mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-30 02:32:08 +00:00
a8e2989ece
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@33353 91177308-0d34-0410-b5e6-96231b3b80d8
395 lines
13 KiB
C++
395 lines
13 KiB
C++
//===- ARMAddressingModes.h - ARM Addressing Modes --------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Chris Lattner and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the ARM addressing mode implementation stuff.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
|
|
#define LLVM_TARGET_ARM_ARMADDRESSINGMODES_H
|
|
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include <cassert>
|
|
|
|
namespace llvm {
|
|
|
|
/// ARM_AM - ARM Addressing Mode Stuff
|
|
namespace ARM_AM {
|
|
enum ShiftOpc {
|
|
no_shift = 0,
|
|
asr,
|
|
lsl,
|
|
lsr,
|
|
ror,
|
|
rrx
|
|
};
|
|
|
|
enum AddrOpc {
|
|
add = '+', sub = '-'
|
|
};
|
|
|
|
static inline const char *getShiftOpcStr(ShiftOpc Op) {
|
|
switch (Op) {
|
|
default: assert(0 && "Unknown shift opc!");
|
|
case ARM_AM::asr: return "asr";
|
|
case ARM_AM::lsl: return "lsl";
|
|
case ARM_AM::lsr: return "lsr";
|
|
case ARM_AM::ror: return "ror";
|
|
case ARM_AM::rrx: return "rrx";
|
|
}
|
|
}
|
|
|
|
static inline ShiftOpc getShiftOpcForNode(SDOperand N) {
|
|
switch (N.getOpcode()) {
|
|
default: return ARM_AM::no_shift;
|
|
case ISD::SHL: return ARM_AM::lsl;
|
|
case ISD::SRL: return ARM_AM::lsr;
|
|
case ISD::SRA: return ARM_AM::asr;
|
|
case ISD::ROTR: return ARM_AM::ror;
|
|
//case ISD::ROTL: // Only if imm -> turn into ROTR.
|
|
// Can't handle RRX here, because it would require folding a flag into
|
|
// the addressing mode. :( This causes us to miss certain things.
|
|
//case ARMISD::RRX: return ARM_AM::rrx;
|
|
}
|
|
}
|
|
|
|
enum AMSubMode {
|
|
bad_am_submode = 0,
|
|
ia,
|
|
ib,
|
|
da,
|
|
db
|
|
};
|
|
|
|
static inline const char *getAMSubModeStr(AMSubMode Mode) {
|
|
switch (Mode) {
|
|
default: assert(0 && "Unknown addressing sub-mode!");
|
|
case ARM_AM::ia: return "ia";
|
|
case ARM_AM::ib: return "ib";
|
|
case ARM_AM::da: return "da";
|
|
case ARM_AM::db: return "db";
|
|
}
|
|
}
|
|
|
|
static inline const char *getAMSubModeAltStr(AMSubMode Mode, bool isLD) {
|
|
switch (Mode) {
|
|
default: assert(0 && "Unknown addressing sub-mode!");
|
|
case ARM_AM::ia: return isLD ? "fd" : "ea";
|
|
case ARM_AM::ib: return isLD ? "ed" : "fa";
|
|
case ARM_AM::da: return isLD ? "fa" : "ed";
|
|
case ARM_AM::db: return isLD ? "ea" : "fd";
|
|
}
|
|
}
|
|
|
|
/// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits.
|
|
///
|
|
static inline unsigned rotr32(unsigned Val, unsigned Amt) {
|
|
assert(Amt < 32 && "Invalid rotate amount");
|
|
return (Val >> Amt) | (Val << ((32-Amt)&31));
|
|
}
|
|
|
|
/// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits.
|
|
///
|
|
static inline unsigned rotl32(unsigned Val, unsigned Amt) {
|
|
assert(Amt < 32 && "Invalid rotate amount");
|
|
return (Val << Amt) | (Val >> ((32-Amt)&31));
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Addressing Mode #1: shift_operand with registers
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
// This 'addressing mode' is used for arithmetic instructions. It can
|
|
// represent things like:
|
|
// reg
|
|
// reg [asr|lsl|lsr|ror|rrx] reg
|
|
// reg [asr|lsl|lsr|ror|rrx] imm
|
|
//
|
|
// This is stored three operands [rega, regb, opc]. The first is the base
|
|
// reg, the second is the shift amount (or reg0 if not present or imm). The
|
|
// third operand encodes the shift opcode and the imm if a reg isn't present.
|
|
//
|
|
static inline unsigned getSORegOpc(ShiftOpc ShOp, unsigned Imm) {
|
|
return ShOp | (Imm << 3);
|
|
}
|
|
static inline unsigned getSORegOffset(unsigned Op) {
|
|
return Op >> 3;
|
|
}
|
|
static inline ShiftOpc getSORegShOp(unsigned Op) {
|
|
return (ShiftOpc)(Op & 7);
|
|
}
|
|
|
|
/// getSOImmValImm - Given an encoded imm field for the reg/imm form, return
|
|
/// the 8-bit imm value.
|
|
static inline unsigned getSOImmValImm(unsigned Imm) {
|
|
return Imm & 0xFF;
|
|
}
|
|
/// getSOImmValRotate - Given an encoded imm field for the reg/imm form, return
|
|
/// the rotate amount.
|
|
static inline unsigned getSOImmValRot(unsigned Imm) {
|
|
return (Imm >> 8) * 2;
|
|
}
|
|
|
|
/// getSOImmValRotate - Try to handle Imm with an immediate shifter operand,
|
|
/// computing the rotate amount to use. If this immediate value cannot be
|
|
/// handled with a single shifter-op, determine a good rotate amount that will
|
|
/// take a maximal chunk of bits out of the immediate.
|
|
static inline unsigned getSOImmValRotate(unsigned Imm) {
|
|
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
|
|
// of zero.
|
|
if ((Imm & ~255U) == 0) return 0;
|
|
|
|
// Use CTZ to compute the rotate amount.
|
|
unsigned TZ = CountTrailingZeros_32(Imm);
|
|
|
|
// Rotate amount must be even. Something like 0x200 must be rotated 8 bits,
|
|
// not 9.
|
|
unsigned RotAmt = TZ & ~1;
|
|
|
|
// If we can handle this spread, return it.
|
|
if ((rotr32(Imm, RotAmt) & ~255U) == 0)
|
|
return (32-RotAmt)&31; // HW rotates right, not left.
|
|
|
|
// For values like 0xF000000F, we should skip the first run of ones, then
|
|
// retry the hunt.
|
|
if (Imm & 1) {
|
|
unsigned TrailingOnes = CountTrailingZeros_32(~Imm);
|
|
if (TrailingOnes != 32) { // Avoid overflow on 0xFFFFFFFF
|
|
// Restart the search for a high-order bit after the initial seconds of
|
|
// ones.
|
|
unsigned TZ2 = CountTrailingZeros_32(Imm & ~((1 << TrailingOnes)-1));
|
|
|
|
// Rotate amount must be even.
|
|
unsigned RotAmt2 = TZ2 & ~1;
|
|
|
|
// If this fits, use it.
|
|
if (RotAmt2 != 32 && (rotr32(Imm, RotAmt2) & ~255U) == 0)
|
|
return (32-RotAmt2)&31; // HW rotates right, not left.
|
|
}
|
|
}
|
|
|
|
// Otherwise, we have no way to cover this span of bits with a single
|
|
// shifter_op immediate. Return a chunk of bits that will be useful to
|
|
// handle.
|
|
return (32-RotAmt)&31; // HW rotates right, not left.
|
|
}
|
|
|
|
/// getSOImmVal - Given a 32-bit immediate, if it is something that can fit
|
|
/// into an shifter_operand immediate operand, return the 12-bit encoding for
|
|
/// it. If not, return -1.
|
|
static inline int getSOImmVal(unsigned Arg) {
|
|
// 8-bit (or less) immediates are trivially shifter_operands with a rotate
|
|
// of zero.
|
|
if ((Arg & ~255U) == 0) return Arg;
|
|
|
|
unsigned RotAmt = getSOImmValRotate(Arg);
|
|
|
|
// If this cannot be handled with a single shifter_op, bail out.
|
|
if (rotr32(~255U, RotAmt) & Arg)
|
|
return -1;
|
|
|
|
// Encode this correctly.
|
|
return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8);
|
|
}
|
|
|
|
/// isSOImmTwoPartVal - Return true if the specified value can be obtained by
|
|
/// or'ing together two SOImmVal's.
|
|
static inline bool isSOImmTwoPartVal(unsigned V) {
|
|
// If this can be handled with a single shifter_op, bail out.
|
|
V = rotr32(~255U, getSOImmValRotate(V)) & V;
|
|
if (V == 0)
|
|
return false;
|
|
|
|
// If this can be handled with two shifter_op's, accept.
|
|
V = rotr32(~255U, getSOImmValRotate(V)) & V;
|
|
return V == 0;
|
|
}
|
|
|
|
/// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal,
|
|
/// return the first chunk of it.
|
|
static inline unsigned getSOImmTwoPartFirst(unsigned V) {
|
|
return rotr32(255U, getSOImmValRotate(V)) & V;
|
|
}
|
|
|
|
/// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal,
|
|
/// return the second chunk of it.
|
|
static inline unsigned getSOImmTwoPartSecond(unsigned V) {
|
|
// Mask out the first hunk.
|
|
V = rotr32(~255U, getSOImmValRotate(V)) & V;
|
|
|
|
// Take what's left.
|
|
assert(V == (rotr32(255U, getSOImmValRotate(V)) & V));
|
|
return V;
|
|
}
|
|
|
|
/// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed
|
|
/// by a left shift. Returns the shift amount to use.
|
|
static inline unsigned getThumbImmValShift(unsigned Imm) {
|
|
// 8-bit (or less) immediates are trivially immediate operand with a shift
|
|
// of zero.
|
|
if ((Imm & ~255U) == 0) return 0;
|
|
|
|
// Use CTZ to compute the shift amount.
|
|
return CountTrailingZeros_32(Imm);
|
|
}
|
|
|
|
/// isThumbImmShiftedVal - Return true if the specified value can be obtained
|
|
/// by left shifting a 8-bit immediate.
|
|
static inline bool isThumbImmShiftedVal(unsigned V) {
|
|
// If this can be handled with
|
|
V = (~255U << getThumbImmValShift(V)) & V;
|
|
return V == 0;
|
|
}
|
|
|
|
/// getThumbImmNonShiftedVal - If V is a value that satisfies
|
|
/// isThumbImmShiftedVal, return the non-shiftd value.
|
|
static inline unsigned getThumbImmNonShiftedVal(unsigned V) {
|
|
return V >> getThumbImmValShift(V);
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Addressing Mode #2
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
// This is used for most simple load/store instructions.
|
|
//
|
|
// addrmode2 := reg +/- reg shop imm
|
|
// addrmode2 := reg +/- imm12
|
|
//
|
|
// The first operand is always a Reg. The second operand is a reg if in
|
|
// reg/reg form, otherwise it's reg#0. The third field encodes the operation
|
|
// in bit 12, the immediate in bits 0-11, and the shift op in 13-15.
|
|
//
|
|
// If this addressing mode is a frame index (before prolog/epilog insertion
|
|
// and code rewriting), this operand will have the form: FI#, reg0, <offs>
|
|
// with no shift amount for the frame offset.
|
|
//
|
|
static inline unsigned getAM2Opc(AddrOpc Opc, unsigned Imm12, ShiftOpc SO) {
|
|
assert(Imm12 < (1 << 12) && "Imm too large!");
|
|
bool isSub = Opc == sub;
|
|
return Imm12 | ((int)isSub << 12) | (SO << 13);
|
|
}
|
|
static inline unsigned getAM2Offset(unsigned AM2Opc) {
|
|
return AM2Opc & ((1 << 12)-1);
|
|
}
|
|
static inline AddrOpc getAM2Op(unsigned AM2Opc) {
|
|
return ((AM2Opc >> 12) & 1) ? sub : add;
|
|
}
|
|
static inline ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) {
|
|
return (ShiftOpc)(AM2Opc >> 13);
|
|
}
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Addressing Mode #3
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
// This is used for sign-extending loads, and load/store-pair instructions.
|
|
//
|
|
// addrmode3 := reg +/- reg
|
|
// addrmode3 := reg +/- imm8
|
|
//
|
|
// The first operand is always a Reg. The second operand is a reg if in
|
|
// reg/reg form, otherwise it's reg#0. The third field encodes the operation
|
|
// in bit 8, the immediate in bits 0-7.
|
|
|
|
/// getAM3Opc - This function encodes the addrmode3 opc field.
|
|
static inline unsigned getAM3Opc(AddrOpc Opc, unsigned char Offset) {
|
|
bool isSub = Opc == sub;
|
|
return ((int)isSub << 8) | Offset;
|
|
}
|
|
static inline unsigned char getAM3Offset(unsigned AM3Opc) {
|
|
return AM3Opc & 0xFF;
|
|
}
|
|
static inline AddrOpc getAM3Op(unsigned AM3Opc) {
|
|
return ((AM3Opc >> 8) & 1) ? sub : add;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Addressing Mode #4
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
// This is used for load / store multiple instructions.
|
|
//
|
|
// addrmode4 := reg, <mode>
|
|
//
|
|
// The four modes are:
|
|
// IA - Increment after
|
|
// IB - Increment before
|
|
// DA - Decrement after
|
|
// DB - Decrement before
|
|
//
|
|
// If the 4th bit (writeback)is set, then the base register is updated after
|
|
// the memory transfer.
|
|
|
|
static inline AMSubMode getAM4SubMode(unsigned Mode) {
|
|
return (AMSubMode)(Mode & 0x7);
|
|
}
|
|
|
|
static inline unsigned getAM4ModeImm(AMSubMode SubMode, bool WB = false) {
|
|
return (int)SubMode | ((int)WB << 3);
|
|
}
|
|
|
|
static inline bool getAM4WBFlag(unsigned Mode) {
|
|
return (Mode >> 3) & 1;
|
|
}
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
// Addressing Mode #5
|
|
//===--------------------------------------------------------------------===//
|
|
//
|
|
// This is used for coprocessor instructions, such as FP load/stores.
|
|
//
|
|
// addrmode5 := reg +/- imm8*4
|
|
//
|
|
// The first operand is always a Reg. The third field encodes the operation
|
|
// in bit 8, the immediate in bits 0-7.
|
|
//
|
|
// This can also be used for FP load/store multiple ops. The third field encodes
|
|
// writeback mode in bit 8, the number of registers (or 2 times the number of
|
|
// registers for DPR ops) in bits 0-7. In addition, bit 9-11 encodes one of the
|
|
// following two sub-modes:
|
|
//
|
|
// IA - Increment after
|
|
// DB - Decrement before
|
|
|
|
/// getAM5Opc - This function encodes the addrmode5 opc field.
|
|
static inline unsigned getAM5Opc(AddrOpc Opc, unsigned char Offset) {
|
|
bool isSub = Opc == sub;
|
|
return ((int)isSub << 8) | Offset;
|
|
}
|
|
static inline unsigned char getAM5Offset(unsigned AM5Opc) {
|
|
return AM5Opc & 0xFF;
|
|
}
|
|
static inline AddrOpc getAM5Op(unsigned AM5Opc) {
|
|
return ((AM5Opc >> 8) & 1) ? sub : add;
|
|
}
|
|
|
|
/// getAM5Opc - This function encodes the addrmode5 opc field for FLDM and
|
|
/// FSTM instructions.
|
|
static inline unsigned getAM5Opc(AMSubMode SubMode, bool WB,
|
|
unsigned char Offset) {
|
|
assert((SubMode == ia || SubMode == db) &&
|
|
"Illegal addressing mode 5 sub-mode!");
|
|
return ((int)SubMode << 9) | ((int)WB << 8) | Offset;
|
|
}
|
|
static inline AMSubMode getAM5SubMode(unsigned AM5Opc) {
|
|
return (AMSubMode)((AM5Opc >> 9) & 0x7);
|
|
}
|
|
static inline bool getAM5WBFlag(unsigned AM5Opc) {
|
|
return ((AM5Opc >> 8) & 1);
|
|
}
|
|
|
|
} // end namespace ARM_AM
|
|
} // end namespace llvm
|
|
|
|
#endif
|
|
|