Chris Lattner 529429224c Update comment
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@11082 91177308-0d34-0410-b5e6-96231b3b80d8
2004-02-02 20:09:22 +00:00

712 lines
29 KiB
C++

//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion, attempting to remove as much
// code from the body of a loop as possible. It does this by either hoisting
// code into the preheader block, or by sinking code to the exit blocks if it is
// safe. This pass also promotes must-aliased memory locations in the loop to
// live in registers, thus hoisting and sinking "invariant" loads and stores.
//
// This pass uses alias analysis for two purposes:
//
// 1. Moving loop invariant loads out of loops. If we can determine that a
// load inside of a loop never aliases anything stored to, we can hoist it
// or sink it like any other instruction.
// 2. Scalar Promotion of Memory - If there is a store instruction inside of
// the loop, we try to move the store to happen AFTER the loop instead of
// inside of the loop. This can only happen if a few conditions are true:
// A. The pointer stored through is loop invariant
// B. There are no stores or loads in the loop which _may_ alias the
// pointer. There are no calls in the loop which mod/ref the pointer.
// If these conditions are true, we can promote the loads and stores in the
// loop of the pointer to use a temporary alloca'd variable. We then use
// the mem2reg functionality to construct the appropriate SSA form for the
// variable.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AliasSetTracker.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Instructions.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Support/CFG.h"
#include "Support/CommandLine.h"
#include "Support/Debug.h"
#include "Support/Statistic.h"
#include "llvm/Assembly/Writer.h"
#include <algorithm>
using namespace llvm;
namespace {
cl::opt<bool>
DisablePromotion("disable-licm-promotion", cl::Hidden,
cl::desc("Disable memory promotion in LICM pass"));
Statistic<> NumSunk("licm", "Number of instructions sunk out of loop");
Statistic<> NumHoisted("licm", "Number of instructions hoisted out of loop");
Statistic<> NumMovedLoads("licm", "Number of load insts hoisted or sunk");
Statistic<> NumPromoted("licm",
"Number of memory locations promoted to registers");
struct LICM : public FunctionPass {
virtual bool runOnFunction(Function &F);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG...
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<LoopInfo>();
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>(); // For scalar promotion (mem2reg)
AU.addRequired<AliasAnalysis>();
}
private:
// Various analyses that we use...
AliasAnalysis *AA; // Current AliasAnalysis information
LoopInfo *LI; // Current LoopInfo
DominatorTree *DT; // Dominator Tree for the current Loop...
DominanceFrontier *DF; // Current Dominance Frontier
// State that is updated as we process loops
bool Changed; // Set to true when we change anything.
BasicBlock *Preheader; // The preheader block of the current loop...
Loop *CurLoop; // The current loop we are working on...
AliasSetTracker *CurAST; // AliasSet information for the current loop...
/// visitLoop - Hoist expressions out of the specified loop...
///
void visitLoop(Loop *L, AliasSetTracker &AST);
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to
/// visit uses before definitions, allowing us to sink a loop body in one
/// pass without iteration.
///
void SinkRegion(DominatorTree::Node *N);
/// HoistRegion - Walk the specified region of the CFG (defined by all
/// blocks dominated by the specified block, and that are in the current
/// loop) in depth first order w.r.t the DominatorTree. This allows us to
/// visit definitions before uses, allowing us to hoist a loop body in one
/// pass without iteration.
///
void HoistRegion(DominatorTree::Node *N);
/// inSubLoop - Little predicate that returns true if the specified basic
/// block is in a subloop of the current one, not the current one itself.
///
bool inSubLoop(BasicBlock *BB) {
assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
for (Loop::iterator I = CurLoop->begin(), E = CurLoop->end(); I != E; ++I)
if ((*I)->contains(BB))
return true; // A subloop actually contains this block!
return false;
}
/// isExitBlockDominatedByBlockInLoop - This method checks to see if the
/// specified exit block of the loop is dominated by the specified block
/// that is in the body of the loop. We use these constraints to
/// dramatically limit the amount of the dominator tree that needs to be
/// searched.
bool isExitBlockDominatedByBlockInLoop(BasicBlock *ExitBlock,
BasicBlock *BlockInLoop) const {
// If the block in the loop is the loop header, it must be dominated!
BasicBlock *LoopHeader = CurLoop->getHeader();
if (BlockInLoop == LoopHeader)
return true;
DominatorTree::Node *BlockInLoopNode = DT->getNode(BlockInLoop);
DominatorTree::Node *IDom = DT->getNode(ExitBlock);
// Because the exit block is not in the loop, we know we have to get _at
// least_ it's immediate dominator.
do {
// Get next Immediate Dominator.
IDom = IDom->getIDom();
// If we have got to the header of the loop, then the instructions block
// did not dominate the exit node, so we can't hoist it.
if (IDom->getBlock() == LoopHeader)
return false;
} while (IDom != BlockInLoopNode);
return true;
}
/// sink - When an instruction is found to only be used outside of the loop,
/// this function moves it to the exit blocks and patches up SSA form as
/// needed.
///
void sink(Instruction &I);
/// hoist - When an instruction is found to only use loop invariant operands
/// that is safe to hoist, this instruction is called to do the dirty work.
///
void hoist(Instruction &I);
/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it
/// is not a trapping instruction or if it is a trapping instruction and is
/// guaranteed to execute.
///
bool isSafeToExecuteUnconditionally(Instruction &I);
/// pointerInvalidatedByLoop - Return true if the body of this loop may
/// store into the memory location pointed to by V.
///
bool pointerInvalidatedByLoop(Value *V) {
// Check to see if any of the basic blocks in CurLoop invalidate *V.
return CurAST->getAliasSetForPointer(V, 0).isMod();
}
/// isLoopInvariant - Return true if the specified value is loop invariant
///
inline bool isLoopInvariant(Value *V) {
if (Instruction *I = dyn_cast<Instruction>(V))
return !CurLoop->contains(I->getParent());
return true; // All non-instructions are loop invariant
}
bool canSinkOrHoistInst(Instruction &I);
bool isLoopInvariantInst(Instruction &I);
bool isNotUsedInLoop(Instruction &I);
/// PromoteValuesInLoop - Look at the stores in the loop and promote as many
/// to scalars as we can.
///
void PromoteValuesInLoop();
/// findPromotableValuesInLoop - Check the current loop for stores to
/// definite pointers, which are not loaded and stored through may aliases.
/// If these are found, create an alloca for the value, add it to the
/// PromotedValues list, and keep track of the mapping from value to
/// alloca...
///
void findPromotableValuesInLoop(
std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
std::map<Value*, AllocaInst*> &Val2AlMap);
};
RegisterOpt<LICM> X("licm", "Loop Invariant Code Motion");
}
FunctionPass *llvm::createLICMPass() { return new LICM(); }
/// runOnFunction - For LICM, this simply traverses the loop structure of the
/// function, hoisting expressions out of loops if possible.
///
bool LICM::runOnFunction(Function &) {
Changed = false;
// Get our Loop and Alias Analysis information...
LI = &getAnalysis<LoopInfo>();
AA = &getAnalysis<AliasAnalysis>();
DF = &getAnalysis<DominanceFrontier>();
DT = &getAnalysis<DominatorTree>();
// Hoist expressions out of all of the top-level loops.
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
AliasSetTracker AST(*AA);
visitLoop(*I, AST);
}
return Changed;
}
/// visitLoop - Hoist expressions out of the specified loop...
///
void LICM::visitLoop(Loop *L, AliasSetTracker &AST) {
// Recurse through all subloops before we process this loop...
for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) {
AliasSetTracker SubAST(*AA);
visitLoop(*I, SubAST);
// Incorporate information about the subloops into this loop...
AST.add(SubAST);
}
CurLoop = L;
CurAST = &AST;
// Get the preheader block to move instructions into...
Preheader = L->getLoopPreheader();
assert(Preheader&&"Preheader insertion pass guarantees we have a preheader!");
// Loop over the body of this loop, looking for calls, invokes, and stores.
// Because subloops have already been incorporated into AST, we skip blocks in
// subloops.
//
for (std::vector<BasicBlock*>::const_iterator I = L->getBlocks().begin(),
E = L->getBlocks().end(); I != E; ++I)
if (LI->getLoopFor(*I) == L) // Ignore blocks in subloops...
AST.add(**I); // Incorporate the specified basic block
// We want to visit all of the instructions in this loop... that are not parts
// of our subloops (they have already had their invariants hoisted out of
// their loop, into this loop, so there is no need to process the BODIES of
// the subloops).
//
// Traverse the body of the loop in depth first order on the dominator tree so
// that we are guaranteed to see definitions before we see uses. This allows
// us to sink instructions in one pass, without iteration. AFter sinking
// instructions, we perform another pass to hoist them out of the loop.
//
SinkRegion(DT->getNode(L->getHeader()));
HoistRegion(DT->getNode(L->getHeader()));
// Now that all loop invariants have been removed from the loop, promote any
// memory references to scalars that we can...
if (!DisablePromotion)
PromoteValuesInLoop();
// Clear out loops state information for the next iteration
CurLoop = 0;
Preheader = 0;
}
/// SinkRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in
/// reverse depth first order w.r.t the DominatorTree. This allows us to visit
/// uses before definitions, allowing us to sink a loop body in one pass without
/// iteration.
///
void LICM::SinkRegion(DominatorTree::Node *N) {
assert(N != 0 && "Null dominator tree node?");
BasicBlock *BB = N->getBlock();
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return;
// We are processing blocks in reverse dfo, so process children first...
const std::vector<DominatorTree::Node*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
SinkRegion(Children[i]);
// Only need to process the contents of this block if it is not part of a
// subloop (which would already have been processed).
if (inSubLoop(BB)) return;
for (BasicBlock::iterator II = BB->end(); II != BB->begin(); ) {
Instruction &I = *--II;
// Check to see if we can sink this instruction to the exit blocks
// of the loop. We can do this if the all users of the instruction are
// outside of the loop. In this case, it doesn't even matter if the
// operands of the instruction are loop invariant.
//
if (canSinkOrHoistInst(I) && isNotUsedInLoop(I)) {
++II;
sink(I);
}
}
}
/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void LICM::HoistRegion(DominatorTree::Node *N) {
assert(N != 0 && "Null dominator tree node?");
BasicBlock *BB = N->getBlock();
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return;
// Only need to process the contents of this block if it is not part of a
// subloop (which would already have been processed).
if (!inSubLoop(BB))
for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ) {
Instruction &I = *II++;
// Try hoisting the instruction out to the preheader. We can only do this
// if all of the operands of the instruction are loop invariant and if it
// is safe to hoist the instruction.
//
if (isLoopInvariantInst(I) && canSinkOrHoistInst(I) &&
isSafeToExecuteUnconditionally(I))
hoist(I);
}
const std::vector<DominatorTree::Node*> &Children = N->getChildren();
for (unsigned i = 0, e = Children.size(); i != e; ++i)
HoistRegion(Children[i]);
}
/// canSinkOrHoistInst - Return true if the hoister and sinker can handle this
/// instruction.
///
bool LICM::canSinkOrHoistInst(Instruction &I) {
// Loads have extra constraints we have to verify before we can hoist them.
if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
if (LI->isVolatile())
return false; // Don't hoist volatile loads!
// Don't hoist loads which have may-aliased stores in loop.
return !pointerInvalidatedByLoop(LI->getOperand(0));
}
return isa<BinaryOperator>(I) || isa<ShiftInst>(I) || isa<CastInst>(I) ||
isa<GetElementPtrInst>(I) || isa<VANextInst>(I) || isa<VAArgInst>(I);
}
/// isNotUsedInLoop - Return true if the only users of this instruction are
/// outside of the loop. If this is true, we can sink the instruction to the
/// exit blocks of the loop.
///
bool LICM::isNotUsedInLoop(Instruction &I) {
for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E; ++UI) {
Instruction *User = cast<Instruction>(*UI);
if (PHINode *PN = dyn_cast<PHINode>(User)) {
// PHI node uses occur in predecessor blocks!
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
if (PN->getIncomingValue(i) == &I)
if (CurLoop->contains(PN->getIncomingBlock(i)))
return false;
} else if (CurLoop->contains(User->getParent())) {
return false;
}
}
return true;
}
/// isLoopInvariantInst - Return true if all operands of this instruction are
/// loop invariant. We also filter out non-hoistable instructions here just for
/// efficiency.
///
bool LICM::isLoopInvariantInst(Instruction &I) {
// The instruction is loop invariant if all of its operands are loop-invariant
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
if (!isLoopInvariant(I.getOperand(i)))
return false;
// If we got this far, the instruction is loop invariant!
return true;
}
/// sink - When an instruction is found to only be used outside of the loop,
/// this function moves it to the exit blocks and patches up SSA form as needed.
/// This method is guaranteed to remove the original instruction from its
/// position, and may either delete it or move it to outside of the loop.
///
void LICM::sink(Instruction &I) {
DEBUG(std::cerr << "LICM sinking instruction: " << I);
const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
if (isa<LoadInst>(I)) ++NumMovedLoads;
++NumSunk;
Changed = true;
// The case where there is only a single exit node of this loop is common
// enough that we handle it as a special (more efficient) case. It is more
// efficient to handle because there are no PHI nodes that need to be placed.
if (ExitBlocks.size() == 1) {
if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[0], I.getParent())) {
// Instruction is not used, just delete it.
CurAST->remove(&I);
I.getParent()->getInstList().erase(&I);
} else {
// Move the instruction to the start of the exit block, after any PHI
// nodes in it.
I.getParent()->getInstList().remove(&I);
BasicBlock::iterator InsertPt = ExitBlocks[0]->begin();
while (isa<PHINode>(InsertPt)) ++InsertPt;
ExitBlocks[0]->getInstList().insert(InsertPt, &I);
}
} else if (ExitBlocks.size() == 0) {
// The instruction is actually dead if there ARE NO exit blocks.
CurAST->remove(&I);
I.getParent()->getInstList().erase(&I);
} else {
// Otherwise, if we have multiple exits, use the PromoteMem2Reg function to
// do all of the hard work of inserting PHI nodes as necessary. We convert
// the value into a stack object to get it to do this.
// Firstly, we create a stack object to hold the value...
AllocaInst *AI = new AllocaInst(I.getType(), 0, I.getName(),
I.getParent()->getParent()->front().begin());
// Secondly, insert load instructions for each use of the instruction
// outside of the loop.
while (!I.use_empty()) {
Instruction *U = cast<Instruction>(I.use_back());
// If the user is a PHI Node, we actually have to insert load instructions
// in all predecessor blocks, not in the PHI block itself!
if (PHINode *UPN = dyn_cast<PHINode>(U)) {
// Only insert into each predecessor once, so that we don't have
// different incoming values from the same block!
std::map<BasicBlock*, Value*> InsertedBlocks;
for (unsigned i = 0, e = UPN->getNumIncomingValues(); i != e; ++i)
if (UPN->getIncomingValue(i) == &I) {
BasicBlock *Pred = UPN->getIncomingBlock(i);
Value *&PredVal = InsertedBlocks[Pred];
if (!PredVal) {
// Insert a new load instruction right before the terminator in
// the predecessor block.
PredVal = new LoadInst(AI, "", Pred->getTerminator());
}
UPN->setIncomingValue(i, PredVal);
}
} else {
LoadInst *L = new LoadInst(AI, "", U);
U->replaceUsesOfWith(&I, L);
}
}
// Thirdly, insert a copy of the instruction in each exit block of the loop
// that is dominated by the instruction, storing the result into the memory
// location. Be careful not to insert the instruction into any particular
// basic block more than once.
std::set<BasicBlock*> InsertedBlocks;
BasicBlock *InstOrigBB = I.getParent();
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBlock = ExitBlocks[i];
if (isExitBlockDominatedByBlockInLoop(ExitBlock, InstOrigBB)) {
// If we haven't already processed this exit block, do so now.
if (InsertedBlocks.insert(ExitBlock).second) {
// Insert the code after the last PHI node...
BasicBlock::iterator InsertPt = ExitBlock->begin();
while (isa<PHINode>(InsertPt)) ++InsertPt;
// If this is the first exit block processed, just move the original
// instruction, otherwise clone the original instruction and insert
// the copy.
Instruction *New;
if (InsertedBlocks.size() == 1) {
I.getParent()->getInstList().remove(&I);
ExitBlock->getInstList().insert(InsertPt, &I);
New = &I;
} else {
New = I.clone();
New->setName(I.getName()+".le");
ExitBlock->getInstList().insert(InsertPt, New);
}
// Now that we have inserted the instruction, store it into the alloca
new StoreInst(New, AI, InsertPt);
}
}
}
// If the instruction doesn't dominate any exit blocks, it must be dead.
if (InsertedBlocks.empty()) {
CurAST->remove(&I);
I.getParent()->getInstList().erase(&I);
}
// Finally, promote the fine value to SSA form.
std::vector<AllocaInst*> Allocas;
Allocas.push_back(AI);
PromoteMemToReg(Allocas, *DT, *DF, AA->getTargetData());
}
}
/// hoist - When an instruction is found to only use loop invariant operands
/// that is safe to hoist, this instruction is called to do the dirty work.
///
void LICM::hoist(Instruction &I) {
DEBUG(std::cerr << "LICM hoisting to";
WriteAsOperand(std::cerr, Preheader, false);
std::cerr << ": " << I);
// Remove the instruction from its current basic block... but don't delete the
// instruction.
I.getParent()->getInstList().remove(&I);
// Insert the new node in Preheader, before the terminator.
Preheader->getInstList().insert(Preheader->getTerminator(), &I);
if (isa<LoadInst>(I)) ++NumMovedLoads;
++NumHoisted;
Changed = true;
}
/// isSafeToExecuteUnconditionally - Only sink or hoist an instruction if it is
/// not a trapping instruction or if it is a trapping instruction and is
/// guaranteed to execute.
///
bool LICM::isSafeToExecuteUnconditionally(Instruction &Inst) {
// If it is not a trapping instruction, it is always safe to hoist.
if (!Inst.isTrapping()) return true;
// Otherwise we have to check to make sure that the instruction dominates all
// of the exit blocks. If it doesn't, then there is a path out of the loop
// which does not execute this instruction, so we can't hoist it.
// If the instruction is in the header block for the loop (which is very
// common), it is always guaranteed to dominate the exit blocks. Since this
// is a common case, and can save some work, check it now.
if (Inst.getParent() == CurLoop->getHeader())
return true;
// Get the exit blocks for the current loop.
const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
// For each exit block, get the DT node and walk up the DT until the
// instruction's basic block is found or we exit the loop.
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (!isExitBlockDominatedByBlockInLoop(ExitBlocks[i], Inst.getParent()))
return false;
return true;
}
/// PromoteValuesInLoop - Try to promote memory values to scalars by sinking
/// stores out of the loop and moving loads to before the loop. We do this by
/// looping over the stores in the loop, looking for stores to Must pointers
/// which are loop invariant. We promote these memory locations to use allocas
/// instead. These allocas can easily be raised to register values by the
/// PromoteMem2Reg functionality.
///
void LICM::PromoteValuesInLoop() {
// PromotedValues - List of values that are promoted out of the loop. Each
// value has an alloca instruction for it, and a canonical version of the
// pointer.
std::vector<std::pair<AllocaInst*, Value*> > PromotedValues;
std::map<Value*, AllocaInst*> ValueToAllocaMap; // Map of ptr to alloca
findPromotableValuesInLoop(PromotedValues, ValueToAllocaMap);
if (ValueToAllocaMap.empty()) return; // If there are values to promote...
Changed = true;
NumPromoted += PromotedValues.size();
// Emit a copy from the value into the alloca'd value in the loop preheader
TerminatorInst *LoopPredInst = Preheader->getTerminator();
for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
// Load from the memory we are promoting...
LoadInst *LI = new LoadInst(PromotedValues[i].second,
PromotedValues[i].second->getName()+".promoted",
LoopPredInst);
// Store into the temporary alloca...
new StoreInst(LI, PromotedValues[i].first, LoopPredInst);
}
// Scan the basic blocks in the loop, replacing uses of our pointers with
// uses of the allocas in question.
//
const std::vector<BasicBlock*> &LoopBBs = CurLoop->getBlocks();
for (std::vector<BasicBlock*>::const_iterator I = LoopBBs.begin(),
E = LoopBBs.end(); I != E; ++I) {
// Rewrite all loads and stores in the block of the pointer...
for (BasicBlock::iterator II = (*I)->begin(), E = (*I)->end();
II != E; ++II) {
if (LoadInst *L = dyn_cast<LoadInst>(II)) {
std::map<Value*, AllocaInst*>::iterator
I = ValueToAllocaMap.find(L->getOperand(0));
if (I != ValueToAllocaMap.end())
L->setOperand(0, I->second); // Rewrite load instruction...
} else if (StoreInst *S = dyn_cast<StoreInst>(II)) {
std::map<Value*, AllocaInst*>::iterator
I = ValueToAllocaMap.find(S->getOperand(1));
if (I != ValueToAllocaMap.end())
S->setOperand(1, I->second); // Rewrite store instruction...
}
}
}
// Now that the body of the loop uses the allocas instead of the original
// memory locations, insert code to copy the alloca value back into the
// original memory location on all exits from the loop. Note that we only
// want to insert one copy of the code in each exit block, though the loop may
// exit to the same block more than once.
//
std::set<BasicBlock*> ProcessedBlocks;
const std::vector<BasicBlock*> &ExitBlocks = CurLoop->getExitBlocks();
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (ProcessedBlocks.insert(ExitBlocks[i]).second) {
// Copy all of the allocas into their memory locations...
BasicBlock::iterator BI = ExitBlocks[i]->begin();
while (isa<PHINode>(*BI))
++BI; // Skip over all of the phi nodes in the block...
Instruction *InsertPos = BI;
for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i) {
// Load from the alloca...
LoadInst *LI = new LoadInst(PromotedValues[i].first, "", InsertPos);
// Store into the memory we promoted...
new StoreInst(LI, PromotedValues[i].second, InsertPos);
}
}
// Now that we have done the deed, use the mem2reg functionality to promote
// all of the new allocas we just created into real SSA registers...
//
std::vector<AllocaInst*> PromotedAllocas;
PromotedAllocas.reserve(PromotedValues.size());
for (unsigned i = 0, e = PromotedValues.size(); i != e; ++i)
PromotedAllocas.push_back(PromotedValues[i].first);
PromoteMemToReg(PromotedAllocas, *DT, *DF, AA->getTargetData());
}
/// findPromotableValuesInLoop - Check the current loop for stores to definite
/// pointers, which are not loaded and stored through may aliases. If these are
/// found, create an alloca for the value, add it to the PromotedValues list,
/// and keep track of the mapping from value to alloca...
///
void LICM::findPromotableValuesInLoop(
std::vector<std::pair<AllocaInst*, Value*> > &PromotedValues,
std::map<Value*, AllocaInst*> &ValueToAllocaMap) {
Instruction *FnStart = CurLoop->getHeader()->getParent()->begin()->begin();
// Loop over all of the alias sets in the tracker object...
for (AliasSetTracker::iterator I = CurAST->begin(), E = CurAST->end();
I != E; ++I) {
AliasSet &AS = *I;
// We can promote this alias set if it has a store, if it is a "Must" alias
// set, if the pointer is loop invariant, if if we are not eliminating any volatile loads or stores.
if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias() &&
!AS.isVolatile() && isLoopInvariant(AS.begin()->first)) {
assert(AS.begin() != AS.end() &&
"Must alias set should have at least one pointer element in it!");
Value *V = AS.begin()->first;
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
// different sizes.
bool PointerOk = true;
for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
if (V->getType() != I->first->getType()) {
PointerOk = false;
break;
}
if (PointerOk) {
const Type *Ty = cast<PointerType>(V->getType())->getElementType();
AllocaInst *AI = new AllocaInst(Ty, 0, V->getName()+".tmp", FnStart);
PromotedValues.push_back(std::make_pair(AI, V));
for (AliasSet::iterator I = AS.begin(), E = AS.end(); I != E; ++I)
ValueToAllocaMap.insert(std::make_pair(I->first, AI));
DEBUG(std::cerr << "LICM: Promoting value: " << *V << "\n");
}
}
}
}