llvm-6502/lib/Target/SparcV9/ModuloScheduling/MSchedGraph.cpp
Tanya Lattner 9b3cbdbedb Adding new Modulo Scheduling graph files.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@12031 91177308-0d34-0410-b5e6-96231b3b80d8
2004-03-01 02:50:57 +00:00

392 lines
13 KiB
C++

//===-- MSchedGraph.h - Scheduling Graph ------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A graph class for dependencies
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "ModuloSched"
#include "MSchedGraph.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "Support/Debug.h"
#include <iostream>
using namespace llvm;
MSchedGraphNode::MSchedGraphNode(const MachineInstr* inst,
MSchedGraph *graph,
unsigned late)
: Inst(inst), Parent(graph), latency(late) {
//Add to the graph
graph->addNode(inst, this);
}
void MSchedGraphNode::print(std::ostream &os) const {
os << "MSehedGraphNode: Inst=" << *Inst << ", latency= " << latency << "\n";
}
MSchedGraphEdge MSchedGraphNode::getInEdge(MSchedGraphNode *pred) {
//Loop over all the successors of our predecessor
//return the edge the corresponds to this in edge
for(MSchedGraphNode::succ_iterator I = pred->succ_begin(), E = pred->succ_end();
I != E; ++I) {
if(*I == this)
return I.getEdge();
}
assert(0 && "Should have found edge between this node and its predecessor!");
}
void MSchedGraph::addNode(const MachineInstr *MI,
MSchedGraphNode *node) {
//Make sure node does not already exist
assert(GraphMap.find(MI) == GraphMap.end()
&& "New MSchedGraphNode already exists for this instruction");
GraphMap[MI] = node;
}
MSchedGraph::MSchedGraph(const MachineBasicBlock *bb, const TargetMachine &targ)
: BB(bb), Target(targ) {
//Make sure BB is not null,
assert(BB != NULL && "Basic Block is null");
DEBUG(std::cerr << "Constructing graph for " << bb << "\n");
//Create nodes and edges for this BB
buildNodesAndEdges();
}
MSchedGraph::~MSchedGraph () {
for(MSchedGraph::iterator I = GraphMap.begin(), E = GraphMap.end(); I != E; ++I)
delete I->second;
}
void MSchedGraph::buildNodesAndEdges() {
//Get Machine target information for calculating latency
const TargetInstrInfo &MTI = Target.getInstrInfo();
std::vector<MSchedGraphNode*> memInstructions;
std::map<int, std::vector<OpIndexNodePair> > regNumtoNodeMap;
std::map<const Value*, std::vector<OpIndexNodePair> > valuetoNodeMap;
//Save PHI instructions to deal with later
std::vector<const MachineInstr*> phiInstrs;
//Loop over instructions in MBB and add nodes and edges
for (MachineBasicBlock::const_iterator MI = BB->begin(), e = BB->end(); MI != e; ++MI) {
//Get each instruction of machine basic block, get the delay
//using the op code, create a new node for it, and add to the
//graph.
MachineOpCode MIopCode = MI->getOpcode();
int delay;
//Check if subsequent instructions can be issued before
//the result is ready, if so use min delay.
if(MTI.hasResultInterlock(MIopCode))
delay = MTI.minLatency(MIopCode);
else
delay = MTI.maxLatency(MIopCode);
//Create new node for this machine instruction and add to the graph.
//Create only if not a nop
if(MTI.isNop(MIopCode))
continue;
//Add PHI to phi instruction list to be processed later
if (MIopCode == TargetInstrInfo::PHI)
phiInstrs.push_back(MI);
//Node is created and added to the graph automatically
MSchedGraphNode *node = new MSchedGraphNode(MI, this, delay);
DEBUG(std::cerr << "Created Node: " << *node << "\n");
//Check OpCode to keep track of memory operations to add memory dependencies later.
MachineOpCode opCode = MI->getOpcode();
if(MTI.isLoad(opCode) || MTI.isStore(opCode))
memInstructions.push_back(node);
//Loop over all operands, and put them into the register number to
//graph node map for determining dependencies
//If an operands is a use/def, we have an anti dependence to itself
for(unsigned i=0; i < MI->getNumOperands(); ++i) {
//Get Operand
const MachineOperand &mOp = MI->getOperand(i);
//Check if it has an allocated register (Note: this means it
//is greater then zero because zero is a special register for
//Sparc that holds the constant zero
if(mOp.hasAllocatedReg()) {
int regNum = mOp.getReg();
//Put into our map
regNumtoNodeMap[regNum].push_back(std::make_pair(i, node));
continue;
}
//Add virtual registers dependencies
//Check if any exist in the value map already and create dependencies
//between them.
if(mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) {
//Make sure virtual register value is not null
assert((mOp.getVRegValue() != NULL) && "Null value is defined");
//Check if this is a read operation in a phi node, if so DO NOT PROCESS
if(mOp.isUse() && (MIopCode == TargetInstrInfo::PHI))
continue;
if (const Value* srcI = mOp.getVRegValue()) {
//Find value in the map
std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
= valuetoNodeMap.find(srcI);
//If there is something in the map already, add edges from
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef());
//Add to value map
V->second.push_back(std::make_pair(i,node));
}
//Otherwise put it in the map
else
//Put into value map
valuetoNodeMap[mOp.getVRegValue()].push_back(std::make_pair(i, node));
}
}
}
}
addMemEdges(memInstructions);
addMachRegEdges(regNumtoNodeMap);
//Finally deal with PHI Nodes and Value*
for(std::vector<const MachineInstr*>::iterator I = phiInstrs.begin(), E = phiInstrs.end(); I != E; ++I) {
//Get Node for this instruction
MSchedGraphNode *node = find(*I)->second;
//Loop over operands for this instruction and add value edges
for(unsigned i=0; i < (*I)->getNumOperands(); ++i) {
//Get Operand
const MachineOperand &mOp = (*I)->getOperand(i);
if((mOp.getType() == MachineOperand::MO_VirtualRegister || mOp.getType() == MachineOperand::MO_CCRegister) && mOp.isUse()) {
//find the value in the map
if (const Value* srcI = mOp.getVRegValue()) {
//Find value in the map
std::map<const Value*, std::vector<OpIndexNodePair> >::iterator V
= valuetoNodeMap.find(srcI);
//If there is something in the map already, add edges from
//those instructions
//to this one we are processing
if(V != valuetoNodeMap.end()) {
addValueEdges(V->second, node, mOp.isUse(), mOp.isDef(), 1);
}
}
}
}
}
}
void MSchedGraph::addValueEdges(std::vector<OpIndexNodePair> &NodesInMap,
MSchedGraphNode *destNode, bool nodeIsUse,
bool nodeIsDef, int diff) {
for(std::vector<OpIndexNodePair>::iterator I = NodesInMap.begin(),
E = NodesInMap.end(); I != E; ++I) {
//Get node in vectors machine operand that is the same value as node
MSchedGraphNode *srcNode = I->second;
MachineOperand mOp = srcNode->getInst()->getOperand(I->first);
//Node is a Def, so add output dep.
if(nodeIsDef) {
if(mOp.isUse())
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::AntiDep, diff);
if(mOp.isDef())
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::OutputDep, diff);
}
if(nodeIsUse) {
if(mOp.isDef())
srcNode->addOutEdge(destNode, MSchedGraphEdge::ValueDep,
MSchedGraphEdge::TrueDep, diff);
}
}
}
void MSchedGraph::addMachRegEdges(std::map<int, std::vector<OpIndexNodePair> >& regNumtoNodeMap) {
//Loop over all machine registers in the map, and add dependencies
//between the instructions that use it
typedef std::map<int, std::vector<OpIndexNodePair> > regNodeMap;
for(regNodeMap::iterator I = regNumtoNodeMap.begin(); I != regNumtoNodeMap.end(); ++I) {
//Get the register number
int regNum = (*I).first;
//Get Vector of nodes that use this register
std::vector<OpIndexNodePair> Nodes = (*I).second;
//Loop over nodes and determine the dependence between the other
//nodes in the vector
for(unsigned i =0; i < Nodes.size(); ++i) {
//Get src node operator index that uses this machine register
int srcOpIndex = Nodes[i].first;
//Get the actual src Node
MSchedGraphNode *srcNode = Nodes[i].second;
//Get Operand
const MachineOperand &srcMOp = srcNode->getInst()->getOperand(srcOpIndex);
bool srcIsUseandDef = srcMOp.isDef() && srcMOp.isUse();
bool srcIsUse = srcMOp.isUse() && !srcMOp.isDef();
//Look at all instructions after this in execution order
for(unsigned j=i+1; j < Nodes.size(); ++j) {
//Sink node is a write
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
//Src only uses the register (read)
if(srcIsUse)
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep);
else if(srcIsUseandDef) {
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep);
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep);
}
else
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep);
}
//Dest node is a read
else {
if(!srcIsUse || srcIsUseandDef)
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::TrueDep);
}
}
//Look at all the instructions before this one since machine registers
//could live across iterations.
for(unsigned j = 0; j < i; ++j) {
//Sink node is a write
if(Nodes[j].second->getInst()->getOperand(Nodes[j].first).isDef()) {
//Src only uses the register (read)
if(srcIsUse)
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep, 1);
else if(srcIsUseandDef) {
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::AntiDep, 1);
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep, 1);
}
else
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::OutputDep, 1);
}
//Dest node is a read
else {
if(!srcIsUse || srcIsUseandDef)
srcNode->addOutEdge(Nodes[j].second, MSchedGraphEdge::MachineRegister,
MSchedGraphEdge::TrueDep,1 );
}
}
}
}
}
void MSchedGraph::addMemEdges(const std::vector<MSchedGraphNode*>& memInst) {
//Get Target machine instruction info
const TargetInstrInfo& TMI = Target.getInstrInfo();
//Loop over all memory instructions in the vector
//Knowing that they are in execution, add true, anti, and output dependencies
for (unsigned srcIndex = 0; srcIndex < memInst.size(); ++srcIndex) {
//Get the machine opCode to determine type of memory instruction
MachineOpCode srcNodeOpCode = memInst[srcIndex]->getInst()->getOpcode();
//All instructions after this one in execution order have an iteration delay of 0
for(unsigned destIndex = srcIndex + 1; destIndex < memInst.size(); ++destIndex) {
//source is a Load, so add anti-dependencies (store after load)
if(TMI.isLoad(srcNodeOpCode))
if(TMI.isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::AntiDep);
//If source is a store, add output and true dependencies
if(TMI.isStore(srcNodeOpCode)) {
if(TMI.isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::OutputDep);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::TrueDep);
}
}
//All instructions before the src in execution order have an iteration delay of 1
for(unsigned destIndex = 0; destIndex < srcIndex; ++destIndex) {
//source is a Load, so add anti-dependencies (store after load)
if(TMI.isLoad(srcNodeOpCode))
if(TMI.isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::AntiDep, 1);
if(TMI.isStore(srcNodeOpCode)) {
if(TMI.isStore(memInst[destIndex]->getInst()->getOpcode()))
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::OutputDep, 1);
else
memInst[srcIndex]->addOutEdge(memInst[destIndex],
MSchedGraphEdge::MemoryDep,
MSchedGraphEdge::TrueDep, 1);
}
}
}
}