llvm-6502/test/Transforms/LoopSimplify/ashr-crash.ll
Chandler Carruth 8615ab4a4a [LPM] Switch LICM to actively use LCSSA in addition to preserving it.
Fixes PR18753 and PR18782.

This is necessary for LICM to preserve LCSSA correctly and efficiently.
There is still some active discussion about whether we should be using
LCSSA, but we can't just immediately stop using it and we *need* LICM to
preserve it while we are using it. We can restore the old SSAUpdater
driven code if and when there is a serious effort to remove the reliance
on LCSSA from all of the loop passes.

However, this also serves as a great example of why LCSSA is very nice
to have. This change significantly simplifies the process of sinking
instructions for LICM, and makes it quite a bit less expensive.

It wouldn't even be as complex as it is except that I had to start the
process of removing the big recursive LCSSA formation hammer in order to
switch even this much of the re-forming code to asserting that LCSSA was
preserved. I'll fully remove that next just to tidy things up until the
LCSSA debate settles one way or the other.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201148 91177308-0d34-0410-b5e6-96231b3b80d8
2014-02-11 12:52:27 +00:00

81 lines
2.7 KiB
LLVM

; RUN: opt -basicaa -loop-rotate -licm -instcombine -indvars -loop-unroll -S %s | FileCheck %s
;
; PR18361: ScalarEvolution::getAddRecExpr():
; Assertion `isLoopInvariant(Operands[i],...
;
; After a series of loop optimizations, SCEV's LoopDispositions grow stale.
; In particular, LoopSimplify hoists %cmp4, resulting in this SCEV for %add:
; {(zext i1 %cmp4 to i32),+,1}<nw><%for.cond1.preheader>
;
; When recomputing the SCEV for %ashr, we truncate the operands to get:
; (zext i1 %cmp4 to i16)
;
; This SCEV was never mapped to a value so never invalidated. It's
; loop disposition is still marked as non-loop-invariant, which is
; inconsistent with the AddRec.
target datalayout = "e-i64:64-f80:128-n8:16:32:64-S128"
target triple = "x86_64-apple-macosx"
@d = common global i32 0, align 4
@a = common global i32 0, align 4
@c = common global i32 0, align 4
@b = common global i32 0, align 4
; Check that the def-use chain that leads to the bad SCEV is still
; there.
;
; CHECK-LABEL: @foo
; CHECK-LABEL: entry:
; CHECK-LABEL: for.cond1.preheader:
; CHECK-LABEL: for.body3:
; CHECK: %cmp4.le.le
; CHECK: %conv.le.le = zext i1 %cmp4.le.le to i32
; CHECK: %xor.le.le = xor i32 %conv6.le.le, 1
define void @foo() {
entry:
br label %for.cond
for.cond: ; preds = %for.inc7, %entry
%storemerge = phi i32 [ 0, %entry ], [ %inc8, %for.inc7 ]
%f.0 = phi i32 [ undef, %entry ], [ %f.1, %for.inc7 ]
store i32 %storemerge, i32* @d, align 4
%cmp = icmp slt i32 %storemerge, 1
br i1 %cmp, label %for.cond1, label %for.end9
for.cond1: ; preds = %for.cond, %for.body3
%storemerge1 = phi i32 [ %inc, %for.body3 ], [ 0, %for.cond ]
%f.1 = phi i32 [ %xor, %for.body3 ], [ %f.0, %for.cond ]
store i32 %storemerge1, i32* @a, align 4
%cmp2 = icmp slt i32 %storemerge1, 1
br i1 %cmp2, label %for.body3, label %for.inc7
for.body3: ; preds = %for.cond1
%0 = load i32* @c, align 4
%cmp4 = icmp sge i32 %storemerge1, %0
%conv = zext i1 %cmp4 to i32
%1 = load i32* @d, align 4
%add = add nsw i32 %conv, %1
%sext = shl i32 %add, 16
%conv6 = ashr exact i32 %sext, 16
%xor = xor i32 %conv6, 1
%inc = add nsw i32 %storemerge1, 1
br label %for.cond1
for.inc7: ; preds = %for.cond1
%2 = load i32* @d, align 4
%inc8 = add nsw i32 %2, 1
br label %for.cond
for.end9: ; preds = %for.cond
%cmp10 = icmp sgt i32 %f.0, 0
br i1 %cmp10, label %if.then, label %if.end
if.then: ; preds = %for.end9
store i32 0, i32* @b, align 4
br label %if.end
if.end: ; preds = %if.then, %for.end9
ret void
}