mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-25 14:32:53 +00:00
8677f2ff9a
define below all header includes in the lib/CodeGen/... tree. While the current modules implementation doesn't check for this kind of ODR violation yet, it is likely to grow support for it in the future. It also removes one layer of macro pollution across all the included headers. Other sub-trees will follow. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@206837 91177308-0d34-0410-b5e6-96231b3b80d8
661 lines
25 KiB
C++
661 lines
25 KiB
C++
//===----- CriticalAntiDepBreaker.cpp - Anti-dep breaker -------- ---------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the CriticalAntiDepBreaker class, which
|
|
// implements register anti-dependence breaking along a blocks
|
|
// critical path during post-RA scheduler.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CriticalAntiDepBreaker.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "post-RA-sched"
|
|
|
|
CriticalAntiDepBreaker::
|
|
CriticalAntiDepBreaker(MachineFunction& MFi, const RegisterClassInfo &RCI) :
|
|
AntiDepBreaker(), MF(MFi),
|
|
MRI(MF.getRegInfo()),
|
|
TII(MF.getTarget().getInstrInfo()),
|
|
TRI(MF.getTarget().getRegisterInfo()),
|
|
RegClassInfo(RCI),
|
|
Classes(TRI->getNumRegs(), nullptr),
|
|
KillIndices(TRI->getNumRegs(), 0),
|
|
DefIndices(TRI->getNumRegs(), 0),
|
|
KeepRegs(TRI->getNumRegs(), false) {}
|
|
|
|
CriticalAntiDepBreaker::~CriticalAntiDepBreaker() {
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::StartBlock(MachineBasicBlock *BB) {
|
|
const unsigned BBSize = BB->size();
|
|
for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i) {
|
|
// Clear out the register class data.
|
|
Classes[i] = nullptr;
|
|
|
|
// Initialize the indices to indicate that no registers are live.
|
|
KillIndices[i] = ~0u;
|
|
DefIndices[i] = BBSize;
|
|
}
|
|
|
|
// Clear "do not change" set.
|
|
KeepRegs.reset();
|
|
|
|
bool IsReturnBlock = (BBSize != 0 && BB->back().isReturn());
|
|
|
|
// Examine the live-in regs of all successors.
|
|
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
|
|
SE = BB->succ_end(); SI != SE; ++SI)
|
|
for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
|
|
E = (*SI)->livein_end(); I != E; ++I) {
|
|
for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
|
|
unsigned Reg = *AI;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BBSize;
|
|
DefIndices[Reg] = ~0u;
|
|
}
|
|
}
|
|
|
|
// Mark live-out callee-saved registers. In a return block this is
|
|
// all callee-saved registers. In non-return this is any
|
|
// callee-saved register that is not saved in the prolog.
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
BitVector Pristine = MFI->getPristineRegs(BB);
|
|
for (const MCPhysReg *I = TRI->getCalleeSavedRegs(&MF); *I; ++I) {
|
|
if (!IsReturnBlock && !Pristine.test(*I)) continue;
|
|
for (MCRegAliasIterator AI(*I, TRI, true); AI.isValid(); ++AI) {
|
|
unsigned Reg = *AI;
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = BBSize;
|
|
DefIndices[Reg] = ~0u;
|
|
}
|
|
}
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::FinishBlock() {
|
|
RegRefs.clear();
|
|
KeepRegs.reset();
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::Observe(MachineInstr *MI, unsigned Count,
|
|
unsigned InsertPosIndex) {
|
|
if (MI->isDebugValue())
|
|
return;
|
|
assert(Count < InsertPosIndex && "Instruction index out of expected range!");
|
|
|
|
for (unsigned Reg = 0; Reg != TRI->getNumRegs(); ++Reg) {
|
|
if (KillIndices[Reg] != ~0u) {
|
|
// If Reg is currently live, then mark that it can't be renamed as
|
|
// we don't know the extent of its live-range anymore (now that it
|
|
// has been scheduled).
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
KillIndices[Reg] = Count;
|
|
} else if (DefIndices[Reg] < InsertPosIndex && DefIndices[Reg] >= Count) {
|
|
// Any register which was defined within the previous scheduling region
|
|
// may have been rescheduled and its lifetime may overlap with registers
|
|
// in ways not reflected in our current liveness state. For each such
|
|
// register, adjust the liveness state to be conservatively correct.
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
// Move the def index to the end of the previous region, to reflect
|
|
// that the def could theoretically have been scheduled at the end.
|
|
DefIndices[Reg] = InsertPosIndex;
|
|
}
|
|
}
|
|
|
|
PrescanInstruction(MI);
|
|
ScanInstruction(MI, Count);
|
|
}
|
|
|
|
/// CriticalPathStep - Return the next SUnit after SU on the bottom-up
|
|
/// critical path.
|
|
static const SDep *CriticalPathStep(const SUnit *SU) {
|
|
const SDep *Next = nullptr;
|
|
unsigned NextDepth = 0;
|
|
// Find the predecessor edge with the greatest depth.
|
|
for (SUnit::const_pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
|
P != PE; ++P) {
|
|
const SUnit *PredSU = P->getSUnit();
|
|
unsigned PredLatency = P->getLatency();
|
|
unsigned PredTotalLatency = PredSU->getDepth() + PredLatency;
|
|
// In the case of a latency tie, prefer an anti-dependency edge over
|
|
// other types of edges.
|
|
if (NextDepth < PredTotalLatency ||
|
|
(NextDepth == PredTotalLatency && P->getKind() == SDep::Anti)) {
|
|
NextDepth = PredTotalLatency;
|
|
Next = &*P;
|
|
}
|
|
}
|
|
return Next;
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::PrescanInstruction(MachineInstr *MI) {
|
|
// It's not safe to change register allocation for source operands of
|
|
// that have special allocation requirements. Also assume all registers
|
|
// used in a call must not be changed (ABI).
|
|
// FIXME: The issue with predicated instruction is more complex. We are being
|
|
// conservative here because the kill markers cannot be trusted after
|
|
// if-conversion:
|
|
// %R6<def> = LDR %SP, %reg0, 92, pred:14, pred:%reg0; mem:LD4[FixedStack14]
|
|
// ...
|
|
// STR %R0, %R6<kill>, %reg0, 0, pred:0, pred:%CPSR; mem:ST4[%395]
|
|
// %R6<def> = LDR %SP, %reg0, 100, pred:0, pred:%CPSR; mem:LD4[FixedStack12]
|
|
// STR %R0, %R6<kill>, %reg0, 0, pred:14, pred:%reg0; mem:ST4[%396](align=8)
|
|
//
|
|
// The first R6 kill is not really a kill since it's killed by a predicated
|
|
// instruction which may not be executed. The second R6 def may or may not
|
|
// re-define R6 so it's not safe to change it since the last R6 use cannot be
|
|
// changed.
|
|
bool Special = MI->isCall() ||
|
|
MI->hasExtraSrcRegAllocReq() ||
|
|
TII->isPredicated(MI);
|
|
|
|
// Scan the register operands for this instruction and update
|
|
// Classes and RegRefs.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
const TargetRegisterClass *NewRC = nullptr;
|
|
|
|
if (i < MI->getDesc().getNumOperands())
|
|
NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
// class is consistent across all uses.
|
|
if (!Classes[Reg] && NewRC)
|
|
Classes[Reg] = NewRC;
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
// Now check for aliases.
|
|
for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
|
|
// If an alias of the reg is used during the live range, give up.
|
|
// Note that this allows us to skip checking if AntiDepReg
|
|
// overlaps with any of the aliases, among other things.
|
|
unsigned AliasReg = *AI;
|
|
if (Classes[AliasReg]) {
|
|
Classes[AliasReg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
}
|
|
}
|
|
|
|
// If we're still willing to consider this register, note the reference.
|
|
if (Classes[Reg] != reinterpret_cast<TargetRegisterClass *>(-1))
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
|
|
if (MO.isUse() && Special) {
|
|
if (!KeepRegs.test(Reg)) {
|
|
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
|
|
SubRegs.isValid(); ++SubRegs)
|
|
KeepRegs.set(*SubRegs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CriticalAntiDepBreaker::ScanInstruction(MachineInstr *MI,
|
|
unsigned Count) {
|
|
// Update liveness.
|
|
// Proceeding upwards, registers that are defed but not used in this
|
|
// instruction are now dead.
|
|
|
|
if (!TII->isPredicated(MI)) {
|
|
// Predicated defs are modeled as read + write, i.e. similar to two
|
|
// address updates.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
|
|
if (MO.isRegMask())
|
|
for (unsigned i = 0, e = TRI->getNumRegs(); i != e; ++i)
|
|
if (MO.clobbersPhysReg(i)) {
|
|
DefIndices[i] = Count;
|
|
KillIndices[i] = ~0u;
|
|
KeepRegs.reset(i);
|
|
Classes[i] = nullptr;
|
|
RegRefs.erase(i);
|
|
}
|
|
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (!MO.isDef()) continue;
|
|
// Ignore two-addr defs.
|
|
if (MI->isRegTiedToUseOperand(i)) continue;
|
|
|
|
DefIndices[Reg] = Count;
|
|
KillIndices[Reg] = ~0u;
|
|
assert(((KillIndices[Reg] == ~0u) !=
|
|
(DefIndices[Reg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for Reg!");
|
|
KeepRegs.reset(Reg);
|
|
Classes[Reg] = nullptr;
|
|
RegRefs.erase(Reg);
|
|
// Repeat, for all subregs.
|
|
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
|
|
unsigned SubregReg = *SubRegs;
|
|
DefIndices[SubregReg] = Count;
|
|
KillIndices[SubregReg] = ~0u;
|
|
KeepRegs.reset(SubregReg);
|
|
Classes[SubregReg] = nullptr;
|
|
RegRefs.erase(SubregReg);
|
|
}
|
|
// Conservatively mark super-registers as unusable.
|
|
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
|
|
Classes[*SR] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (!MO.isUse()) continue;
|
|
|
|
const TargetRegisterClass *NewRC = nullptr;
|
|
if (i < MI->getDesc().getNumOperands())
|
|
NewRC = TII->getRegClass(MI->getDesc(), i, TRI, MF);
|
|
|
|
// For now, only allow the register to be changed if its register
|
|
// class is consistent across all uses.
|
|
if (!Classes[Reg] && NewRC)
|
|
Classes[Reg] = NewRC;
|
|
else if (!NewRC || Classes[Reg] != NewRC)
|
|
Classes[Reg] = reinterpret_cast<TargetRegisterClass *>(-1);
|
|
|
|
RegRefs.insert(std::make_pair(Reg, &MO));
|
|
|
|
// It wasn't previously live but now it is, this is a kill.
|
|
if (KillIndices[Reg] == ~0u) {
|
|
KillIndices[Reg] = Count;
|
|
DefIndices[Reg] = ~0u;
|
|
assert(((KillIndices[Reg] == ~0u) !=
|
|
(DefIndices[Reg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for Reg!");
|
|
}
|
|
// Repeat, for all aliases.
|
|
for (MCRegAliasIterator AI(Reg, TRI, false); AI.isValid(); ++AI) {
|
|
unsigned AliasReg = *AI;
|
|
if (KillIndices[AliasReg] == ~0u) {
|
|
KillIndices[AliasReg] = Count;
|
|
DefIndices[AliasReg] = ~0u;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check all machine operands that reference the antidependent register and must
|
|
// be replaced by NewReg. Return true if any of their parent instructions may
|
|
// clobber the new register.
|
|
//
|
|
// Note: AntiDepReg may be referenced by a two-address instruction such that
|
|
// it's use operand is tied to a def operand. We guard against the case in which
|
|
// the two-address instruction also defines NewReg, as may happen with
|
|
// pre/postincrement loads. In this case, both the use and def operands are in
|
|
// RegRefs because the def is inserted by PrescanInstruction and not erased
|
|
// during ScanInstruction. So checking for an instructions with definitions of
|
|
// both NewReg and AntiDepReg covers it.
|
|
bool
|
|
CriticalAntiDepBreaker::isNewRegClobberedByRefs(RegRefIter RegRefBegin,
|
|
RegRefIter RegRefEnd,
|
|
unsigned NewReg)
|
|
{
|
|
for (RegRefIter I = RegRefBegin; I != RegRefEnd; ++I ) {
|
|
MachineOperand *RefOper = I->second;
|
|
|
|
// Don't allow the instruction defining AntiDepReg to earlyclobber its
|
|
// operands, in case they may be assigned to NewReg. In this case antidep
|
|
// breaking must fail, but it's too rare to bother optimizing.
|
|
if (RefOper->isDef() && RefOper->isEarlyClobber())
|
|
return true;
|
|
|
|
// Handle cases in which this instructions defines NewReg.
|
|
MachineInstr *MI = RefOper->getParent();
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
const MachineOperand &CheckOper = MI->getOperand(i);
|
|
|
|
if (CheckOper.isRegMask() && CheckOper.clobbersPhysReg(NewReg))
|
|
return true;
|
|
|
|
if (!CheckOper.isReg() || !CheckOper.isDef() ||
|
|
CheckOper.getReg() != NewReg)
|
|
continue;
|
|
|
|
// Don't allow the instruction to define NewReg and AntiDepReg.
|
|
// When AntiDepReg is renamed it will be an illegal op.
|
|
if (RefOper->isDef())
|
|
return true;
|
|
|
|
// Don't allow an instruction using AntiDepReg to be earlyclobbered by
|
|
// NewReg
|
|
if (CheckOper.isEarlyClobber())
|
|
return true;
|
|
|
|
// Don't allow inline asm to define NewReg at all. Who know what it's
|
|
// doing with it.
|
|
if (MI->isInlineAsm())
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned CriticalAntiDepBreaker::
|
|
findSuitableFreeRegister(RegRefIter RegRefBegin,
|
|
RegRefIter RegRefEnd,
|
|
unsigned AntiDepReg,
|
|
unsigned LastNewReg,
|
|
const TargetRegisterClass *RC,
|
|
SmallVectorImpl<unsigned> &Forbid)
|
|
{
|
|
ArrayRef<MCPhysReg> Order = RegClassInfo.getOrder(RC);
|
|
for (unsigned i = 0; i != Order.size(); ++i) {
|
|
unsigned NewReg = Order[i];
|
|
// Don't replace a register with itself.
|
|
if (NewReg == AntiDepReg) continue;
|
|
// Don't replace a register with one that was recently used to repair
|
|
// an anti-dependence with this AntiDepReg, because that would
|
|
// re-introduce that anti-dependence.
|
|
if (NewReg == LastNewReg) continue;
|
|
// If any instructions that define AntiDepReg also define the NewReg, it's
|
|
// not suitable. For example, Instruction with multiple definitions can
|
|
// result in this condition.
|
|
if (isNewRegClobberedByRefs(RegRefBegin, RegRefEnd, NewReg)) continue;
|
|
// If NewReg is dead and NewReg's most recent def is not before
|
|
// AntiDepReg's kill, it's safe to replace AntiDepReg with NewReg.
|
|
assert(((KillIndices[AntiDepReg] == ~0u) != (DefIndices[AntiDepReg] == ~0u))
|
|
&& "Kill and Def maps aren't consistent for AntiDepReg!");
|
|
assert(((KillIndices[NewReg] == ~0u) != (DefIndices[NewReg] == ~0u))
|
|
&& "Kill and Def maps aren't consistent for NewReg!");
|
|
if (KillIndices[NewReg] != ~0u ||
|
|
Classes[NewReg] == reinterpret_cast<TargetRegisterClass *>(-1) ||
|
|
KillIndices[AntiDepReg] > DefIndices[NewReg])
|
|
continue;
|
|
// If NewReg overlaps any of the forbidden registers, we can't use it.
|
|
bool Forbidden = false;
|
|
for (SmallVectorImpl<unsigned>::iterator it = Forbid.begin(),
|
|
ite = Forbid.end(); it != ite; ++it)
|
|
if (TRI->regsOverlap(NewReg, *it)) {
|
|
Forbidden = true;
|
|
break;
|
|
}
|
|
if (Forbidden) continue;
|
|
return NewReg;
|
|
}
|
|
|
|
// No registers are free and available!
|
|
return 0;
|
|
}
|
|
|
|
unsigned CriticalAntiDepBreaker::
|
|
BreakAntiDependencies(const std::vector<SUnit>& SUnits,
|
|
MachineBasicBlock::iterator Begin,
|
|
MachineBasicBlock::iterator End,
|
|
unsigned InsertPosIndex,
|
|
DbgValueVector &DbgValues) {
|
|
// The code below assumes that there is at least one instruction,
|
|
// so just duck out immediately if the block is empty.
|
|
if (SUnits.empty()) return 0;
|
|
|
|
// Keep a map of the MachineInstr*'s back to the SUnit representing them.
|
|
// This is used for updating debug information.
|
|
//
|
|
// FIXME: Replace this with the existing map in ScheduleDAGInstrs::MISUnitMap
|
|
DenseMap<MachineInstr*,const SUnit*> MISUnitMap;
|
|
|
|
// Find the node at the bottom of the critical path.
|
|
const SUnit *Max = nullptr;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
const SUnit *SU = &SUnits[i];
|
|
MISUnitMap[SU->getInstr()] = SU;
|
|
if (!Max || SU->getDepth() + SU->Latency > Max->getDepth() + Max->Latency)
|
|
Max = SU;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
{
|
|
DEBUG(dbgs() << "Critical path has total latency "
|
|
<< (Max->getDepth() + Max->Latency) << "\n");
|
|
DEBUG(dbgs() << "Available regs:");
|
|
for (unsigned Reg = 0; Reg < TRI->getNumRegs(); ++Reg) {
|
|
if (KillIndices[Reg] == ~0u)
|
|
DEBUG(dbgs() << " " << TRI->getName(Reg));
|
|
}
|
|
DEBUG(dbgs() << '\n');
|
|
}
|
|
#endif
|
|
|
|
// Track progress along the critical path through the SUnit graph as we walk
|
|
// the instructions.
|
|
const SUnit *CriticalPathSU = Max;
|
|
MachineInstr *CriticalPathMI = CriticalPathSU->getInstr();
|
|
|
|
// Consider this pattern:
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// A = ...
|
|
// ... = A
|
|
// There are three anti-dependencies here, and without special care,
|
|
// we'd break all of them using the same register:
|
|
// A = ...
|
|
// ... = A
|
|
// B = ...
|
|
// ... = B
|
|
// B = ...
|
|
// ... = B
|
|
// B = ...
|
|
// ... = B
|
|
// because at each anti-dependence, B is the first register that
|
|
// isn't A which is free. This re-introduces anti-dependencies
|
|
// at all but one of the original anti-dependencies that we were
|
|
// trying to break. To avoid this, keep track of the most recent
|
|
// register that each register was replaced with, avoid
|
|
// using it to repair an anti-dependence on the same register.
|
|
// This lets us produce this:
|
|
// A = ...
|
|
// ... = A
|
|
// B = ...
|
|
// ... = B
|
|
// C = ...
|
|
// ... = C
|
|
// B = ...
|
|
// ... = B
|
|
// This still has an anti-dependence on B, but at least it isn't on the
|
|
// original critical path.
|
|
//
|
|
// TODO: If we tracked more than one register here, we could potentially
|
|
// fix that remaining critical edge too. This is a little more involved,
|
|
// because unlike the most recent register, less recent registers should
|
|
// still be considered, though only if no other registers are available.
|
|
std::vector<unsigned> LastNewReg(TRI->getNumRegs(), 0);
|
|
|
|
// Attempt to break anti-dependence edges on the critical path. Walk the
|
|
// instructions from the bottom up, tracking information about liveness
|
|
// as we go to help determine which registers are available.
|
|
unsigned Broken = 0;
|
|
unsigned Count = InsertPosIndex - 1;
|
|
for (MachineBasicBlock::iterator I = End, E = Begin;
|
|
I != E; --Count) {
|
|
MachineInstr *MI = --I;
|
|
if (MI->isDebugValue())
|
|
continue;
|
|
|
|
// Check if this instruction has a dependence on the critical path that
|
|
// is an anti-dependence that we may be able to break. If it is, set
|
|
// AntiDepReg to the non-zero register associated with the anti-dependence.
|
|
//
|
|
// We limit our attention to the critical path as a heuristic to avoid
|
|
// breaking anti-dependence edges that aren't going to significantly
|
|
// impact the overall schedule. There are a limited number of registers
|
|
// and we want to save them for the important edges.
|
|
//
|
|
// TODO: Instructions with multiple defs could have multiple
|
|
// anti-dependencies. The current code here only knows how to break one
|
|
// edge per instruction. Note that we'd have to be able to break all of
|
|
// the anti-dependencies in an instruction in order to be effective.
|
|
unsigned AntiDepReg = 0;
|
|
if (MI == CriticalPathMI) {
|
|
if (const SDep *Edge = CriticalPathStep(CriticalPathSU)) {
|
|
const SUnit *NextSU = Edge->getSUnit();
|
|
|
|
// Only consider anti-dependence edges.
|
|
if (Edge->getKind() == SDep::Anti) {
|
|
AntiDepReg = Edge->getReg();
|
|
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
|
|
if (!MRI.isAllocatable(AntiDepReg))
|
|
// Don't break anti-dependencies on non-allocatable registers.
|
|
AntiDepReg = 0;
|
|
else if (KeepRegs.test(AntiDepReg))
|
|
// Don't break anti-dependencies if an use down below requires
|
|
// this exact register.
|
|
AntiDepReg = 0;
|
|
else {
|
|
// If the SUnit has other dependencies on the SUnit that it
|
|
// anti-depends on, don't bother breaking the anti-dependency
|
|
// since those edges would prevent such units from being
|
|
// scheduled past each other regardless.
|
|
//
|
|
// Also, if there are dependencies on other SUnits with the
|
|
// same register as the anti-dependency, don't attempt to
|
|
// break it.
|
|
for (SUnit::const_pred_iterator P = CriticalPathSU->Preds.begin(),
|
|
PE = CriticalPathSU->Preds.end(); P != PE; ++P)
|
|
if (P->getSUnit() == NextSU ?
|
|
(P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
|
|
(P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
|
|
AntiDepReg = 0;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
CriticalPathSU = NextSU;
|
|
CriticalPathMI = CriticalPathSU->getInstr();
|
|
} else {
|
|
// We've reached the end of the critical path.
|
|
CriticalPathSU = nullptr;
|
|
CriticalPathMI = nullptr;
|
|
}
|
|
}
|
|
|
|
PrescanInstruction(MI);
|
|
|
|
SmallVector<unsigned, 2> ForbidRegs;
|
|
|
|
// If MI's defs have a special allocation requirement, don't allow
|
|
// any def registers to be changed. Also assume all registers
|
|
// defined in a call must not be changed (ABI).
|
|
if (MI->isCall() || MI->hasExtraDefRegAllocReq() ||
|
|
TII->isPredicated(MI))
|
|
// If this instruction's defs have special allocation requirement, don't
|
|
// break this anti-dependency.
|
|
AntiDepReg = 0;
|
|
else if (AntiDepReg) {
|
|
// If this instruction has a use of AntiDepReg, breaking it
|
|
// is invalid. If the instruction defines other registers,
|
|
// save a list of them so that we don't pick a new register
|
|
// that overlaps any of them.
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg()) continue;
|
|
unsigned Reg = MO.getReg();
|
|
if (Reg == 0) continue;
|
|
if (MO.isUse() && TRI->regsOverlap(AntiDepReg, Reg)) {
|
|
AntiDepReg = 0;
|
|
break;
|
|
}
|
|
if (MO.isDef() && Reg != AntiDepReg)
|
|
ForbidRegs.push_back(Reg);
|
|
}
|
|
}
|
|
|
|
// Determine AntiDepReg's register class, if it is live and is
|
|
// consistently used within a single class.
|
|
const TargetRegisterClass *RC = AntiDepReg != 0 ? Classes[AntiDepReg]
|
|
: nullptr;
|
|
assert((AntiDepReg == 0 || RC != nullptr) &&
|
|
"Register should be live if it's causing an anti-dependence!");
|
|
if (RC == reinterpret_cast<TargetRegisterClass *>(-1))
|
|
AntiDepReg = 0;
|
|
|
|
// Look for a suitable register to use to break the anti-dependence.
|
|
//
|
|
// TODO: Instead of picking the first free register, consider which might
|
|
// be the best.
|
|
if (AntiDepReg != 0) {
|
|
std::pair<std::multimap<unsigned, MachineOperand *>::iterator,
|
|
std::multimap<unsigned, MachineOperand *>::iterator>
|
|
Range = RegRefs.equal_range(AntiDepReg);
|
|
if (unsigned NewReg = findSuitableFreeRegister(Range.first, Range.second,
|
|
AntiDepReg,
|
|
LastNewReg[AntiDepReg],
|
|
RC, ForbidRegs)) {
|
|
DEBUG(dbgs() << "Breaking anti-dependence edge on "
|
|
<< TRI->getName(AntiDepReg)
|
|
<< " with " << RegRefs.count(AntiDepReg) << " references"
|
|
<< " using " << TRI->getName(NewReg) << "!\n");
|
|
|
|
// Update the references to the old register to refer to the new
|
|
// register.
|
|
for (std::multimap<unsigned, MachineOperand *>::iterator
|
|
Q = Range.first, QE = Range.second; Q != QE; ++Q) {
|
|
Q->second->setReg(NewReg);
|
|
// If the SU for the instruction being updated has debug information
|
|
// related to the anti-dependency register, make sure to update that
|
|
// as well.
|
|
const SUnit *SU = MISUnitMap[Q->second->getParent()];
|
|
if (!SU) continue;
|
|
for (DbgValueVector::iterator DVI = DbgValues.begin(),
|
|
DVE = DbgValues.end(); DVI != DVE; ++DVI)
|
|
if (DVI->second == Q->second->getParent())
|
|
UpdateDbgValue(DVI->first, AntiDepReg, NewReg);
|
|
}
|
|
|
|
// We just went back in time and modified history; the
|
|
// liveness information for the anti-dependence reg is now
|
|
// inconsistent. Set the state as if it were dead.
|
|
Classes[NewReg] = Classes[AntiDepReg];
|
|
DefIndices[NewReg] = DefIndices[AntiDepReg];
|
|
KillIndices[NewReg] = KillIndices[AntiDepReg];
|
|
assert(((KillIndices[NewReg] == ~0u) !=
|
|
(DefIndices[NewReg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for NewReg!");
|
|
|
|
Classes[AntiDepReg] = nullptr;
|
|
DefIndices[AntiDepReg] = KillIndices[AntiDepReg];
|
|
KillIndices[AntiDepReg] = ~0u;
|
|
assert(((KillIndices[AntiDepReg] == ~0u) !=
|
|
(DefIndices[AntiDepReg] == ~0u)) &&
|
|
"Kill and Def maps aren't consistent for AntiDepReg!");
|
|
|
|
RegRefs.erase(AntiDepReg);
|
|
LastNewReg[AntiDepReg] = NewReg;
|
|
++Broken;
|
|
}
|
|
}
|
|
|
|
ScanInstruction(MI, Count);
|
|
}
|
|
|
|
return Broken;
|
|
}
|