llvm-6502/include/llvm/Value.h
Chris Lattner 722272df41 Add two new classes: WeakVH and AssertingVH. These are both "ValueHandles",
which are effectively smart pointers to Value*'s.  They are both very light
weight and simple, and react to values being destroyed or being RAUW'd.

WeakVN does a best effort to follow a value around, including through RAUW 
operations and will get nulled out of the value is destroyed.  This is useful
for the eventual "metadata that references a value" work, because it is a
reference to a value that does not show up on its use_* list.

AssertingVH is a pointer that compiles down to a dumb raw pointer when 
assertions are disabled.  When enabled, it emits an assertion if the 
pointed-to value is destroyed while it is still being referenced.  This
is very useful for Maps and other things, and should have caught the recent
bugs in CallGraph and Reassociate, for example.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68149 91177308-0d34-0410-b5e6-96231b3b80d8
2009-03-31 22:11:05 +00:00

329 lines
12 KiB
C++

//===-- llvm/Value.h - Definition of the Value class ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares the Value class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_VALUE_H
#define LLVM_VALUE_H
#include "llvm/AbstractTypeUser.h"
#include "llvm/Use.h"
#include "llvm/Support/Casting.h"
#include <iosfwd>
#include <string>
namespace llvm {
class Constant;
class Argument;
class Instruction;
class BasicBlock;
class GlobalValue;
class Function;
class GlobalVariable;
class GlobalAlias;
class InlineAsm;
class ValueSymbolTable;
class TypeSymbolTable;
template<typename ValueTy> class StringMapEntry;
typedef StringMapEntry<Value*> ValueName;
class raw_ostream;
class AssemblyAnnotationWriter;
class ValueHandleBase;
//===----------------------------------------------------------------------===//
// Value Class
//===----------------------------------------------------------------------===//
/// This is a very important LLVM class. It is the base class of all values
/// computed by a program that may be used as operands to other values. Value is
/// the super class of other important classes such as Instruction and Function.
/// All Values have a Type. Type is not a subclass of Value. All types can have
/// a name and they should belong to some Module. Setting the name on the Value
/// automatically updates the module's symbol table.
///
/// Every value has a "use list" that keeps track of which other Values are
/// using this Value. A Value can also have an arbitrary number of ValueHandle
/// objects that watch it and listen to RAUW and Destroy events see
/// llvm/Support/ValueHandle.h for details.
///
/// @brief LLVM Value Representation
class Value {
const unsigned char SubclassID; // Subclass identifier (for isa/dyn_cast)
unsigned char HasValueHandle : 1; // Has a ValueHandle pointing to this?
protected:
/// SubclassData - This member is defined by this class, but is not used for
/// anything. Subclasses can use it to hold whatever state they find useful.
/// This field is initialized to zero by the ctor.
unsigned short SubclassData;
private:
PATypeHolder VTy;
Use *UseList;
friend class ValueSymbolTable; // Allow ValueSymbolTable to directly mod Name.
friend class SymbolTable; // Allow SymbolTable to directly poke Name.
friend class ValueHandleBase;
ValueName *Name;
void operator=(const Value &); // Do not implement
Value(const Value &); // Do not implement
public:
Value(const Type *Ty, unsigned scid);
virtual ~Value();
/// dump - Support for debugging, callable in GDB: V->dump()
//
virtual void dump() const;
/// print - Implement operator<< on Value.
///
void print(std::ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
void print(raw_ostream &O, AssemblyAnnotationWriter *AAW = 0) const;
/// All values are typed, get the type of this value.
///
inline const Type *getType() const { return VTy; }
// All values can potentially be named...
inline bool hasName() const { return Name != 0; }
ValueName *getValueName() const { return Name; }
/// getNameStart - Return a pointer to a null terminated string for this name.
/// Note that names can have null characters within the string as well as at
/// their end. This always returns a non-null pointer.
const char *getNameStart() const;
/// getNameEnd - Return a pointer to the end of the name.
const char *getNameEnd() const { return getNameStart() + getNameLen(); }
/// isName - Return true if this value has the name specified by the provided
/// nul terminated string.
bool isName(const char *N) const;
/// getNameLen - Return the length of the string, correctly handling nul
/// characters embedded into them.
unsigned getNameLen() const;
/// getName()/getNameStr() - Return the name of the specified value,
/// *constructing a string* to hold it. Because these are guaranteed to
/// construct a string, they are very expensive and should be avoided.
std::string getName() const { return getNameStr(); }
std::string getNameStr() const;
void setName(const std::string &name);
void setName(const char *Name, unsigned NameLen);
void setName(const char *Name); // Takes a null-terminated string.
/// takeName - transfer the name from V to this value, setting V's name to
/// empty. It is an error to call V->takeName(V).
void takeName(Value *V);
/// replaceAllUsesWith - Go through the uses list for this definition and make
/// each use point to "V" instead of "this". After this completes, 'this's
/// use list is guaranteed to be empty.
///
void replaceAllUsesWith(Value *V);
// uncheckedReplaceAllUsesWith - Just like replaceAllUsesWith but dangerous.
// Only use when in type resolution situations!
void uncheckedReplaceAllUsesWith(Value *V);
//----------------------------------------------------------------------
// Methods for handling the chain of uses of this Value.
//
typedef value_use_iterator<User> use_iterator;
typedef value_use_iterator<const User> use_const_iterator;
bool use_empty() const { return UseList == 0; }
use_iterator use_begin() { return use_iterator(UseList); }
use_const_iterator use_begin() const { return use_const_iterator(UseList); }
use_iterator use_end() { return use_iterator(0); }
use_const_iterator use_end() const { return use_const_iterator(0); }
User *use_back() { return *use_begin(); }
const User *use_back() const { return *use_begin(); }
/// hasOneUse - Return true if there is exactly one user of this value. This
/// is specialized because it is a common request and does not require
/// traversing the whole use list.
///
bool hasOneUse() const {
use_const_iterator I = use_begin(), E = use_end();
if (I == E) return false;
return ++I == E;
}
/// hasNUses - Return true if this Value has exactly N users.
///
bool hasNUses(unsigned N) const;
/// hasNUsesOrMore - Return true if this value has N users or more. This is
/// logically equivalent to getNumUses() >= N.
///
bool hasNUsesOrMore(unsigned N) const;
bool isUsedInBasicBlock(const BasicBlock *BB) const;
/// getNumUses - This method computes the number of uses of this Value. This
/// is a linear time operation. Use hasOneUse, hasNUses, or hasMoreThanNUses
/// to check for specific values.
unsigned getNumUses() const;
/// addUse - This method should only be used by the Use class.
///
void addUse(Use &U) { U.addToList(&UseList); }
/// An enumeration for keeping track of the concrete subclass of Value that
/// is actually instantiated. Values of this enumeration are kept in the
/// Value classes SubclassID field. They are used for concrete type
/// identification.
enum ValueTy {
ArgumentVal, // This is an instance of Argument
BasicBlockVal, // This is an instance of BasicBlock
FunctionVal, // This is an instance of Function
GlobalAliasVal, // This is an instance of GlobalAlias
GlobalVariableVal, // This is an instance of GlobalVariable
UndefValueVal, // This is an instance of UndefValue
ConstantExprVal, // This is an instance of ConstantExpr
ConstantAggregateZeroVal, // This is an instance of ConstantAggregateNull
ConstantIntVal, // This is an instance of ConstantInt
ConstantFPVal, // This is an instance of ConstantFP
ConstantArrayVal, // This is an instance of ConstantArray
ConstantStructVal, // This is an instance of ConstantStruct
ConstantVectorVal, // This is an instance of ConstantVector
ConstantPointerNullVal, // This is an instance of ConstantPointerNull
InlineAsmVal, // This is an instance of InlineAsm
PseudoSourceValueVal, // This is an instance of PseudoSourceValue
InstructionVal, // This is an instance of Instruction
// Markers:
ConstantFirstVal = FunctionVal,
ConstantLastVal = ConstantPointerNullVal
};
/// getValueID - Return an ID for the concrete type of this object. This is
/// used to implement the classof checks. This should not be used for any
/// other purpose, as the values may change as LLVM evolves. Also, note that
/// for instructions, the Instruction's opcode is added to InstructionVal. So
/// this means three things:
/// # there is no value with code InstructionVal (no opcode==0).
/// # there are more possible values for the value type than in ValueTy enum.
/// # the InstructionVal enumerator must be the highest valued enumerator in
/// the ValueTy enum.
unsigned getValueID() const {
return SubclassID;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const Value *) {
return true; // Values are always values.
}
/// getRawType - This should only be used to implement the vmcore library.
///
const Type *getRawType() const { return VTy.getRawType(); }
/// stripPointerCasts - This method strips off any unneeded pointer
/// casts from the specified value, returning the original uncasted value.
/// Note that the returned value has pointer type if the specified value does.
Value *stripPointerCasts();
const Value *stripPointerCasts() const {
return const_cast<Value*>(this)->stripPointerCasts();
}
/// getUnderlyingObject - This method strips off any GEP address adjustments
/// and pointer casts from the specified value, returning the original object
/// being addressed. Note that the returned value has pointer type if the
/// specified value does.
Value *getUnderlyingObject();
const Value *getUnderlyingObject() const {
return const_cast<Value*>(this)->getUnderlyingObject();
}
/// DoPHITranslation - If this value is a PHI node with CurBB as its parent,
/// return the value in the PHI node corresponding to PredBB. If not, return
/// ourself. This is useful if you want to know the value something has in a
/// predecessor block.
Value *DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB);
const Value *DoPHITranslation(const BasicBlock *CurBB,
const BasicBlock *PredBB) const{
return const_cast<Value*>(this)->DoPHITranslation(CurBB, PredBB);
}
};
inline std::ostream &operator<<(std::ostream &OS, const Value &V) {
V.print(OS);
return OS;
}
inline raw_ostream &operator<<(raw_ostream &OS, const Value &V) {
V.print(OS);
return OS;
}
void Use::set(Value *V) {
if (Val) removeFromList();
Val = V;
if (V) V->addUse(*this);
}
// isa - Provide some specializations of isa so that we don't have to include
// the subtype header files to test to see if the value is a subclass...
//
template <> inline bool isa_impl<Constant, Value>(const Value &Val) {
return Val.getValueID() >= Value::ConstantFirstVal &&
Val.getValueID() <= Value::ConstantLastVal;
}
template <> inline bool isa_impl<Argument, Value>(const Value &Val) {
return Val.getValueID() == Value::ArgumentVal;
}
template <> inline bool isa_impl<InlineAsm, Value>(const Value &Val) {
return Val.getValueID() == Value::InlineAsmVal;
}
template <> inline bool isa_impl<Instruction, Value>(const Value &Val) {
return Val.getValueID() >= Value::InstructionVal;
}
template <> inline bool isa_impl<BasicBlock, Value>(const Value &Val) {
return Val.getValueID() == Value::BasicBlockVal;
}
template <> inline bool isa_impl<Function, Value>(const Value &Val) {
return Val.getValueID() == Value::FunctionVal;
}
template <> inline bool isa_impl<GlobalVariable, Value>(const Value &Val) {
return Val.getValueID() == Value::GlobalVariableVal;
}
template <> inline bool isa_impl<GlobalAlias, Value>(const Value &Val) {
return Val.getValueID() == Value::GlobalAliasVal;
}
template <> inline bool isa_impl<GlobalValue, Value>(const Value &Val) {
return isa<GlobalVariable>(Val) || isa<Function>(Val) ||
isa<GlobalAlias>(Val);
}
// Value* is only 4-byte aligned.
template<>
class PointerLikeTypeTraits<Value*> {
typedef Value* PT;
public:
static inline void *getAsVoidPointer(PT P) { return P; }
static inline PT getFromVoidPointer(void *P) {
return static_cast<PT>(P);
}
enum { NumLowBitsAvailable = 2 };
};
} // End llvm namespace
#endif