypes than there is in GEPOps.
|
|
///
|
|
void X86ISel::getGEPIndex(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
std::vector<Value*> &GEPOps,
|
|
std::vector<const Type*> &GEPTypes,
|
|
X86AddressMode &AM) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
|
|
// Clear out the state we are working with...
|
|
AM.BaseType = X86AddressMode::RegBase;
|
|
AM.Base.Reg = 0; // No base register
|
|
AM.Scale = 1; // Unit scale
|
|
AM.IndexReg = 0; // No index register
|
|
AM.Disp = 0; // No displacement
|
|
|
|
// While there are GEP indexes that can be folded into the current address,
|
|
// keep processing them.
|
|
while (!GEPTypes.empty()) {
|
|
if (const StructType *StTy = dyn_cast<StructType>(GEPTypes.back())) {
|
|
// It's a struct access. CUI is the index into the structure,
|
|
// which names the field. This index must have unsigned type.
|
|
const ConstantUInt *CUI = cast<ConstantUInt>(GEPOps.back());
|
|
|
|
// Use the TargetData structure to pick out what the layout of the
|
|
// structure is in memory. Since the structure index must be constant, we
|
|
// can get its value and use it to find the right byte offset from the
|
|
// StructLayout class's list of structure member offsets.
|
|
AM.Disp += TD.getStructLayout(StTy)->MemberOffsets[CUI->getValue()];
|
|
GEPOps.pop_back(); // Consume a GEP operand
|
|
GEPTypes.pop_back();
|
|
} else {
|
|
// It's an array or pointer access: [ArraySize x ElementType].
|
|
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
|
|
Value *idx = GEPOps.back();
|
|
|
|
// idx is the index into the array. Unlike with structure
|
|
// indices, we may not know its actual value at code-generation
|
|
// time.
|
|
|
|
// If idx is a constant, fold it into the offset.
|
|
unsigned TypeSize = TD.getTypeSize(SqTy->getElementType());
|
|
if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(idx)) {
|
|
AM.Disp += TypeSize*CSI->getValue();
|
|
} else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(idx)) {
|
|
AM.Disp += TypeSize*CUI->getValue();
|
|
} else {
|
|
// If the index reg is already taken, we can't handle this index.
|
|
if (AM.IndexReg) return;
|
|
|
|
// If this is a size that we can handle, then add the index as
|
|
switch (TypeSize) {
|
|
case 1: case 2: case 4: case 8:
|
|
// These are all acceptable scales on X86.
|
|
AM.Scale = TypeSize;
|
|
break;
|
|
default:
|
|
// Otherwise, we can't handle this scale
|
|
return;
|
|
}
|
|
|
|
if (CastInst *CI = dyn_cast<CastInst>(idx))
|
|
if (CI->getOperand(0)->getType() == Type::IntTy ||
|
|
CI->getOperand(0)->getType() == Type::UIntTy)
|
|
idx = CI->getOperand(0);
|
|
|
|
AM.IndexReg = MBB ? getReg(idx, MBB, IP) : 1;
|
|
}
|
|
|
|
GEPOps.pop_back(); // Consume a GEP operand
|
|
GEPTypes.pop_back();
|
|
}
|
|
}
|
|
|
|
// GEPTypes is empty, which means we have a single operand left. Set it as
|
|
// the base register.
|
|
//
|
|
assert(AM.Base.Reg == 0);
|
|
|
|
if (AllocaInst *AI = dyn_castFixedAlloca(GEPOps.back())) {
|
|
AM.BaseType = X86AddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = getFixedSizedAllocaFI(AI);
|
|
GEPOps.pop_back();
|
|
return;
|
|
}
|
|
|
|
#if 0 // FIXME: TODO!
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
// FIXME: When addressing modes are more powerful/correct, we could load
|
|
// global addresses directly as 32-bit immediates.
|
|
}
|
|
#endif
|
|
|
|
AM.Base.Reg = MBB ? getReg(GEPOps[0], MBB, IP) : 1;
|
|
GEPOps.pop_back(); // Consume the last GEP operand
|
|
}
|
|
|
|
|
|
/// isGEPFoldable - Return true if the specified GEP can be completely
|
|
/// folded into the addressing mode of a load/store or lea instruction.
|
|
bool X86ISel::isGEPFoldable(MachineBasicBlock *MBB,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, X86AddressMode &AM) {
|
|
|
|
std::vector<Value*> GEPOps;
|
|
GEPOps.resize(IdxEnd-IdxBegin+1);
|
|
GEPOps[0] = Src;
|
|
std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
|
|
|
|
std::vector<const Type*>
|
|
GEPTypes(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
|
|
gep_type_end(Src->getType(), IdxBegin, IdxEnd));
|
|
|
|
MachineBasicBlock::iterator IP;
|
|
if (MBB) IP = MBB->end();
|
|
getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
|
|
|
|
// We can fold it away iff the getGEPIndex call eliminated all operands.
|
|
return GEPOps.empty();
|
|
}
|
|
|
|
void X86ISel::emitGEPOperation(MachineBasicBlock *MBB,
|
|
MachineBasicBlock::iterator IP,
|
|
Value *Src, User::op_iterator IdxBegin,
|
|
User::op_iterator IdxEnd, unsigned TargetReg) {
|
|
const TargetData &TD = TM.getTargetData();
|
|
|
|
// If this is a getelementptr null, with all constant integer indices, just
|
|
// replace it with TargetReg = 42.
|
|
if (isa<ConstantPointerNull>(Src)) {
|
|
User::op_iterator I = IdxBegin;
|
|
for (; I != IdxEnd; ++I)
|
|
if (!isa<ConstantInt>(*I))
|
|
break;
|
|
if (I == IdxEnd) { // All constant indices
|
|
unsigned Offset = TD.getIndexedOffset(Src->getType(),
|
|
std::vector<Value*>(IdxBegin, IdxEnd));
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addImm(Offset);
|
|
return;
|
|
}
|
|
}
|
|
|
|
std::vector<Value*> GEPOps;
|
|
GEPOps.resize(IdxEnd-IdxBegin+1);
|
|
GEPOps[0] = Src;
|
|
std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
|
|
|
|
std::vector<const Type*> GEPTypes;
|
|
GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
|
|
gep_type_end(Src->getType(), IdxBegin, IdxEnd));
|
|
|
|
// Keep emitting instructions until we consume the entire GEP instruction.
|
|
while (!GEPOps.empty()) {
|
|
unsigned OldSize = GEPOps.size();
|
|
X86AddressMode AM;
|
|
getGEPIndex(MBB, IP, GEPOps, GEPTypes, AM);
|
|
|
|
if (GEPOps.size() != OldSize) {
|
|
// getGEPIndex consumed some of the input. Build an LEA instruction here.
|
|
unsigned NextTarget = 0;
|
|
if (!GEPOps.empty()) {
|
|
assert(AM.Base.Reg == 0 &&
|
|
"getGEPIndex should have left the base register open for chaining!");
|
|
NextTarget = AM.Base.Reg = makeAnotherReg(Type::UIntTy);
|
|
}
|
|
|
|
if (AM.BaseType == X86AddressMode::RegBase &&
|
|
AM.IndexReg == 0 && AM.Disp == 0)
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(AM.Base.Reg);
|
|
else
|
|
addFullAddress(BuildMI(*MBB, IP, X86::LEA32r, 5, TargetReg), AM);
|
|
--IP;
|
|
TargetReg = NextTarget;
|
|
} else if (GEPTypes.empty()) {
|
|
// The getGEPIndex operation didn't want to build an LEA. Check to see if
|
|
// all operands are consumed but the base pointer. If so, just load it
|
|
// into the register.
|
|
if (GlobalValue *GV = dyn_cast<GlobalValue>(GEPOps[0])) {
|
|
BuildMI(*MBB, IP, X86::MOV32ri, 1, TargetReg).addGlobalAddress(GV);
|
|
} else {
|
|
unsigned BaseReg = getReg(GEPOps[0], MBB, IP);
|
|
BuildMI(*MBB, IP, X86::MOV32rr, 1, TargetReg).addReg(BaseReg);
|
|
}
|
|
break; // we are now done
|
|
|
|
} else {
|
|
// It's an array or pointer access: [ArraySize x ElementType].
|
|
const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
|
|
Value *idx = GEPOps.back();
|
|
GEPOps.pop_back(); // Consume a GEP operand
|
|
GEPTypes.pop_back();
|
|
|
|
// Many GEP instructions use a [cast (int/uint) to LongTy] as their
|
|
// operand on X86. Handle this case directly now...
|
|
if (CastInst *CI = dyn_cast<CastInst>(idx))
|
|
if (CI->getOperand(0)->getType() == Type::IntTy ||
|
|
CI->getOperand(0)->getType() == Type::UIntTy)
|
|
idx = CI->getOperand(0);
|
|
|
|
// We want to add BaseReg to(idxReg * sizeof ElementType). First, we
|
|
// must find the size of the pointed-to type (Not coincidentally, the next
|
|
// type is the type of the elements in the array).
|
|
const Type *ElTy = SqTy->getElementType();
|
|
unsigned elementSize = TD.getTypeSize(ElTy);
|
|
|
|
// If idxReg is a constant, we don't need to perform the multiply!
|
|
if (ConstantInt *CSI = dyn_cast<ConstantInt>(idx)) {
|
|
if (!CSI->isNullValue()) {
|
|
unsigned Offset = elementSize*CSI->getRawValue();
|
|
unsigned Reg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*MBB, IP, X86::ADD32ri, 2, TargetReg)
|
|
.addReg(Reg).addImm(Offset);
|
|
--IP; // Insert the next instruction before this one.
|
|
TargetReg = Reg; // Codegen the rest of the GEP into this
|
|
}
|
|
} else if (elementSize == 1) {
|
|
// If the element size is 1, we don't have to multiply, just add
|
|
unsigned idxReg = getReg(idx, MBB, IP);
|
|
unsigned Reg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*MBB, IP, X86::ADD32rr, 2,TargetReg).addReg(Reg).addReg(idxReg);
|
|
--IP; // Insert the next instruction before this one.
|
|
TargetReg = Reg; // Codegen the rest of the GEP into this
|
|
} else {
|
|
unsigned idxReg = getReg(idx, MBB, IP);
|
|
unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
|
|
|
|
// Make sure we can back the iterator up to point to the first
|
|
// instruction emitted.
|
|
MachineBasicBlock::iterator BeforeIt = IP;
|
|
if (IP == MBB->begin())
|
|
BeforeIt = MBB->end();
|
|
else
|
|
--BeforeIt;
|
|
doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
|
|
|
|
// Emit an ADD to add OffsetReg to the basePtr.
|
|
unsigned Reg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(*MBB, IP, X86::ADD32rr, 2, TargetReg)
|
|
.addReg(Reg).addReg(OffsetReg);
|
|
|
|
// Step to the first instruction of the multiply.
|
|
if (BeforeIt == MBB->end())
|
|
IP = MBB->begin();
|
|
else
|
|
IP = ++BeforeIt;
|
|
|
|
TargetReg = Reg; // Codegen the rest of the GEP into this
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
|
|
/// frame manager, otherwise do it the hard way.
|
|
///
|
|
void X86ISel::visitAllocaInst(AllocaInst &I) {
|
|
// If this is a fixed size alloca in the entry block for the function, we
|
|
// statically stack allocate the space, so we don't need to do anything here.
|
|
//
|
|
if (dyn_castFixedAlloca(&I)) return;
|
|
|
|
// Find the data size of the alloca inst's getAllocatedType.
|
|
const Type *Ty = I.getAllocatedType();
|
|
unsigned TySize = TM.getTargetData().getTypeSize(Ty);
|
|
|
|
// Create a register to hold the temporary result of multiplying the type size
|
|
// constant by the variable amount.
|
|
unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
|
|
unsigned SrcReg1 = getReg(I.getArraySize());
|
|
|
|
// TotalSizeReg = mul <numelements>, <TypeSize>
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
|
|
|
|
// AddedSize = add <TotalSizeReg>, 15
|
|
unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::ADD32ri, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
|
|
|
|
// AlignedSize = and <AddedSize>, ~15
|
|
unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
|
|
BuildMI(BB, X86::AND32ri, 2, AlignedSize).addReg(AddedSizeReg).addImm(~15);
|
|
|
|
// Subtract size from stack pointer, thereby allocating some space.
|
|
BuildMI(BB, X86::SUB32rr, 2, X86::ESP).addReg(X86::ESP).addReg(AlignedSize);
|
|
|
|
// Put a pointer to the space into the result register, by copying
|
|
// the stack pointer.
|
|
BuildMI(BB, X86::MOV32rr, 1, getReg(I)).addReg(X86::ESP);
|
|
|
|
// Inform the Frame Information that we have just allocated a variable-sized
|
|
// object.
|
|
F->getFrameInfo()->CreateVariableSizedObject();
|
|
}
|
|
|
|
/// visitMallocInst - Malloc instructions are code generated into direct calls
|
|
/// to the library malloc.
|
|
///
|
|
void X86ISel::visitMallocInst(MallocInst &I) {
|
|
unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
|
|
unsigned Arg;
|
|
|
|
if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
|
|
Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
|
|
} else {
|
|
Arg = makeAnotherReg(Type::UIntTy);
|
|
unsigned Op0Reg = getReg(I.getOperand(0));
|
|
MachineBasicBlock::iterator MBBI = BB->end();
|
|
doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
|
|
}
|
|
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(Arg, Type::UIntTy));
|
|
MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
|
|
1).addExternalSymbol("malloc", true);
|
|
doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
|
|
}
|
|
|
|
|
|
/// visitFreeInst - Free instructions are code gen'd to call the free libc
|
|
/// function.
|
|
///
|
|
void X86ISel::visitFreeInst(FreeInst &I) {
|
|
std::vector<ValueRecord> Args;
|
|
Args.push_back(ValueRecord(I.getOperand(0)));
|
|
MachineInstr *TheCall = BuildMI(X86::CALLpcrel32,
|
|
1).addExternalSymbol("free", true);
|
|
doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
|
|
}
|
|
|
|
/// createX86SimpleInstructionSelector - This pass converts an LLVM function
|
|
/// into a machine code representation is a very simple peep-hole fashion. The
|
|
/// generated code sucks but the implementation is nice and simple.
|
|
///
|
|
FunctionPass *llvm::createX86SimpleInstructionSelector(TargetMachine &TM) {
|
|
return new X86ISel(TM);
|
|
}
|