llvm-6502/tools/opt/opt.cpp
Chandler Carruth eeeec3ce0d [PM] Separate the TargetLibraryInfo object from the immutable pass.
The pass is really just a means of accessing a cached instance of the
TargetLibraryInfo object, and this way we can re-use that object for the
new pass manager as its result.

Lots of delta, but nothing interesting happening here. This is the
common pattern that is developing to allow analyses to live in both the
old and new pass manager -- a wrapper pass in the old pass manager
emulates the separation intrinsic to the new pass manager between the
result and pass for analyses.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@226157 91177308-0d34-0410-b5e6-96231b3b80d8
2015-01-15 10:41:28 +00:00

590 lines
18 KiB
C++

//===- opt.cpp - The LLVM Modular Optimizer -------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Optimizations may be specified an arbitrary number of times on the command
// line, They are run in the order specified.
//
//===----------------------------------------------------------------------===//
#include "BreakpointPrinter.h"
#include "NewPMDriver.h"
#include "PassPrinters.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/CallGraphSCCPass.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/RegionPass.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/CodeGen/CommandFlags.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassNameParser.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Verifier.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/InitializePasses.h"
#include "llvm/LinkAllIR.h"
#include "llvm/LinkAllPasses.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/PassManager.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/PluginLoader.h"
#include "llvm/Support/PrettyStackTrace.h"
#include "llvm/Support/Signals.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/SystemUtils.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/TargetSelect.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include <algorithm>
#include <memory>
using namespace llvm;
using namespace opt_tool;
// The OptimizationList is automatically populated with registered Passes by the
// PassNameParser.
//
static cl::list<const PassInfo*, bool, PassNameParser>
PassList(cl::desc("Optimizations available:"));
// This flag specifies a textual description of the optimization pass pipeline
// to run over the module. This flag switches opt to use the new pass manager
// infrastructure, completely disabling all of the flags specific to the old
// pass management.
static cl::opt<std::string> PassPipeline(
"passes",
cl::desc("A textual description of the pass pipeline for optimizing"),
cl::Hidden);
// Other command line options...
//
static cl::opt<std::string>
InputFilename(cl::Positional, cl::desc("<input bitcode file>"),
cl::init("-"), cl::value_desc("filename"));
static cl::opt<std::string>
OutputFilename("o", cl::desc("Override output filename"),
cl::value_desc("filename"));
static cl::opt<bool>
Force("f", cl::desc("Enable binary output on terminals"));
static cl::opt<bool>
PrintEachXForm("p", cl::desc("Print module after each transformation"));
static cl::opt<bool>
NoOutput("disable-output",
cl::desc("Do not write result bitcode file"), cl::Hidden);
static cl::opt<bool>
OutputAssembly("S", cl::desc("Write output as LLVM assembly"));
static cl::opt<bool>
NoVerify("disable-verify", cl::desc("Do not verify result module"), cl::Hidden);
static cl::opt<bool>
VerifyEach("verify-each", cl::desc("Verify after each transform"));
static cl::opt<bool>
StripDebug("strip-debug",
cl::desc("Strip debugger symbol info from translation unit"));
static cl::opt<bool>
DisableInline("disable-inlining", cl::desc("Do not run the inliner pass"));
static cl::opt<bool>
DisableOptimizations("disable-opt",
cl::desc("Do not run any optimization passes"));
static cl::opt<bool>
StandardLinkOpts("std-link-opts",
cl::desc("Include the standard link time optimizations"));
static cl::opt<bool>
OptLevelO1("O1",
cl::desc("Optimization level 1. Similar to clang -O1"));
static cl::opt<bool>
OptLevelO2("O2",
cl::desc("Optimization level 2. Similar to clang -O2"));
static cl::opt<bool>
OptLevelOs("Os",
cl::desc("Like -O2 with extra optimizations for size. Similar to clang -Os"));
static cl::opt<bool>
OptLevelOz("Oz",
cl::desc("Like -Os but reduces code size further. Similar to clang -Oz"));
static cl::opt<bool>
OptLevelO3("O3",
cl::desc("Optimization level 3. Similar to clang -O3"));
static cl::opt<std::string>
TargetTriple("mtriple", cl::desc("Override target triple for module"));
static cl::opt<bool>
UnitAtATime("funit-at-a-time",
cl::desc("Enable IPO. This corresponds to gcc's -funit-at-a-time"),
cl::init(true));
static cl::opt<bool>
DisableLoopUnrolling("disable-loop-unrolling",
cl::desc("Disable loop unrolling in all relevant passes"),
cl::init(false));
static cl::opt<bool>
DisableLoopVectorization("disable-loop-vectorization",
cl::desc("Disable the loop vectorization pass"),
cl::init(false));
static cl::opt<bool>
DisableSLPVectorization("disable-slp-vectorization",
cl::desc("Disable the slp vectorization pass"),
cl::init(false));
static cl::opt<bool>
DisableSimplifyLibCalls("disable-simplify-libcalls",
cl::desc("Disable simplify-libcalls"));
static cl::opt<bool>
Quiet("q", cl::desc("Obsolete option"), cl::Hidden);
static cl::alias
QuietA("quiet", cl::desc("Alias for -q"), cl::aliasopt(Quiet));
static cl::opt<bool>
AnalyzeOnly("analyze", cl::desc("Only perform analysis, no optimization"));
static cl::opt<bool>
PrintBreakpoints("print-breakpoints-for-testing",
cl::desc("Print select breakpoints location for testing"));
static cl::opt<std::string>
DefaultDataLayout("default-data-layout",
cl::desc("data layout string to use if not specified by module"),
cl::value_desc("layout-string"), cl::init(""));
static inline void addPass(PassManagerBase &PM, Pass *P) {
// Add the pass to the pass manager...
PM.add(P);
// If we are verifying all of the intermediate steps, add the verifier...
if (VerifyEach) {
PM.add(createVerifierPass());
PM.add(createDebugInfoVerifierPass());
}
}
/// This routine adds optimization passes based on selected optimization level,
/// OptLevel.
///
/// OptLevel - Optimization Level
static void AddOptimizationPasses(PassManagerBase &MPM,FunctionPassManager &FPM,
unsigned OptLevel, unsigned SizeLevel) {
FPM.add(createVerifierPass()); // Verify that input is correct
MPM.add(createDebugInfoVerifierPass()); // Verify that debug info is correct
PassManagerBuilder Builder;
Builder.OptLevel = OptLevel;
Builder.SizeLevel = SizeLevel;
if (DisableInline) {
// No inlining pass
} else if (OptLevel > 1) {
Builder.Inliner = createFunctionInliningPass(OptLevel, SizeLevel);
} else {
Builder.Inliner = createAlwaysInlinerPass();
}
Builder.DisableUnitAtATime = !UnitAtATime;
Builder.DisableUnrollLoops = (DisableLoopUnrolling.getNumOccurrences() > 0) ?
DisableLoopUnrolling : OptLevel == 0;
// This is final, unless there is a #pragma vectorize enable
if (DisableLoopVectorization)
Builder.LoopVectorize = false;
// If option wasn't forced via cmd line (-vectorize-loops, -loop-vectorize)
else if (!Builder.LoopVectorize)
Builder.LoopVectorize = OptLevel > 1 && SizeLevel < 2;
// When #pragma vectorize is on for SLP, do the same as above
Builder.SLPVectorize =
DisableSLPVectorization ? false : OptLevel > 1 && SizeLevel < 2;
Builder.populateFunctionPassManager(FPM);
Builder.populateModulePassManager(MPM);
}
static void AddStandardLinkPasses(PassManagerBase &PM) {
PassManagerBuilder Builder;
Builder.VerifyInput = true;
Builder.StripDebug = StripDebug;
if (DisableOptimizations)
Builder.OptLevel = 0;
if (!DisableInline)
Builder.Inliner = createFunctionInliningPass();
Builder.populateLTOPassManager(PM);
}
//===----------------------------------------------------------------------===//
// CodeGen-related helper functions.
//
CodeGenOpt::Level GetCodeGenOptLevel() {
if (OptLevelO1)
return CodeGenOpt::Less;
if (OptLevelO2)
return CodeGenOpt::Default;
if (OptLevelO3)
return CodeGenOpt::Aggressive;
return CodeGenOpt::None;
}
// Returns the TargetMachine instance or zero if no triple is provided.
static TargetMachine* GetTargetMachine(Triple TheTriple) {
std::string Error;
const Target *TheTarget = TargetRegistry::lookupTarget(MArch, TheTriple,
Error);
// Some modules don't specify a triple, and this is okay.
if (!TheTarget) {
return nullptr;
}
// Package up features to be passed to target/subtarget
std::string FeaturesStr;
if (MAttrs.size()) {
SubtargetFeatures Features;
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
return TheTarget->createTargetMachine(TheTriple.getTriple(),
MCPU, FeaturesStr,
InitTargetOptionsFromCodeGenFlags(),
RelocModel, CMModel,
GetCodeGenOptLevel());
}
#ifdef LINK_POLLY_INTO_TOOLS
namespace polly {
void initializePollyPasses(llvm::PassRegistry &Registry);
}
#endif
//===----------------------------------------------------------------------===//
// main for opt
//
int main(int argc, char **argv) {
sys::PrintStackTraceOnErrorSignal();
llvm::PrettyStackTraceProgram X(argc, argv);
// Enable debug stream buffering.
EnableDebugBuffering = true;
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
LLVMContext &Context = getGlobalContext();
InitializeAllTargets();
InitializeAllTargetMCs();
InitializeAllAsmPrinters();
// Initialize passes
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeCore(Registry);
initializeScalarOpts(Registry);
initializeObjCARCOpts(Registry);
initializeVectorization(Registry);
initializeIPO(Registry);
initializeAnalysis(Registry);
initializeIPA(Registry);
initializeTransformUtils(Registry);
initializeInstCombine(Registry);
initializeInstrumentation(Registry);
initializeTarget(Registry);
// For codegen passes, only passes that do IR to IR transformation are
// supported.
initializeCodeGenPreparePass(Registry);
initializeAtomicExpandPass(Registry);
initializeRewriteSymbolsPass(Registry);
#ifdef LINK_POLLY_INTO_TOOLS
polly::initializePollyPasses(Registry);
#endif
cl::ParseCommandLineOptions(argc, argv,
"llvm .bc -> .bc modular optimizer and analysis printer\n");
if (AnalyzeOnly && NoOutput) {
errs() << argv[0] << ": analyze mode conflicts with no-output mode.\n";
return 1;
}
SMDiagnostic Err;
// Load the input module...
std::unique_ptr<Module> M = parseIRFile(InputFilename, Err, Context);
if (!M) {
Err.print(argv[0], errs());
return 1;
}
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
M->setTargetTriple(Triple::normalize(TargetTriple));
// Figure out what stream we are supposed to write to...
std::unique_ptr<tool_output_file> Out;
if (NoOutput) {
if (!OutputFilename.empty())
errs() << "WARNING: The -o (output filename) option is ignored when\n"
"the --disable-output option is used.\n";
} else {
// Default to standard output.
if (OutputFilename.empty())
OutputFilename = "-";
std::error_code EC;
Out.reset(new tool_output_file(OutputFilename, EC, sys::fs::F_None));
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
}
// If the output is set to be emitted to standard out, and standard out is a
// console, print out a warning message and refuse to do it. We don't
// impress anyone by spewing tons of binary goo to a terminal.
if (!Force && !NoOutput && !AnalyzeOnly && !OutputAssembly)
if (CheckBitcodeOutputToConsole(Out->os(), !Quiet))
NoOutput = true;
if (PassPipeline.getNumOccurrences() > 0) {
OutputKind OK = OK_NoOutput;
if (!NoOutput)
OK = OutputAssembly ? OK_OutputAssembly : OK_OutputBitcode;
VerifierKind VK = VK_VerifyInAndOut;
if (NoVerify)
VK = VK_NoVerifier;
else if (VerifyEach)
VK = VK_VerifyEachPass;
// The user has asked to use the new pass manager and provided a pipeline
// string. Hand off the rest of the functionality to the new code for that
// layer.
return runPassPipeline(argv[0], Context, *M, Out.get(), PassPipeline,
OK, VK)
? 0
: 1;
}
// Create a PassManager to hold and optimize the collection of passes we are
// about to build.
//
PassManager Passes;
// Add an appropriate TargetLibraryInfo pass for the module's triple.
TargetLibraryInfo TLI(Triple(M->getTargetTriple()));
// The -disable-simplify-libcalls flag actually disables all builtin optzns.
if (DisableSimplifyLibCalls)
TLI.disableAllFunctions();
Passes.add(new TargetLibraryInfoWrapperPass(TLI));
// Add an appropriate DataLayout instance for this module.
const DataLayout *DL = M->getDataLayout();
if (!DL && !DefaultDataLayout.empty()) {
M->setDataLayout(DefaultDataLayout);
DL = M->getDataLayout();
}
if (DL)
Passes.add(new DataLayoutPass());
Triple ModuleTriple(M->getTargetTriple());
TargetMachine *Machine = nullptr;
if (ModuleTriple.getArch())
Machine = GetTargetMachine(Triple(ModuleTriple));
std::unique_ptr<TargetMachine> TM(Machine);
// Add internal analysis passes from the target machine.
if (TM)
TM->addAnalysisPasses(Passes);
std::unique_ptr<FunctionPassManager> FPasses;
if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
FPasses.reset(new FunctionPassManager(M.get()));
if (DL)
FPasses->add(new DataLayoutPass());
if (TM)
TM->addAnalysisPasses(*FPasses);
}
if (PrintBreakpoints) {
// Default to standard output.
if (!Out) {
if (OutputFilename.empty())
OutputFilename = "-";
std::error_code EC;
Out = llvm::make_unique<tool_output_file>(OutputFilename, EC,
sys::fs::F_None);
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
}
Passes.add(createBreakpointPrinter(Out->os()));
NoOutput = true;
}
// If the -strip-debug command line option was specified, add it.
if (StripDebug)
addPass(Passes, createStripSymbolsPass(true));
// Create a new optimization pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
if (StandardLinkOpts &&
StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 1, 0);
OptLevelO1 = false;
}
if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 0);
OptLevelO2 = false;
}
if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 1);
OptLevelOs = false;
}
if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 2);
OptLevelOz = false;
}
if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 3, 0);
OptLevelO3 = false;
}
const PassInfo *PassInf = PassList[i];
Pass *P = nullptr;
if (PassInf->getTargetMachineCtor())
P = PassInf->getTargetMachineCtor()(TM.get());
else if (PassInf->getNormalCtor())
P = PassInf->getNormalCtor()();
else
errs() << argv[0] << ": cannot create pass: "
<< PassInf->getPassName() << "\n";
if (P) {
PassKind Kind = P->getPassKind();
addPass(Passes, P);
if (AnalyzeOnly) {
switch (Kind) {
case PT_BasicBlock:
Passes.add(createBasicBlockPassPrinter(PassInf, Out->os(), Quiet));
break;
case PT_Region:
Passes.add(createRegionPassPrinter(PassInf, Out->os(), Quiet));
break;
case PT_Loop:
Passes.add(createLoopPassPrinter(PassInf, Out->os(), Quiet));
break;
case PT_Function:
Passes.add(createFunctionPassPrinter(PassInf, Out->os(), Quiet));
break;
case PT_CallGraphSCC:
Passes.add(createCallGraphPassPrinter(PassInf, Out->os(), Quiet));
break;
default:
Passes.add(createModulePassPrinter(PassInf, Out->os(), Quiet));
break;
}
}
}
if (PrintEachXForm)
Passes.add(createPrintModulePass(errs()));
}
if (StandardLinkOpts) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO1)
AddOptimizationPasses(Passes, *FPasses, 1, 0);
if (OptLevelO2)
AddOptimizationPasses(Passes, *FPasses, 2, 0);
if (OptLevelOs)
AddOptimizationPasses(Passes, *FPasses, 2, 1);
if (OptLevelOz)
AddOptimizationPasses(Passes, *FPasses, 2, 2);
if (OptLevelO3)
AddOptimizationPasses(Passes, *FPasses, 3, 0);
if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
FPasses->doInitialization();
for (Function &F : *M)
FPasses->run(F);
FPasses->doFinalization();
}
// Check that the module is well formed on completion of optimization
if (!NoVerify && !VerifyEach) {
Passes.add(createVerifierPass());
Passes.add(createDebugInfoVerifierPass());
}
// Write bitcode or assembly to the output as the last step...
if (!NoOutput && !AnalyzeOnly) {
if (OutputAssembly)
Passes.add(createPrintModulePass(Out->os()));
else
Passes.add(createBitcodeWriterPass(Out->os()));
}
// Before executing passes, print the final values of the LLVM options.
cl::PrintOptionValues();
// Now that we have all of the passes ready, run them.
Passes.run(*M);
// Declare success.
if (!NoOutput || PrintBreakpoints)
Out->keep();
return 0;
}