llvm-6502/lib/Target/ARM/AsmPrinter/ARMAsmPrinter.cpp
2009-09-15 17:53:11 +00:00

1270 lines
43 KiB
C++

// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to GAS-format ARM assembly language.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "ARM.h"
#include "ARMBuildAttrs.h"
#include "ARMTargetMachine.h"
#include "ARMAddressingModes.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "llvm/Constants.h"
#include "llvm/Module.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegistry.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/FormattedStream.h"
#include <cctype>
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
namespace {
class VISIBILITY_HIDDEN ARMAsmPrinter : public AsmPrinter {
DwarfWriter *DW;
/// Subtarget - Keep a pointer to the ARMSubtarget around so that we can
/// make the right decision when printing asm code for different targets.
const ARMSubtarget *Subtarget;
/// AFI - Keep a pointer to ARMFunctionInfo for the current
/// MachineFunction.
ARMFunctionInfo *AFI;
/// MCP - Keep a pointer to constantpool entries of the current
/// MachineFunction.
const MachineConstantPool *MCP;
/// We name each basic block in a Function with a unique number, so
/// that we can consistently refer to them later. This is cleared
/// at the beginning of each call to runOnMachineFunction().
///
typedef std::map<const Value *, unsigned> ValueMapTy;
ValueMapTy NumberForBB;
/// GVNonLazyPtrs - Keeps the set of GlobalValues that require
/// non-lazy-pointers for indirect access.
StringMap<std::string> GVNonLazyPtrs;
/// HiddenGVNonLazyPtrs - Keeps the set of GlobalValues with hidden
/// visibility that require non-lazy-pointers for indirect access.
StringMap<std::string> HiddenGVNonLazyPtrs;
/// True if asm printer is printing a series of CONSTPOOL_ENTRY.
bool InCPMode;
public:
explicit ARMAsmPrinter(formatted_raw_ostream &O, TargetMachine &TM,
const MCAsmInfo *T, bool V)
: AsmPrinter(O, TM, T, V), DW(0), AFI(NULL), MCP(NULL),
InCPMode(false) {
Subtarget = &TM.getSubtarget<ARMSubtarget>();
}
virtual const char *getPassName() const {
return "ARM Assembly Printer";
}
void printOperand(const MachineInstr *MI, int OpNum,
const char *Modifier = 0);
void printSOImmOperand(const MachineInstr *MI, int OpNum);
void printSOImm2PartOperand(const MachineInstr *MI, int OpNum);
void printSORegOperand(const MachineInstr *MI, int OpNum);
void printAddrMode2Operand(const MachineInstr *MI, int OpNum);
void printAddrMode2OffsetOperand(const MachineInstr *MI, int OpNum);
void printAddrMode3Operand(const MachineInstr *MI, int OpNum);
void printAddrMode3OffsetOperand(const MachineInstr *MI, int OpNum);
void printAddrMode4Operand(const MachineInstr *MI, int OpNum,
const char *Modifier = 0);
void printAddrMode5Operand(const MachineInstr *MI, int OpNum,
const char *Modifier = 0);
void printAddrMode6Operand(const MachineInstr *MI, int OpNum);
void printAddrModePCOperand(const MachineInstr *MI, int OpNum,
const char *Modifier = 0);
void printBitfieldInvMaskImmOperand (const MachineInstr *MI, int OpNum);
void printThumbITMask(const MachineInstr *MI, int OpNum);
void printThumbAddrModeRROperand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeRI5Operand(const MachineInstr *MI, int OpNum,
unsigned Scale);
void printThumbAddrModeS1Operand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeS2Operand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeS4Operand(const MachineInstr *MI, int OpNum);
void printThumbAddrModeSPOperand(const MachineInstr *MI, int OpNum);
void printT2SOOperand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm12Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8s4Operand(const MachineInstr *MI, int OpNum);
void printT2AddrModeImm8OffsetOperand(const MachineInstr *MI, int OpNum);
void printT2AddrModeSoRegOperand(const MachineInstr *MI, int OpNum);
void printPredicateOperand(const MachineInstr *MI, int OpNum);
void printSBitModifierOperand(const MachineInstr *MI, int OpNum);
void printPCLabel(const MachineInstr *MI, int OpNum);
void printRegisterList(const MachineInstr *MI, int OpNum);
void printCPInstOperand(const MachineInstr *MI, int OpNum,
const char *Modifier);
void printJTBlockOperand(const MachineInstr *MI, int OpNum);
void printJT2BlockOperand(const MachineInstr *MI, int OpNum);
void printTBAddrMode(const MachineInstr *MI, int OpNum);
void printNoHashImmediate(const MachineInstr *MI, int OpNum);
virtual bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode);
virtual bool PrintAsmMemoryOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant,
const char *ExtraCode);
void PrintGlobalVariable(const GlobalVariable* GVar);
void printInstruction(const MachineInstr *MI); // autogenerated.
static const char *getRegisterName(unsigned RegNo);
void printMachineInstruction(const MachineInstr *MI);
bool runOnMachineFunction(MachineFunction &F);
bool doInitialization(Module &M);
bool doFinalization(Module &M);
/// EmitMachineConstantPoolValue - Print a machine constantpool value to
/// the .s file.
virtual void EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
printDataDirective(MCPV->getType());
ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
GlobalValue *GV = ACPV->getGV();
std::string Name;
if (ACPV->isLSDA()) {
SmallString<16> LSDAName;
raw_svector_ostream(LSDAName) << MAI->getPrivateGlobalPrefix() <<
"_LSDA_" << getFunctionNumber();
Name = LSDAName.str();
} else if (GV) {
bool isIndirect = Subtarget->isTargetDarwin() &&
Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
if (!isIndirect)
Name = Mang->getMangledName(GV);
else {
// FIXME: Remove this when Darwin transition to @GOT like syntax.
std::string SymName = Mang->getMangledName(GV);
Name = Mang->getMangledName(GV, "$non_lazy_ptr", true);
if (GV->hasHiddenVisibility())
HiddenGVNonLazyPtrs[SymName] = Name;
else
GVNonLazyPtrs[SymName] = Name;
}
} else
Name = Mang->makeNameProper(ACPV->getSymbol());
O << Name;
if (ACPV->hasModifier()) O << "(" << ACPV->getModifier() << ")";
if (ACPV->getPCAdjustment() != 0) {
O << "-(" << MAI->getPrivateGlobalPrefix() << "PC"
<< ACPV->getLabelId()
<< "+" << (unsigned)ACPV->getPCAdjustment();
if (ACPV->mustAddCurrentAddress())
O << "-.";
O << ")";
}
O << "\n";
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AsmPrinter::getAnalysisUsage(AU);
AU.setPreservesAll();
AU.addRequired<MachineModuleInfo>();
AU.addRequired<DwarfWriter>();
}
};
} // end of anonymous namespace
#include "ARMGenAsmWriter.inc"
/// runOnMachineFunction - This uses the printInstruction()
/// method to print assembly for each instruction.
///
bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
this->MF = &MF;
AFI = MF.getInfo<ARMFunctionInfo>();
MCP = MF.getConstantPool();
SetupMachineFunction(MF);
O << "\n";
// NOTE: we don't print out constant pools here, they are handled as
// instructions.
O << '\n';
// Print out labels for the function.
const Function *F = MF.getFunction();
OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
switch (F->getLinkage()) {
default: llvm_unreachable("Unknown linkage type!");
case Function::PrivateLinkage:
case Function::InternalLinkage:
break;
case Function::ExternalLinkage:
O << "\t.globl\t" << CurrentFnName << "\n";
break;
case Function::LinkerPrivateLinkage:
case Function::WeakAnyLinkage:
case Function::WeakODRLinkage:
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl\t" << CurrentFnName << "\n";
O << "\t.weak_definition\t" << CurrentFnName << "\n";
} else {
O << MAI->getWeakRefDirective() << CurrentFnName << "\n";
}
break;
}
printVisibility(CurrentFnName, F->getVisibility());
if (AFI->isThumbFunction()) {
EmitAlignment(MF.getAlignment(), F, AFI->getAlign());
O << "\t.code\t16\n";
O << "\t.thumb_func";
if (Subtarget->isTargetDarwin())
O << "\t" << CurrentFnName;
O << "\n";
InCPMode = false;
} else {
EmitAlignment(MF.getAlignment(), F);
}
O << CurrentFnName << ":\n";
// Emit pre-function debug information.
DW->BeginFunction(&MF);
if (Subtarget->isTargetDarwin()) {
// If the function is empty, then we need to emit *something*. Otherwise,
// the function's label might be associated with something that it wasn't
// meant to be associated with. We emit a noop in this situation.
MachineFunction::iterator I = MF.begin();
if (++I == MF.end() && MF.front().empty())
O << "\tnop\n";
}
// Print out code for the function.
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (I != MF.begin()) {
EmitBasicBlockStart(I);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
II != E; ++II) {
// Print the assembly for the instruction.
printMachineInstruction(II);
}
}
if (MAI->hasDotTypeDotSizeDirective())
O << "\t.size " << CurrentFnName << ", .-" << CurrentFnName << "\n";
// Emit post-function debug information.
DW->EndFunction(&MF);
return false;
}
void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNum);
switch (MO.getType()) {
case MachineOperand::MO_Register: {
unsigned Reg = MO.getReg();
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (Modifier && strcmp(Modifier, "dregpair") == 0) {
unsigned DRegLo = TRI->getSubReg(Reg, 5); // arm_dsubreg_0
unsigned DRegHi = TRI->getSubReg(Reg, 6); // arm_dsubreg_1
O << '{'
<< getRegisterName(DRegLo) << ',' << getRegisterName(DRegHi)
<< '}';
} else if (Modifier && strcmp(Modifier, "lane") == 0) {
unsigned RegNum = ARMRegisterInfo::getRegisterNumbering(Reg);
unsigned DReg = TRI->getMatchingSuperReg(Reg, RegNum & 1 ? 2 : 1,
&ARM::DPR_VFP2RegClass);
O << getRegisterName(DReg) << '[' << (RegNum & 1) << ']';
} else {
O << getRegisterName(Reg);
}
} else
llvm_unreachable("not implemented");
break;
}
case MachineOperand::MO_Immediate: {
O << '#' << MO.getImm();
break;
}
case MachineOperand::MO_MachineBasicBlock:
GetMBBSymbol(MO.getMBB()->getNumber())->print(O, MAI);
return;
case MachineOperand::MO_GlobalAddress: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
GlobalValue *GV = MO.getGlobal();
O << Mang->getMangledName(GV);
printOffset(MO.getOffset());
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ExternalSymbol: {
bool isCallOp = Modifier && !strcmp(Modifier, "call");
std::string Name = Mang->makeNameProper(MO.getSymbolName());
O << Name;
if (isCallOp && Subtarget->isTargetELF() &&
TM.getRelocationModel() == Reloc::PIC_)
O << "(PLT)";
break;
}
case MachineOperand::MO_ConstantPoolIndex:
O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << MO.getIndex();
break;
case MachineOperand::MO_JumpTableIndex:
O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << MO.getIndex();
break;
default:
O << "<unknown operand type>"; abort (); break;
}
}
static void printSOImm(formatted_raw_ostream &O, int64_t V, bool VerboseAsm,
const MCAsmInfo *MAI) {
// Break it up into two parts that make up a shifter immediate.
V = ARM_AM::getSOImmVal(V);
assert(V != -1 && "Not a valid so_imm value!");
unsigned Imm = ARM_AM::getSOImmValImm(V);
unsigned Rot = ARM_AM::getSOImmValRot(V);
// Print low-level immediate formation info, per
// A5.1.3: "Data-processing operands - Immediate".
if (Rot) {
O << "#" << Imm << ", " << Rot;
// Pretty printed version.
if (VerboseAsm)
O << ' ' << MAI->getCommentString()
<< ' ' << (int)ARM_AM::rotr32(Imm, Rot);
} else {
O << "#" << Imm;
}
}
/// printSOImmOperand - SOImm is 4-bit rotate amount in bits 8-11 with 8-bit
/// immediate in bits 0-7.
void ARMAsmPrinter::printSOImmOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
printSOImm(O, MO.getImm(), VerboseAsm, MAI);
}
/// printSOImm2PartOperand - SOImm is broken into two pieces using a 'mov'
/// followed by an 'orr' to materialize.
void ARMAsmPrinter::printSOImm2PartOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO = MI->getOperand(OpNum);
assert(MO.isImm() && "Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO.getImm());
printSOImm(O, V1, VerboseAsm, MAI);
O << "\n\torr";
printPredicateOperand(MI, 2);
O << " ";
printOperand(MI, 0);
O << ", ";
printOperand(MI, 0);
O << ", ";
printSOImm(O, V2, VerboseAsm, MAI);
}
// so_reg is a 4-operand unit corresponding to register forms of the A5.1
// "Addressing Mode 1 - Data-processing operands" forms. This includes:
// REG 0 0 - e.g. R5
// REG REG 0,SH_OPC - e.g. R5, ROR R3
// REG 0 IMM,SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printSORegOperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
O << getRegisterName(MO1.getReg());
// Print the shift opc.
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO3.getImm()))
<< " ";
if (MO2.getReg()) {
O << getRegisterName(MO2.getReg());
assert(ARM_AM::getSORegOffset(MO3.getImm()) == 0);
} else {
O << "#" << ARM_AM::getSORegOffset(MO3.getImm());
}
}
void ARMAsmPrinter::printAddrMode2Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
O << "[" << getRegisterName(MO1.getReg());
if (!MO2.getReg()) {
if (ARM_AM::getAM2Offset(MO3.getImm())) // Don't print +0.
O << ", #"
<< (char)ARM_AM::getAM2Op(MO3.getImm())
<< ARM_AM::getAM2Offset(MO3.getImm());
O << "]";
return;
}
O << ", "
<< (char)ARM_AM::getAM2Op(MO3.getImm())
<< getRegisterName(MO2.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO3.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO3.getImm()))
<< " #" << ShImm;
O << "]";
}
void ARMAsmPrinter::printAddrMode2OffsetOperand(const MachineInstr *MI, int Op){
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.getReg()) {
unsigned ImmOffs = ARM_AM::getAM2Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
<< (char)ARM_AM::getAM2Op(MO2.getImm())
<< ImmOffs;
return;
}
O << (char)ARM_AM::getAM2Op(MO2.getImm())
<< getRegisterName(MO1.getReg());
if (unsigned ShImm = ARM_AM::getAM2Offset(MO2.getImm()))
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getAM2ShiftOpc(MO2.getImm()))
<< " #" << ShImm;
}
void ARMAsmPrinter::printAddrMode3Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[" << getRegisterName(MO1.getReg());
if (MO2.getReg()) {
O << ", "
<< (char)ARM_AM::getAM3Op(MO3.getImm())
<< getRegisterName(MO2.getReg())
<< "]";
return;
}
if (unsigned ImmOffs = ARM_AM::getAM3Offset(MO3.getImm()))
O << ", #"
<< (char)ARM_AM::getAM3Op(MO3.getImm())
<< ImmOffs;
O << "]";
}
void ARMAsmPrinter::printAddrMode3OffsetOperand(const MachineInstr *MI, int Op){
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (MO1.getReg()) {
O << (char)ARM_AM::getAM3Op(MO2.getImm())
<< getRegisterName(MO1.getReg());
return;
}
unsigned ImmOffs = ARM_AM::getAM3Offset(MO2.getImm());
assert(ImmOffs && "Malformed indexed load / store!");
O << "#"
<< (char)ARM_AM::getAM3Op(MO2.getImm())
<< ImmOffs;
}
void ARMAsmPrinter::printAddrMode4Operand(const MachineInstr *MI, int Op,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Modifier && strcmp(Modifier, "submode") == 0) {
if (MO1.getReg() == ARM::SP) {
// FIXME
bool isLDM = (MI->getOpcode() == ARM::LDM ||
MI->getOpcode() == ARM::LDM_RET ||
MI->getOpcode() == ARM::t2LDM ||
MI->getOpcode() == ARM::t2LDM_RET);
O << ARM_AM::getAMSubModeAltStr(Mode, isLDM);
} else
O << ARM_AM::getAMSubModeStr(Mode);
} else if (Modifier && strcmp(Modifier, "wide") == 0) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM4SubMode(MO2.getImm());
if (Mode == ARM_AM::ia)
O << ".w";
} else {
printOperand(MI, Op);
if (ARM_AM::getAM4WBFlag(MO2.getImm()))
O << "!";
}
}
void ARMAsmPrinter::printAddrMode5Operand(const MachineInstr *MI, int Op,
const char *Modifier) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
if (Modifier && strcmp(Modifier, "submode") == 0) {
ARM_AM::AMSubMode Mode = ARM_AM::getAM5SubMode(MO2.getImm());
if (MO1.getReg() == ARM::SP) {
bool isFLDM = (MI->getOpcode() == ARM::FLDMD ||
MI->getOpcode() == ARM::FLDMS);
O << ARM_AM::getAMSubModeAltStr(Mode, isFLDM);
} else
O << ARM_AM::getAMSubModeStr(Mode);
return;
} else if (Modifier && strcmp(Modifier, "base") == 0) {
// Used for FSTM{D|S} and LSTM{D|S} operations.
O << getRegisterName(MO1.getReg());
if (ARM_AM::getAM5WBFlag(MO2.getImm()))
O << "!";
return;
}
O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = ARM_AM::getAM5Offset(MO2.getImm())) {
O << ", #"
<< (char)ARM_AM::getAM5Op(MO2.getImm())
<< ImmOffs*4;
}
O << "]";
}
void ARMAsmPrinter::printAddrMode6Operand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
// FIXME: No support yet for specifying alignment.
O << "[" << getRegisterName(MO1.getReg()) << "]";
if (ARM_AM::getAM6WBFlag(MO3.getImm())) {
if (MO2.getReg() == 0)
O << "!";
else
O << ", " << getRegisterName(MO2.getReg());
}
}
void ARMAsmPrinter::printAddrModePCOperand(const MachineInstr *MI, int Op,
const char *Modifier) {
if (Modifier && strcmp(Modifier, "label") == 0) {
printPCLabel(MI, Op+1);
return;
}
const MachineOperand &MO1 = MI->getOperand(Op);
assert(TargetRegisterInfo::isPhysicalRegister(MO1.getReg()));
O << "[pc, +" << getRegisterName(MO1.getReg()) << "]";
}
void
ARMAsmPrinter::printBitfieldInvMaskImmOperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO = MI->getOperand(Op);
uint32_t v = ~MO.getImm();
int32_t lsb = CountTrailingZeros_32(v);
int32_t width = (32 - CountLeadingZeros_32 (v)) - lsb;
assert(MO.isImm() && "Not a valid bf_inv_mask_imm value!");
O << "#" << lsb << ", #" << width;
}
//===--------------------------------------------------------------------===//
void
ARMAsmPrinter::printThumbITMask(const MachineInstr *MI, int Op) {
// (3 - the number of trailing zeros) is the number of then / else.
unsigned Mask = MI->getOperand(Op).getImm();
unsigned NumTZ = CountTrailingZeros_32(Mask);
assert(NumTZ <= 3 && "Invalid IT mask!");
for (unsigned Pos = 3, e = NumTZ; Pos > e; --Pos) {
bool T = (Mask & (1 << Pos)) == 0;
if (T)
O << 't';
else
O << 'e';
}
}
void
ARMAsmPrinter::printThumbAddrModeRROperand(const MachineInstr *MI, int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
O << ", " << getRegisterName(MO2.getReg()) << "]";
}
void
ARMAsmPrinter::printThumbAddrModeRI5Operand(const MachineInstr *MI, int Op,
unsigned Scale) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
const MachineOperand &MO3 = MI->getOperand(Op+2);
if (!MO1.isReg()) { // FIXME: This is for CP entries, but isn't right.
printOperand(MI, Op);
return;
}
O << "[" << getRegisterName(MO1.getReg());
if (MO3.getReg())
O << ", " << getRegisterName(MO3.getReg());
else if (unsigned ImmOffs = MO2.getImm()) {
O << ", #" << ImmOffs;
if (Scale > 1)
O << " * " << Scale;
}
O << "]";
}
void
ARMAsmPrinter::printThumbAddrModeS1Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 1);
}
void
ARMAsmPrinter::printThumbAddrModeS2Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 2);
}
void
ARMAsmPrinter::printThumbAddrModeS4Operand(const MachineInstr *MI, int Op) {
printThumbAddrModeRI5Operand(MI, Op, 4);
}
void ARMAsmPrinter::printThumbAddrModeSPOperand(const MachineInstr *MI,int Op) {
const MachineOperand &MO1 = MI->getOperand(Op);
const MachineOperand &MO2 = MI->getOperand(Op+1);
O << "[" << getRegisterName(MO1.getReg());
if (unsigned ImmOffs = MO2.getImm())
O << ", #" << ImmOffs << " * 4";
O << "]";
}
//===--------------------------------------------------------------------===//
// Constant shifts t2_so_reg is a 2-operand unit corresponding to the Thumb2
// register with shift forms.
// REG 0 0 - e.g. R5
// REG IMM, SH_OPC - e.g. R5, LSL #3
void ARMAsmPrinter::printT2SOOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
unsigned Reg = MO1.getReg();
assert(TargetRegisterInfo::isPhysicalRegister(Reg));
O << getRegisterName(Reg);
// Print the shift opc.
O << ", "
<< ARM_AM::getShiftOpcStr(ARM_AM::getSORegShOp(MO2.getImm()))
<< " ";
assert(MO2.isImm() && "Not a valid t2_so_reg value!");
O << "#" << ARM_AM::getSORegOffset(MO2.getImm());
}
void ARMAsmPrinter::printT2AddrModeImm12Operand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
unsigned OffImm = MO2.getImm();
if (OffImm) // Don't print +0.
O << ", #+" << OffImm;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8Operand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm();
// Don't print +0.
if (OffImm < 0)
O << ", #-" << -OffImm;
else if (OffImm > 0)
O << ", #+" << OffImm;
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8s4Operand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
O << "[" << getRegisterName(MO1.getReg());
int32_t OffImm = (int32_t)MO2.getImm() / 4;
// Don't print +0.
if (OffImm < 0)
O << ", #-" << -OffImm << " * 4";
else if (OffImm > 0)
O << ", #+" << OffImm << " * 4";
O << "]";
}
void ARMAsmPrinter::printT2AddrModeImm8OffsetOperand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
int32_t OffImm = (int32_t)MO1.getImm();
// Don't print +0.
if (OffImm < 0)
O << "#-" << -OffImm;
else if (OffImm > 0)
O << "#+" << OffImm;
}
void ARMAsmPrinter::printT2AddrModeSoRegOperand(const MachineInstr *MI,
int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1);
const MachineOperand &MO3 = MI->getOperand(OpNum+2);
O << "[" << getRegisterName(MO1.getReg());
assert(MO2.getReg() && "Invalid so_reg load / store address!");
O << ", " << getRegisterName(MO2.getReg());
unsigned ShAmt = MO3.getImm();
if (ShAmt) {
assert(ShAmt <= 3 && "Not a valid Thumb2 addressing mode!");
O << ", lsl #" << ShAmt;
}
O << "]";
}
//===--------------------------------------------------------------------===//
void ARMAsmPrinter::printPredicateOperand(const MachineInstr *MI, int OpNum) {
ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(OpNum).getImm();
if (CC != ARMCC::AL)
O << ARMCondCodeToString(CC);
}
void ARMAsmPrinter::printSBitModifierOperand(const MachineInstr *MI, int OpNum){
unsigned Reg = MI->getOperand(OpNum).getReg();
if (Reg) {
assert(Reg == ARM::CPSR && "Expect ARM CPSR register!");
O << 's';
}
}
void ARMAsmPrinter::printPCLabel(const MachineInstr *MI, int OpNum) {
int Id = (int)MI->getOperand(OpNum).getImm();
O << MAI->getPrivateGlobalPrefix() << "PC" << Id;
}
void ARMAsmPrinter::printRegisterList(const MachineInstr *MI, int OpNum) {
O << "{";
for (unsigned i = OpNum, e = MI->getNumOperands(); i != e; ++i) {
if (MI->getOperand(i).isImplicit())
continue;
if ((int)i != OpNum) O << ", ";
printOperand(MI, i);
}
O << "}";
}
void ARMAsmPrinter::printCPInstOperand(const MachineInstr *MI, int OpNum,
const char *Modifier) {
assert(Modifier && "This operand only works with a modifier!");
// There are two aspects to a CONSTANTPOOL_ENTRY operand, the label and the
// data itself.
if (!strcmp(Modifier, "label")) {
unsigned ID = MI->getOperand(OpNum).getImm();
O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber()
<< '_' << ID << ":\n";
} else {
assert(!strcmp(Modifier, "cpentry") && "Unknown modifier for CPE");
unsigned CPI = MI->getOperand(OpNum).getIndex();
const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
if (MCPE.isMachineConstantPoolEntry()) {
EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
} else {
EmitGlobalConstant(MCPE.Val.ConstVal);
}
}
}
void ARMAsmPrinter::printJTBlockOperand(const MachineInstr *MI, int OpNum) {
assert(!Subtarget->isThumb2() && "Thumb2 should use double-jump jumptables!");
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm() << ":\n";
const char *JTEntryDirective = MAI->getData32bitsDirective();
const MachineFunction *MF = MI->getParent()->getParent();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool UseSet= MAI->getSetDirective() && TM.getRelocationModel() == Reloc::PIC_;
SmallPtrSet<MachineBasicBlock*, 8> JTSets;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
bool isNew = JTSets.insert(MBB);
if (UseSet && isNew)
printPICJumpTableSetLabel(JTI, MO2.getImm(), MBB);
O << JTEntryDirective << ' ';
if (UseSet)
O << MAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm()
<< "_set_" << MBB->getNumber();
else if (TM.getRelocationModel() == Reloc::PIC_) {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << '-' << MAI->getPrivateGlobalPrefix() << "JTI"
<< getFunctionNumber() << '_' << JTI << '_' << MO2.getImm();
} else {
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
}
if (i != e-1)
O << '\n';
}
}
void ARMAsmPrinter::printJT2BlockOperand(const MachineInstr *MI, int OpNum) {
const MachineOperand &MO1 = MI->getOperand(OpNum);
const MachineOperand &MO2 = MI->getOperand(OpNum+1); // Unique Id
unsigned JTI = MO1.getIndex();
O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm() << ":\n";
const MachineFunction *MF = MI->getParent()->getParent();
const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
bool ByteOffset = false, HalfWordOffset = false;
if (MI->getOpcode() == ARM::t2TBB)
ByteOffset = true;
else if (MI->getOpcode() == ARM::t2TBH)
HalfWordOffset = true;
for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = JTBBs[i];
if (ByteOffset)
O << MAI->getData8bitsDirective();
else if (HalfWordOffset)
O << MAI->getData16bitsDirective();
if (ByteOffset || HalfWordOffset) {
O << '(';
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
O << "-" << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << JTI << '_' << MO2.getImm() << ")/2";
} else {
O << "\tb.w ";
GetMBBSymbol(MBB->getNumber())->print(O, MAI);
}
if (i != e-1)
O << '\n';
}
// Make sure the instruction that follows TBB is 2-byte aligned.
// FIXME: Constant island pass should insert an "ALIGN" instruction instead.
if (ByteOffset && (JTBBs.size() & 1)) {
O << '\n';
EmitAlignment(1);
}
}
void ARMAsmPrinter::printTBAddrMode(const MachineInstr *MI, int OpNum) {
O << "[pc, " << getRegisterName(MI->getOperand(OpNum).getReg());
if (MI->getOpcode() == ARM::t2TBH)
O << ", lsl #1";
O << ']';
}
void ARMAsmPrinter::printNoHashImmediate(const MachineInstr *MI, int OpNum) {
O << MI->getOperand(OpNum).getImm();
}
bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
unsigned AsmVariant, const char *ExtraCode){
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'a': // Print as a memory address.
if (MI->getOperand(OpNum).isReg()) {
O << "[" << getRegisterName(MI->getOperand(OpNum).getReg()) << "]";
return false;
}
// Fallthrough
case 'c': // Don't print "#" before an immediate operand.
if (!MI->getOperand(OpNum).isImm())
return true;
printNoHashImmediate(MI, OpNum);
return false;
case 'P': // Print a VFP double precision register.
printOperand(MI, OpNum);
return false;
case 'Q':
if (TM.getTargetData()->isLittleEndian())
break;
// Fallthrough
case 'R':
if (TM.getTargetData()->isBigEndian())
break;
// Fallthrough
case 'H': // Write second word of DI / DF reference.
// Verify that this operand has two consecutive registers.
if (!MI->getOperand(OpNum).isReg() ||
OpNum+1 == MI->getNumOperands() ||
!MI->getOperand(OpNum+1).isReg())
return true;
++OpNum; // Return the high-part.
}
}
printOperand(MI, OpNum);
return false;
}
bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNum, unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0])
return true; // Unknown modifier.
printAddrMode2Operand(MI, OpNum);
return false;
}
void ARMAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
int Opc = MI->getOpcode();
switch (Opc) {
case ARM::CONSTPOOL_ENTRY:
if (!InCPMode && AFI->isThumbFunction()) {
EmitAlignment(2);
InCPMode = true;
}
break;
default: {
if (InCPMode && AFI->isThumbFunction())
InCPMode = false;
}}
// Call the autogenerated instruction printer routines.
processDebugLoc(MI->getDebugLoc());
printInstruction(MI);
if (VerboseAsm && !MI->getDebugLoc().isUnknown())
EmitComments(*MI);
O << '\n';
}
bool ARMAsmPrinter::doInitialization(Module &M) {
bool Result = AsmPrinter::doInitialization(M);
DW = getAnalysisIfAvailable<DwarfWriter>();
// Use unified assembler syntax mode for Thumb.
if (Subtarget->isThumb())
O << "\t.syntax unified\n";
// Emit ARM Build Attributes
if (Subtarget->isTargetELF()) {
// CPU Type
std::string CPUString = Subtarget->getCPUString();
if (CPUString != "generic")
O << "\t.cpu " << CPUString << '\n';
// FIXME: Emit FPU type
if (Subtarget->hasVFP2())
O << "\t.eabi_attribute " << ARMBuildAttrs::VFP_arch << ", 2\n";
// Signal various FP modes.
if (!UnsafeFPMath)
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_denormal << ", 1\n"
<< "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_exceptions << ", 1\n";
if (FiniteOnlyFPMath())
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_number_model << ", 1\n";
else
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_FP_number_model << ", 3\n";
// 8-bytes alignment stuff.
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_align8_needed << ", 1\n"
<< "\t.eabi_attribute " << ARMBuildAttrs::ABI_align8_preserved << ", 1\n";
// Hard float. Use both S and D registers and conform to AAPCS-VFP.
if (Subtarget->isAAPCS_ABI() && FloatABIType == FloatABI::Hard)
O << "\t.eabi_attribute " << ARMBuildAttrs::ABI_HardFP_use << ", 3\n"
<< "\t.eabi_attribute " << ARMBuildAttrs::ABI_VFP_args << ", 1\n";
// FIXME: Should we signal R9 usage?
}
return Result;
}
void ARMAsmPrinter::PrintGlobalVariable(const GlobalVariable* GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer()) // External global require no code
return;
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar)) {
if (Subtarget->isTargetDarwin() &&
TM.getRelocationModel() == Reloc::Static) {
if (GVar->getName() == "llvm.global_ctors")
O << ".reference .constructors_used\n";
else if (GVar->getName() == "llvm.global_dtors")
O << ".reference .destructors_used\n";
}
return;
}
std::string name = Mang->getMangledName(GVar);
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
bool isDarwin = Subtarget->isTargetDarwin();
printVisibility(name, GVar->getVisibility());
if (Subtarget->isTargetELF())
O << "\t.type " << name << ",%object\n";
const MCSection *TheSection =
getObjFileLowering().SectionForGlobal(GVar, Mang, TM);
OutStreamer.SwitchSection(TheSection);
// FIXME: get this stuff from section kind flags.
if (C->isNullValue() && !GVar->hasSection() && !GVar->isThreadLocal() &&
// Don't put things that should go in the cstring section into "comm".
!TheSection->getKind().isMergeableCString()) {
if (GVar->hasExternalLinkage()) {
if (const char *Directive = MAI->getZeroFillDirective()) {
O << "\t.globl\t" << name << "\n";
O << Directive << "__DATA, __common, " << name << ", "
<< Size << ", " << Align << "\n";
return;
}
}
if (GVar->hasLocalLinkage() || GVar->isWeakForLinker()) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (isDarwin) {
if (GVar->hasLocalLinkage()) {
O << MAI->getLCOMMDirective() << name << "," << Size
<< ',' << Align;
} else if (GVar->hasCommonLinkage()) {
O << MAI->getCOMMDirective() << name << "," << Size
<< ',' << Align;
} else {
OutStreamer.SwitchSection(TheSection);
O << "\t.globl " << name << '\n'
<< MAI->getWeakDefDirective() << name << '\n';
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
O << "\t\t\t\t" << MAI->getCommentString() << ' ';
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << '\n';
EmitGlobalConstant(C);
return;
}
} else if (MAI->getLCOMMDirective() != NULL) {
if (GVar->hasLocalLinkage()) {
O << MAI->getLCOMMDirective() << name << "," << Size;
} else {
O << MAI->getCOMMDirective() << name << "," << Size;
if (MAI->getCOMMDirectiveTakesAlignment())
O << ',' << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
} else {
if (GVar->hasLocalLinkage())
O << "\t.local\t" << name << "\n";
O << MAI->getCOMMDirective() << name << "," << Size;
if (MAI->getCOMMDirectiveTakesAlignment())
O << "," << (MAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
if (VerboseAsm) {
O << "\t\t" << MAI->getCommentString() << " ";
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << "\n";
return;
}
}
switch (GVar->getLinkage()) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
case GlobalValue::LinkerPrivateLinkage:
if (isDarwin) {
O << "\t.globl " << name << "\n"
<< "\t.weak_definition " << name << "\n";
} else {
O << "\t.weak " << name << "\n";
}
break;
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
O << "\t.globl " << name << "\n";
break;
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
break;
default:
llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
O << "\t\t\t\t" << MAI->getCommentString() << " ";
WriteAsOperand(O, GVar, /*PrintType=*/false, GVar->getParent());
}
O << "\n";
if (MAI->hasDotTypeDotSizeDirective())
O << "\t.size " << name << ", " << Size << "\n";
EmitGlobalConstant(C);
O << '\n';
}
bool ARMAsmPrinter::doFinalization(Module &M) {
if (Subtarget->isTargetDarwin()) {
// All darwin targets use mach-o.
TargetLoweringObjectFileMachO &TLOFMacho =
static_cast<TargetLoweringObjectFileMachO &>(getObjFileLowering());
O << '\n';
// Output non-lazy-pointers for external and common global variables.
if (!GVNonLazyPtrs.empty()) {
// Switch with ".non_lazy_symbol_pointer" directive.
OutStreamer.SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
EmitAlignment(2);
for (StringMap<std::string>::iterator I = GVNonLazyPtrs.begin(),
E = GVNonLazyPtrs.end(); I != E; ++I) {
O << I->second << ":\n";
O << "\t.indirect_symbol " << I->getKeyData() << "\n";
O << "\t.long\t0\n";
}
}
if (!HiddenGVNonLazyPtrs.empty()) {
OutStreamer.SwitchSection(getObjFileLowering().getDataSection());
EmitAlignment(2);
for (StringMap<std::string>::iterator I = HiddenGVNonLazyPtrs.begin(),
E = HiddenGVNonLazyPtrs.end(); I != E; ++I) {
O << I->second << ":\n";
O << "\t.long " << I->getKeyData() << "\n";
}
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
O << "\t.subsections_via_symbols\n";
}
return AsmPrinter::doFinalization(M);
}
// Force static initialization.
extern "C" void LLVMInitializeARMAsmPrinter() {
RegisterAsmPrinter<ARMAsmPrinter> X(TheARMTarget);
RegisterAsmPrinter<ARMAsmPrinter> Y(TheThumbTarget);
}