mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-07 11:33:44 +00:00
e3d3572e28
make the addend fixup code a bit more generic Patch by Jack Carter. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@145998 91177308-0d34-0410-b5e6-96231b3b80d8
1109 lines
44 KiB
C++
1109 lines
44 KiB
C++
//===-- llvm/Support/ELF.h - ELF constants and data structures --*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This header contains common, non-processor-specific data structures and
|
|
// constants for the ELF file format.
|
|
//
|
|
// The details of the ELF32 bits in this file are largely based on the Tool
|
|
// Interface Standard (TIS) Executable and Linking Format (ELF) Specification
|
|
// Version 1.2, May 1995. The ELF64 stuff is based on ELF-64 Object File Format
|
|
// Version 1.5, Draft 2, May 1998 as well as OpenBSD header files.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_SUPPORT_ELF_H
|
|
#define LLVM_SUPPORT_ELF_H
|
|
|
|
#include "llvm/Support/DataTypes.h"
|
|
#include <cstring>
|
|
|
|
namespace llvm {
|
|
|
|
namespace ELF {
|
|
|
|
typedef uint32_t Elf32_Addr; // Program address
|
|
typedef uint32_t Elf32_Off; // File offset
|
|
typedef uint16_t Elf32_Half;
|
|
typedef uint32_t Elf32_Word;
|
|
typedef int32_t Elf32_Sword;
|
|
|
|
typedef uint64_t Elf64_Addr;
|
|
typedef uint64_t Elf64_Off;
|
|
typedef uint16_t Elf64_Half;
|
|
typedef uint32_t Elf64_Word;
|
|
typedef int32_t Elf64_Sword;
|
|
typedef uint64_t Elf64_Xword;
|
|
typedef int64_t Elf64_Sxword;
|
|
|
|
// Object file magic string.
|
|
static const char ElfMagic[] = { 0x7f, 'E', 'L', 'F', '\0' };
|
|
|
|
// e_ident size and indices.
|
|
enum {
|
|
EI_MAG0 = 0, // File identification index.
|
|
EI_MAG1 = 1, // File identification index.
|
|
EI_MAG2 = 2, // File identification index.
|
|
EI_MAG3 = 3, // File identification index.
|
|
EI_CLASS = 4, // File class.
|
|
EI_DATA = 5, // Data encoding.
|
|
EI_VERSION = 6, // File version.
|
|
EI_OSABI = 7, // OS/ABI identification.
|
|
EI_ABIVERSION = 8, // ABI version.
|
|
EI_PAD = 9, // Start of padding bytes.
|
|
EI_NIDENT = 16 // Number of bytes in e_ident.
|
|
};
|
|
|
|
struct Elf32_Ehdr {
|
|
unsigned char e_ident[EI_NIDENT]; // ELF Identification bytes
|
|
Elf32_Half e_type; // Type of file (see ET_* below)
|
|
Elf32_Half e_machine; // Required architecture for this file (see EM_*)
|
|
Elf32_Word e_version; // Must be equal to 1
|
|
Elf32_Addr e_entry; // Address to jump to in order to start program
|
|
Elf32_Off e_phoff; // Program header table's file offset, in bytes
|
|
Elf32_Off e_shoff; // Section header table's file offset, in bytes
|
|
Elf32_Word e_flags; // Processor-specific flags
|
|
Elf32_Half e_ehsize; // Size of ELF header, in bytes
|
|
Elf32_Half e_phentsize; // Size of an entry in the program header table
|
|
Elf32_Half e_phnum; // Number of entries in the program header table
|
|
Elf32_Half e_shentsize; // Size of an entry in the section header table
|
|
Elf32_Half e_shnum; // Number of entries in the section header table
|
|
Elf32_Half e_shstrndx; // Sect hdr table index of sect name string table
|
|
bool checkMagic() const {
|
|
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
|
|
}
|
|
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
|
|
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
|
|
};
|
|
|
|
// 64-bit ELF header. Fields are the same as for ELF32, but with different
|
|
// types (see above).
|
|
struct Elf64_Ehdr {
|
|
unsigned char e_ident[EI_NIDENT];
|
|
Elf64_Half e_type;
|
|
Elf64_Half e_machine;
|
|
Elf64_Word e_version;
|
|
Elf64_Addr e_entry;
|
|
Elf64_Off e_phoff;
|
|
Elf64_Off e_shoff;
|
|
Elf64_Word e_flags;
|
|
Elf64_Half e_ehsize;
|
|
Elf64_Half e_phentsize;
|
|
Elf64_Half e_phnum;
|
|
Elf64_Half e_shentsize;
|
|
Elf64_Half e_shnum;
|
|
Elf64_Half e_shstrndx;
|
|
bool checkMagic() const {
|
|
return (memcmp(e_ident, ElfMagic, strlen(ElfMagic))) == 0;
|
|
}
|
|
unsigned char getFileClass() const { return e_ident[EI_CLASS]; }
|
|
unsigned char getDataEncoding() const { return e_ident[EI_DATA]; }
|
|
};
|
|
|
|
// File types
|
|
enum {
|
|
ET_NONE = 0, // No file type
|
|
ET_REL = 1, // Relocatable file
|
|
ET_EXEC = 2, // Executable file
|
|
ET_DYN = 3, // Shared object file
|
|
ET_CORE = 4, // Core file
|
|
ET_LOPROC = 0xff00, // Beginning of processor-specific codes
|
|
ET_HIPROC = 0xffff // Processor-specific
|
|
};
|
|
|
|
// Versioning
|
|
enum {
|
|
EV_NONE = 0,
|
|
EV_CURRENT = 1
|
|
};
|
|
|
|
// Machine architectures
|
|
enum {
|
|
EM_NONE = 0, // No machine
|
|
EM_M32 = 1, // AT&T WE 32100
|
|
EM_SPARC = 2, // SPARC
|
|
EM_386 = 3, // Intel 386
|
|
EM_68K = 4, // Motorola 68000
|
|
EM_88K = 5, // Motorola 88000
|
|
EM_486 = 6, // Intel 486 (deprecated)
|
|
EM_860 = 7, // Intel 80860
|
|
EM_MIPS = 8, // MIPS R3000
|
|
EM_S370 = 9, // IBM System/370
|
|
EM_MIPS_RS3_LE = 10, // MIPS RS3000 Little-endian
|
|
EM_PARISC = 15, // Hewlett-Packard PA-RISC
|
|
EM_VPP500 = 17, // Fujitsu VPP500
|
|
EM_SPARC32PLUS = 18, // Enhanced instruction set SPARC
|
|
EM_960 = 19, // Intel 80960
|
|
EM_PPC = 20, // PowerPC
|
|
EM_PPC64 = 21, // PowerPC64
|
|
EM_S390 = 22, // IBM System/390
|
|
EM_SPU = 23, // IBM SPU/SPC
|
|
EM_V800 = 36, // NEC V800
|
|
EM_FR20 = 37, // Fujitsu FR20
|
|
EM_RH32 = 38, // TRW RH-32
|
|
EM_RCE = 39, // Motorola RCE
|
|
EM_ARM = 40, // ARM
|
|
EM_ALPHA = 41, // DEC Alpha
|
|
EM_SH = 42, // Hitachi SH
|
|
EM_SPARCV9 = 43, // SPARC V9
|
|
EM_TRICORE = 44, // Siemens TriCore
|
|
EM_ARC = 45, // Argonaut RISC Core
|
|
EM_H8_300 = 46, // Hitachi H8/300
|
|
EM_H8_300H = 47, // Hitachi H8/300H
|
|
EM_H8S = 48, // Hitachi H8S
|
|
EM_H8_500 = 49, // Hitachi H8/500
|
|
EM_IA_64 = 50, // Intel IA-64 processor architecture
|
|
EM_MIPS_X = 51, // Stanford MIPS-X
|
|
EM_COLDFIRE = 52, // Motorola ColdFire
|
|
EM_68HC12 = 53, // Motorola M68HC12
|
|
EM_MMA = 54, // Fujitsu MMA Multimedia Accelerator
|
|
EM_PCP = 55, // Siemens PCP
|
|
EM_NCPU = 56, // Sony nCPU embedded RISC processor
|
|
EM_NDR1 = 57, // Denso NDR1 microprocessor
|
|
EM_STARCORE = 58, // Motorola Star*Core processor
|
|
EM_ME16 = 59, // Toyota ME16 processor
|
|
EM_ST100 = 60, // STMicroelectronics ST100 processor
|
|
EM_TINYJ = 61, // Advanced Logic Corp. TinyJ embedded processor family
|
|
EM_X86_64 = 62, // AMD x86-64 architecture
|
|
EM_PDSP = 63, // Sony DSP Processor
|
|
EM_PDP10 = 64, // Digital Equipment Corp. PDP-10
|
|
EM_PDP11 = 65, // Digital Equipment Corp. PDP-11
|
|
EM_FX66 = 66, // Siemens FX66 microcontroller
|
|
EM_ST9PLUS = 67, // STMicroelectronics ST9+ 8/16 bit microcontroller
|
|
EM_ST7 = 68, // STMicroelectronics ST7 8-bit microcontroller
|
|
EM_68HC16 = 69, // Motorola MC68HC16 Microcontroller
|
|
EM_68HC11 = 70, // Motorola MC68HC11 Microcontroller
|
|
EM_68HC08 = 71, // Motorola MC68HC08 Microcontroller
|
|
EM_68HC05 = 72, // Motorola MC68HC05 Microcontroller
|
|
EM_SVX = 73, // Silicon Graphics SVx
|
|
EM_ST19 = 74, // STMicroelectronics ST19 8-bit microcontroller
|
|
EM_VAX = 75, // Digital VAX
|
|
EM_CRIS = 76, // Axis Communications 32-bit embedded processor
|
|
EM_JAVELIN = 77, // Infineon Technologies 32-bit embedded processor
|
|
EM_FIREPATH = 78, // Element 14 64-bit DSP Processor
|
|
EM_ZSP = 79, // LSI Logic 16-bit DSP Processor
|
|
EM_MMIX = 80, // Donald Knuth's educational 64-bit processor
|
|
EM_HUANY = 81, // Harvard University machine-independent object files
|
|
EM_PRISM = 82, // SiTera Prism
|
|
EM_AVR = 83, // Atmel AVR 8-bit microcontroller
|
|
EM_FR30 = 84, // Fujitsu FR30
|
|
EM_D10V = 85, // Mitsubishi D10V
|
|
EM_D30V = 86, // Mitsubishi D30V
|
|
EM_V850 = 87, // NEC v850
|
|
EM_M32R = 88, // Mitsubishi M32R
|
|
EM_MN10300 = 89, // Matsushita MN10300
|
|
EM_MN10200 = 90, // Matsushita MN10200
|
|
EM_PJ = 91, // picoJava
|
|
EM_OPENRISC = 92, // OpenRISC 32-bit embedded processor
|
|
EM_ARC_COMPACT = 93, // ARC International ARCompact processor (old
|
|
// spelling/synonym: EM_ARC_A5)
|
|
EM_XTENSA = 94, // Tensilica Xtensa Architecture
|
|
EM_VIDEOCORE = 95, // Alphamosaic VideoCore processor
|
|
EM_TMM_GPP = 96, // Thompson Multimedia General Purpose Processor
|
|
EM_NS32K = 97, // National Semiconductor 32000 series
|
|
EM_TPC = 98, // Tenor Network TPC processor
|
|
EM_SNP1K = 99, // Trebia SNP 1000 processor
|
|
EM_ST200 = 100, // STMicroelectronics (www.st.com) ST200
|
|
EM_IP2K = 101, // Ubicom IP2xxx microcontroller family
|
|
EM_MAX = 102, // MAX Processor
|
|
EM_CR = 103, // National Semiconductor CompactRISC microprocessor
|
|
EM_F2MC16 = 104, // Fujitsu F2MC16
|
|
EM_MSP430 = 105, // Texas Instruments embedded microcontroller msp430
|
|
EM_BLACKFIN = 106, // Analog Devices Blackfin (DSP) processor
|
|
EM_SE_C33 = 107, // S1C33 Family of Seiko Epson processors
|
|
EM_SEP = 108, // Sharp embedded microprocessor
|
|
EM_ARCA = 109, // Arca RISC Microprocessor
|
|
EM_UNICORE = 110, // Microprocessor series from PKU-Unity Ltd. and MPRC
|
|
// of Peking University
|
|
EM_EXCESS = 111, // eXcess: 16/32/64-bit configurable embedded CPU
|
|
EM_DXP = 112, // Icera Semiconductor Inc. Deep Execution Processor
|
|
EM_ALTERA_NIOS2 = 113, // Altera Nios II soft-core processor
|
|
EM_CRX = 114, // National Semiconductor CompactRISC CRX
|
|
EM_XGATE = 115, // Motorola XGATE embedded processor
|
|
EM_C166 = 116, // Infineon C16x/XC16x processor
|
|
EM_M16C = 117, // Renesas M16C series microprocessors
|
|
EM_DSPIC30F = 118, // Microchip Technology dsPIC30F Digital Signal
|
|
// Controller
|
|
EM_CE = 119, // Freescale Communication Engine RISC core
|
|
EM_M32C = 120, // Renesas M32C series microprocessors
|
|
EM_TSK3000 = 131, // Altium TSK3000 core
|
|
EM_RS08 = 132, // Freescale RS08 embedded processor
|
|
EM_SHARC = 133, // Analog Devices SHARC family of 32-bit DSP
|
|
// processors
|
|
EM_ECOG2 = 134, // Cyan Technology eCOG2 microprocessor
|
|
EM_SCORE7 = 135, // Sunplus S+core7 RISC processor
|
|
EM_DSP24 = 136, // New Japan Radio (NJR) 24-bit DSP Processor
|
|
EM_VIDEOCORE3 = 137, // Broadcom VideoCore III processor
|
|
EM_LATTICEMICO32 = 138, // RISC processor for Lattice FPGA architecture
|
|
EM_SE_C17 = 139, // Seiko Epson C17 family
|
|
EM_TI_C6000 = 140, // The Texas Instruments TMS320C6000 DSP family
|
|
EM_TI_C2000 = 141, // The Texas Instruments TMS320C2000 DSP family
|
|
EM_TI_C5500 = 142, // The Texas Instruments TMS320C55x DSP family
|
|
EM_MMDSP_PLUS = 160, // STMicroelectronics 64bit VLIW Data Signal Processor
|
|
EM_CYPRESS_M8C = 161, // Cypress M8C microprocessor
|
|
EM_R32C = 162, // Renesas R32C series microprocessors
|
|
EM_TRIMEDIA = 163, // NXP Semiconductors TriMedia architecture family
|
|
EM_QDSP6 = 164, // QUALCOMM DSP6 Processor
|
|
EM_8051 = 165, // Intel 8051 and variants
|
|
EM_STXP7X = 166, // STMicroelectronics STxP7x family of configurable
|
|
// and extensible RISC processors
|
|
EM_NDS32 = 167, // Andes Technology compact code size embedded RISC
|
|
// processor family
|
|
EM_ECOG1 = 168, // Cyan Technology eCOG1X family
|
|
EM_ECOG1X = 168, // Cyan Technology eCOG1X family
|
|
EM_MAXQ30 = 169, // Dallas Semiconductor MAXQ30 Core Micro-controllers
|
|
EM_XIMO16 = 170, // New Japan Radio (NJR) 16-bit DSP Processor
|
|
EM_MANIK = 171, // M2000 Reconfigurable RISC Microprocessor
|
|
EM_CRAYNV2 = 172, // Cray Inc. NV2 vector architecture
|
|
EM_RX = 173, // Renesas RX family
|
|
EM_METAG = 174, // Imagination Technologies META processor
|
|
// architecture
|
|
EM_MCST_ELBRUS = 175, // MCST Elbrus general purpose hardware architecture
|
|
EM_ECOG16 = 176, // Cyan Technology eCOG16 family
|
|
EM_CR16 = 177, // National Semiconductor CompactRISC CR16 16-bit
|
|
// microprocessor
|
|
EM_ETPU = 178, // Freescale Extended Time Processing Unit
|
|
EM_SLE9X = 179, // Infineon Technologies SLE9X core
|
|
EM_L10M = 180, // Intel L10M
|
|
EM_K10M = 181, // Intel K10M
|
|
EM_AVR32 = 185, // Atmel Corporation 32-bit microprocessor family
|
|
EM_STM8 = 186, // STMicroeletronics STM8 8-bit microcontroller
|
|
EM_TILE64 = 187, // Tilera TILE64 multicore architecture family
|
|
EM_TILEPRO = 188, // Tilera TILEPro multicore architecture family
|
|
EM_MICROBLAZE = 189, // Xilinx MicroBlaze 32-bit RISC soft processor core
|
|
EM_CUDA = 190, // NVIDIA CUDA architecture
|
|
EM_TILEGX = 191, // Tilera TILE-Gx multicore architecture family
|
|
EM_CLOUDSHIELD = 192, // CloudShield architecture family
|
|
EM_COREA_1ST = 193, // KIPO-KAIST Core-A 1st generation processor family
|
|
EM_COREA_2ND = 194, // KIPO-KAIST Core-A 2nd generation processor family
|
|
EM_ARC_COMPACT2 = 195, // Synopsys ARCompact V2
|
|
EM_OPEN8 = 196, // Open8 8-bit RISC soft processor core
|
|
EM_RL78 = 197, // Renesas RL78 family
|
|
EM_VIDEOCORE5 = 198, // Broadcom VideoCore V processor
|
|
EM_78KOR = 199, // Renesas 78KOR family
|
|
EM_56800EX = 200, // Freescale 56800EX Digital Signal Controller (DSC)
|
|
EM_MBLAZE = 47787 // Xilinx MicroBlaze
|
|
};
|
|
|
|
// Object file classes.
|
|
enum {
|
|
ELFCLASSNONE = 0,
|
|
ELFCLASS32 = 1, // 32-bit object file
|
|
ELFCLASS64 = 2 // 64-bit object file
|
|
};
|
|
|
|
// Object file byte orderings.
|
|
enum {
|
|
ELFDATANONE = 0, // Invalid data encoding.
|
|
ELFDATA2LSB = 1, // Little-endian object file
|
|
ELFDATA2MSB = 2 // Big-endian object file
|
|
};
|
|
|
|
// OS ABI identification.
|
|
enum {
|
|
ELFOSABI_NONE = 0, // UNIX System V ABI
|
|
ELFOSABI_HPUX = 1, // HP-UX operating system
|
|
ELFOSABI_NETBSD = 2, // NetBSD
|
|
ELFOSABI_LINUX = 3, // GNU/Linux
|
|
ELFOSABI_HURD = 4, // GNU/Hurd
|
|
ELFOSABI_SOLARIS = 6, // Solaris
|
|
ELFOSABI_AIX = 7, // AIX
|
|
ELFOSABI_IRIX = 8, // IRIX
|
|
ELFOSABI_FREEBSD = 9, // FreeBSD
|
|
ELFOSABI_TRU64 = 10, // TRU64 UNIX
|
|
ELFOSABI_MODESTO = 11, // Novell Modesto
|
|
ELFOSABI_OPENBSD = 12, // OpenBSD
|
|
ELFOSABI_OPENVMS = 13, // OpenVMS
|
|
ELFOSABI_NSK = 14, // Hewlett-Packard Non-Stop Kernel
|
|
ELFOSABI_AROS = 15, // AROS
|
|
ELFOSABI_FENIXOS = 16, // FenixOS
|
|
ELFOSABI_C6000_ELFABI = 64, // Bare-metal TMS320C6000
|
|
ELFOSABI_C6000_LINUX = 65, // Linux TMS320C6000
|
|
ELFOSABI_ARM = 97, // ARM
|
|
ELFOSABI_STANDALONE = 255 // Standalone (embedded) application
|
|
};
|
|
|
|
// X86_64 relocations.
|
|
enum {
|
|
R_X86_64_NONE = 0,
|
|
R_X86_64_64 = 1,
|
|
R_X86_64_PC32 = 2,
|
|
R_X86_64_GOT32 = 3,
|
|
R_X86_64_PLT32 = 4,
|
|
R_X86_64_COPY = 5,
|
|
R_X86_64_GLOB_DAT = 6,
|
|
R_X86_64_JUMP_SLOT = 7,
|
|
R_X86_64_RELATIVE = 8,
|
|
R_X86_64_GOTPCREL = 9,
|
|
R_X86_64_32 = 10,
|
|
R_X86_64_32S = 11,
|
|
R_X86_64_16 = 12,
|
|
R_X86_64_PC16 = 13,
|
|
R_X86_64_8 = 14,
|
|
R_X86_64_PC8 = 15,
|
|
R_X86_64_DTPMOD64 = 16,
|
|
R_X86_64_DTPOFF64 = 17,
|
|
R_X86_64_TPOFF64 = 18,
|
|
R_X86_64_TLSGD = 19,
|
|
R_X86_64_TLSLD = 20,
|
|
R_X86_64_DTPOFF32 = 21,
|
|
R_X86_64_GOTTPOFF = 22,
|
|
R_X86_64_TPOFF32 = 23,
|
|
R_X86_64_PC64 = 24,
|
|
R_X86_64_GOTOFF64 = 25,
|
|
R_X86_64_GOTPC32 = 26,
|
|
R_X86_64_GOT64 = 27,
|
|
R_X86_64_GOTPCREL64 = 28,
|
|
R_X86_64_GOTPC64 = 29,
|
|
R_X86_64_GOTPLT64 = 30,
|
|
R_X86_64_PLTOFF64 = 31,
|
|
R_X86_64_SIZE32 = 32,
|
|
R_X86_64_SIZE64 = 33,
|
|
R_X86_64_GOTPC32_TLSDESC = 34,
|
|
R_X86_64_TLSDESC_CALL = 35,
|
|
R_X86_64_TLSDESC = 36
|
|
};
|
|
|
|
// i386 relocations.
|
|
// TODO: this is just a subset
|
|
enum {
|
|
R_386_NONE = 0,
|
|
R_386_32 = 1,
|
|
R_386_PC32 = 2,
|
|
R_386_GOT32 = 3,
|
|
R_386_PLT32 = 4,
|
|
R_386_COPY = 5,
|
|
R_386_GLOB_DAT = 6,
|
|
R_386_JUMP_SLOT = 7,
|
|
R_386_RELATIVE = 8,
|
|
R_386_GOTOFF = 9,
|
|
R_386_GOTPC = 10,
|
|
R_386_32PLT = 11,
|
|
R_386_TLS_TPOFF = 14,
|
|
R_386_TLS_IE = 15,
|
|
R_386_TLS_GOTIE = 16,
|
|
R_386_TLS_LE = 17,
|
|
R_386_TLS_GD = 18,
|
|
R_386_TLS_LDM = 19,
|
|
R_386_16 = 20,
|
|
R_386_PC16 = 21,
|
|
R_386_8 = 22,
|
|
R_386_PC8 = 23,
|
|
R_386_TLS_GD_32 = 24,
|
|
R_386_TLS_GD_PUSH = 25,
|
|
R_386_TLS_GD_CALL = 26,
|
|
R_386_TLS_GD_POP = 27,
|
|
R_386_TLS_LDM_32 = 28,
|
|
R_386_TLS_LDM_PUSH = 29,
|
|
R_386_TLS_LDM_CALL = 30,
|
|
R_386_TLS_LDM_POP = 31,
|
|
R_386_TLS_LDO_32 = 32,
|
|
R_386_TLS_IE_32 = 33,
|
|
R_386_TLS_LE_32 = 34,
|
|
R_386_TLS_DTPMOD32 = 35,
|
|
R_386_TLS_DTPOFF32 = 36,
|
|
R_386_TLS_TPOFF32 = 37,
|
|
R_386_TLS_GOTDESC = 39,
|
|
R_386_TLS_DESC_CALL = 40,
|
|
R_386_TLS_DESC = 41,
|
|
R_386_IRELATIVE = 42,
|
|
R_386_NUM = 43
|
|
};
|
|
|
|
// MBlaze relocations.
|
|
enum {
|
|
R_MICROBLAZE_NONE = 0,
|
|
R_MICROBLAZE_32 = 1,
|
|
R_MICROBLAZE_32_PCREL = 2,
|
|
R_MICROBLAZE_64_PCREL = 3,
|
|
R_MICROBLAZE_32_PCREL_LO = 4,
|
|
R_MICROBLAZE_64 = 5,
|
|
R_MICROBLAZE_32_LO = 6,
|
|
R_MICROBLAZE_SRO32 = 7,
|
|
R_MICROBLAZE_SRW32 = 8,
|
|
R_MICROBLAZE_64_NONE = 9,
|
|
R_MICROBLAZE_32_SYM_OP_SYM = 10,
|
|
R_MICROBLAZE_GNU_VTINHERIT = 11,
|
|
R_MICROBLAZE_GNU_VTENTRY = 12,
|
|
R_MICROBLAZE_GOTPC_64 = 13,
|
|
R_MICROBLAZE_GOT_64 = 14,
|
|
R_MICROBLAZE_PLT_64 = 15,
|
|
R_MICROBLAZE_REL = 16,
|
|
R_MICROBLAZE_JUMP_SLOT = 17,
|
|
R_MICROBLAZE_GLOB_DAT = 18,
|
|
R_MICROBLAZE_GOTOFF_64 = 19,
|
|
R_MICROBLAZE_GOTOFF_32 = 20,
|
|
R_MICROBLAZE_COPY = 21
|
|
};
|
|
|
|
enum {
|
|
R_PPC_NONE = 0, /* No relocation. */
|
|
R_PPC_ADDR32 = 1,
|
|
R_PPC_ADDR24 = 2,
|
|
R_PPC_ADDR16 = 3,
|
|
R_PPC_ADDR16_LO = 4,
|
|
R_PPC_ADDR16_HI = 5,
|
|
R_PPC_ADDR16_HA = 6,
|
|
R_PPC_ADDR14 = 7,
|
|
R_PPC_ADDR14_BRTAKEN = 8,
|
|
R_PPC_ADDR14_BRNTAKEN = 9,
|
|
R_PPC_REL24 = 10,
|
|
R_PPC_REL14 = 11,
|
|
R_PPC_REL14_BRTAKEN = 12,
|
|
R_PPC_REL14_BRNTAKEN = 13,
|
|
R_PPC_REL32 = 26
|
|
};
|
|
|
|
// ARM Specific e_flags
|
|
enum { EF_ARM_EABIMASK = 0xFF000000U };
|
|
|
|
// ELF Relocation types for ARM
|
|
// Meets 2.08 ABI Specs.
|
|
|
|
enum {
|
|
R_ARM_NONE = 0x00,
|
|
R_ARM_PC24 = 0x01,
|
|
R_ARM_ABS32 = 0x02,
|
|
R_ARM_REL32 = 0x03,
|
|
R_ARM_LDR_PC_G0 = 0x04,
|
|
R_ARM_ABS16 = 0x05,
|
|
R_ARM_ABS12 = 0x06,
|
|
R_ARM_THM_ABS5 = 0x07,
|
|
R_ARM_ABS8 = 0x08,
|
|
R_ARM_SBREL32 = 0x09,
|
|
R_ARM_THM_CALL = 0x0a,
|
|
R_ARM_THM_PC8 = 0x0b,
|
|
R_ARM_BREL_ADJ = 0x0c,
|
|
R_ARM_TLS_DESC = 0x0d,
|
|
R_ARM_THM_SWI8 = 0x0e,
|
|
R_ARM_XPC25 = 0x0f,
|
|
R_ARM_THM_XPC22 = 0x10,
|
|
R_ARM_TLS_DTPMOD32 = 0x11,
|
|
R_ARM_TLS_DTPOFF32 = 0x12,
|
|
R_ARM_TLS_TPOFF32 = 0x13,
|
|
R_ARM_COPY = 0x14,
|
|
R_ARM_GLOB_DAT = 0x15,
|
|
R_ARM_JUMP_SLOT = 0x16,
|
|
R_ARM_RELATIVE = 0x17,
|
|
R_ARM_GOTOFF32 = 0x18,
|
|
R_ARM_BASE_PREL = 0x19,
|
|
R_ARM_GOT_BREL = 0x1a,
|
|
R_ARM_PLT32 = 0x1b,
|
|
R_ARM_CALL = 0x1c,
|
|
R_ARM_JUMP24 = 0x1d,
|
|
R_ARM_THM_JUMP24 = 0x1e,
|
|
R_ARM_BASE_ABS = 0x1f,
|
|
R_ARM_ALU_PCREL_7_0 = 0x20,
|
|
R_ARM_ALU_PCREL_15_8 = 0x21,
|
|
R_ARM_ALU_PCREL_23_15 = 0x22,
|
|
R_ARM_LDR_SBREL_11_0_NC = 0x23,
|
|
R_ARM_ALU_SBREL_19_12_NC = 0x24,
|
|
R_ARM_ALU_SBREL_27_20_CK = 0x25,
|
|
R_ARM_TARGET1 = 0x26,
|
|
R_ARM_SBREL31 = 0x27,
|
|
R_ARM_V4BX = 0x28,
|
|
R_ARM_TARGET2 = 0x29,
|
|
R_ARM_PREL31 = 0x2a,
|
|
R_ARM_MOVW_ABS_NC = 0x2b,
|
|
R_ARM_MOVT_ABS = 0x2c,
|
|
R_ARM_MOVW_PREL_NC = 0x2d,
|
|
R_ARM_MOVT_PREL = 0x2e,
|
|
R_ARM_THM_MOVW_ABS_NC = 0x2f,
|
|
R_ARM_THM_MOVT_ABS = 0x30,
|
|
R_ARM_THM_MOVW_PREL_NC = 0x31,
|
|
R_ARM_THM_MOVT_PREL = 0x32,
|
|
R_ARM_THM_JUMP19 = 0x33,
|
|
R_ARM_THM_JUMP6 = 0x34,
|
|
R_ARM_THM_ALU_PREL_11_0 = 0x35,
|
|
R_ARM_THM_PC12 = 0x36,
|
|
R_ARM_ABS32_NOI = 0x37,
|
|
R_ARM_REL32_NOI = 0x38,
|
|
R_ARM_ALU_PC_G0_NC = 0x39,
|
|
R_ARM_ALU_PC_G0 = 0x3a,
|
|
R_ARM_ALU_PC_G1_NC = 0x3b,
|
|
R_ARM_ALU_PC_G1 = 0x3c,
|
|
R_ARM_ALU_PC_G2 = 0x3d,
|
|
R_ARM_LDR_PC_G1 = 0x3e,
|
|
R_ARM_LDR_PC_G2 = 0x3f,
|
|
R_ARM_LDRS_PC_G0 = 0x40,
|
|
R_ARM_LDRS_PC_G1 = 0x41,
|
|
R_ARM_LDRS_PC_G2 = 0x42,
|
|
R_ARM_LDC_PC_G0 = 0x43,
|
|
R_ARM_LDC_PC_G1 = 0x44,
|
|
R_ARM_LDC_PC_G2 = 0x45,
|
|
R_ARM_ALU_SB_G0_NC = 0x46,
|
|
R_ARM_ALU_SB_G0 = 0x47,
|
|
R_ARM_ALU_SB_G1_NC = 0x48,
|
|
R_ARM_ALU_SB_G1 = 0x49,
|
|
R_ARM_ALU_SB_G2 = 0x4a,
|
|
R_ARM_LDR_SB_G0 = 0x4b,
|
|
R_ARM_LDR_SB_G1 = 0x4c,
|
|
R_ARM_LDR_SB_G2 = 0x4d,
|
|
R_ARM_LDRS_SB_G0 = 0x4e,
|
|
R_ARM_LDRS_SB_G1 = 0x4f,
|
|
R_ARM_LDRS_SB_G2 = 0x50,
|
|
R_ARM_LDC_SB_G0 = 0x51,
|
|
R_ARM_LDC_SB_G1 = 0x52,
|
|
R_ARM_LDC_SB_G2 = 0x53,
|
|
R_ARM_MOVW_BREL_NC = 0x54,
|
|
R_ARM_MOVT_BREL = 0x55,
|
|
R_ARM_MOVW_BREL = 0x56,
|
|
R_ARM_THM_MOVW_BREL_NC = 0x57,
|
|
R_ARM_THM_MOVT_BREL = 0x58,
|
|
R_ARM_THM_MOVW_BREL = 0x59,
|
|
R_ARM_TLS_GOTDESC = 0x5a,
|
|
R_ARM_TLS_CALL = 0x5b,
|
|
R_ARM_TLS_DESCSEQ = 0x5c,
|
|
R_ARM_THM_TLS_CALL = 0x5d,
|
|
R_ARM_PLT32_ABS = 0x5e,
|
|
R_ARM_GOT_ABS = 0x5f,
|
|
R_ARM_GOT_PREL = 0x60,
|
|
R_ARM_GOT_BREL12 = 0x61,
|
|
R_ARM_GOTOFF12 = 0x62,
|
|
R_ARM_GOTRELAX = 0x63,
|
|
R_ARM_GNU_VTENTRY = 0x64,
|
|
R_ARM_GNU_VTINHERIT = 0x65,
|
|
R_ARM_THM_JUMP11 = 0x66,
|
|
R_ARM_THM_JUMP8 = 0x67,
|
|
R_ARM_TLS_GD32 = 0x68,
|
|
R_ARM_TLS_LDM32 = 0x69,
|
|
R_ARM_TLS_LDO32 = 0x6a,
|
|
R_ARM_TLS_IE32 = 0x6b,
|
|
R_ARM_TLS_LE32 = 0x6c,
|
|
R_ARM_TLS_LDO12 = 0x6d,
|
|
R_ARM_TLS_LE12 = 0x6e,
|
|
R_ARM_TLS_IE12GP = 0x6f,
|
|
R_ARM_PRIVATE_0 = 0x70,
|
|
R_ARM_PRIVATE_1 = 0x71,
|
|
R_ARM_PRIVATE_2 = 0x72,
|
|
R_ARM_PRIVATE_3 = 0x73,
|
|
R_ARM_PRIVATE_4 = 0x74,
|
|
R_ARM_PRIVATE_5 = 0x75,
|
|
R_ARM_PRIVATE_6 = 0x76,
|
|
R_ARM_PRIVATE_7 = 0x77,
|
|
R_ARM_PRIVATE_8 = 0x78,
|
|
R_ARM_PRIVATE_9 = 0x79,
|
|
R_ARM_PRIVATE_10 = 0x7a,
|
|
R_ARM_PRIVATE_11 = 0x7b,
|
|
R_ARM_PRIVATE_12 = 0x7c,
|
|
R_ARM_PRIVATE_13 = 0x7d,
|
|
R_ARM_PRIVATE_14 = 0x7e,
|
|
R_ARM_PRIVATE_15 = 0x7f,
|
|
R_ARM_ME_TOO = 0x80,
|
|
R_ARM_THM_TLS_DESCSEQ16 = 0x81,
|
|
R_ARM_THM_TLS_DESCSEQ32 = 0x82
|
|
};
|
|
|
|
// Mips Specific e_flags
|
|
enum {
|
|
EF_MIPS_NOREORDER = 0x00000001, // Don't reorder instructions
|
|
EF_MIPS_PIC = 0x00000002, // Position independent code
|
|
EF_MIPS_CPIC = 0x00000004, // Call object with Position independent code
|
|
EF_MIPS_ARCH_1 = 0x00000000, // MIPS1 instruction set
|
|
EF_MIPS_ARCH_2 = 0x10000000, // MIPS2 instruction set
|
|
EF_MIPS_ARCH_3 = 0x20000000, // MIPS3 instruction set
|
|
EF_MIPS_ARCH_4 = 0x30000000, // MIPS4 instruction set
|
|
EF_MIPS_ARCH_5 = 0x40000000, // MIPS5 instruction set
|
|
EF_MIPS_ARCH_32 = 0x60000000, // MIPS32 instruction set
|
|
EF_MIPS_ARCH_32R2 = 0x70000000, // mips32r2
|
|
EF_MIPS_ARCH = 0xf0000000 // Mask for applying EF_MIPS_ARCH_ variant
|
|
};
|
|
|
|
// ELF Relocation types for Mips
|
|
// .
|
|
enum {
|
|
R_MIPS_NONE = 0,
|
|
R_MIPS_16 = 1,
|
|
R_MIPS_32 = 2,
|
|
R_MIPS_REL32 = 3,
|
|
R_MIPS_26 = 4,
|
|
R_MIPS_HI16 = 5,
|
|
R_MIPS_LO16 = 6,
|
|
R_MIPS_GPREL16 = 7,
|
|
R_MIPS_LITERAL = 8,
|
|
R_MIPS_GOT16 = 9,
|
|
R_MIPS_GOT = 9,
|
|
R_MIPS_PC16 = 10,
|
|
R_MIPS_CALL16 = 11,
|
|
R_MIPS_GPREL32 = 12,
|
|
R_MIPS_SHIFT5 = 16,
|
|
R_MIPS_SHIFT6 = 17,
|
|
R_MIPS_64 = 18,
|
|
R_MIPS_GOT_DISP = 19,
|
|
R_MIPS_GOT_PAGE = 20,
|
|
R_MIPS_GOT_OFST = 21,
|
|
R_MIPS_GOT_HI16 = 22,
|
|
R_MIPS_GOT_LO16 = 23,
|
|
R_MIPS_SUB = 24,
|
|
R_MIPS_INSERT_A = 25,
|
|
R_MIPS_INSERT_B = 26,
|
|
R_MIPS_DELETE = 27,
|
|
R_MIPS_HIGHER = 28,
|
|
R_MIPS_HIGHEST = 29,
|
|
R_MIPS_CALL_HI16 = 30,
|
|
R_MIPS_CALL_LO16 = 31,
|
|
R_MIPS_SCN_DISP = 32,
|
|
R_MIPS_REL16 = 33,
|
|
R_MIPS_ADD_IMMEDIATE = 34,
|
|
R_MIPS_PJUMP = 35,
|
|
R_MIPS_RELGOT = 36,
|
|
R_MIPS_JALR = 37,
|
|
R_MIPS_TLS_DTPMOD32 = 38,
|
|
R_MIPS_TLS_DTPREL32 = 39,
|
|
R_MIPS_TLS_DTPMOD64 = 40,
|
|
R_MIPS_TLS_DTPREL64 = 41,
|
|
R_MIPS_TLS_GD = 42,
|
|
R_MIPS_TLS_LDM = 43,
|
|
R_MIPS_TLS_DTPREL_HI16 = 44,
|
|
R_MIPS_TLS_DTPREL_LO16 = 45,
|
|
R_MIPS_TLS_GOTTPREL = 46,
|
|
R_MIPS_TLS_TPREL32 = 47,
|
|
R_MIPS_TLS_TPREL64 = 48,
|
|
R_MIPS_TLS_TPREL_HI16 = 49,
|
|
R_MIPS_TLS_TPREL_LO16 = 50,
|
|
R_MIPS_GLOB_DAT = 51,
|
|
R_MIPS_COPY = 126,
|
|
R_MIPS_JUMP_SLOT = 127,
|
|
R_MIPS_NUM = 218
|
|
};
|
|
|
|
// Section header.
|
|
struct Elf32_Shdr {
|
|
Elf32_Word sh_name; // Section name (index into string table)
|
|
Elf32_Word sh_type; // Section type (SHT_*)
|
|
Elf32_Word sh_flags; // Section flags (SHF_*)
|
|
Elf32_Addr sh_addr; // Address where section is to be loaded
|
|
Elf32_Off sh_offset; // File offset of section data, in bytes
|
|
Elf32_Word sh_size; // Size of section, in bytes
|
|
Elf32_Word sh_link; // Section type-specific header table index link
|
|
Elf32_Word sh_info; // Section type-specific extra information
|
|
Elf32_Word sh_addralign; // Section address alignment
|
|
Elf32_Word sh_entsize; // Size of records contained within the section
|
|
};
|
|
|
|
// Section header for ELF64 - same fields as ELF32, different types.
|
|
struct Elf64_Shdr {
|
|
Elf64_Word sh_name;
|
|
Elf64_Word sh_type;
|
|
Elf64_Xword sh_flags;
|
|
Elf64_Addr sh_addr;
|
|
Elf64_Off sh_offset;
|
|
Elf64_Xword sh_size;
|
|
Elf64_Word sh_link;
|
|
Elf64_Word sh_info;
|
|
Elf64_Xword sh_addralign;
|
|
Elf64_Xword sh_entsize;
|
|
};
|
|
|
|
// Special section indices.
|
|
enum {
|
|
SHN_UNDEF = 0, // Undefined, missing, irrelevant, or meaningless
|
|
SHN_LORESERVE = 0xff00, // Lowest reserved index
|
|
SHN_LOPROC = 0xff00, // Lowest processor-specific index
|
|
SHN_HIPROC = 0xff1f, // Highest processor-specific index
|
|
SHN_LOOS = 0xff20, // Lowest operating system-specific index
|
|
SHN_HIOS = 0xff3f, // Highest operating system-specific index
|
|
SHN_ABS = 0xfff1, // Symbol has absolute value; does not need relocation
|
|
SHN_COMMON = 0xfff2, // FORTRAN COMMON or C external global variables
|
|
SHN_XINDEX = 0xffff, // Mark that the index is >= SHN_LORESERVE
|
|
SHN_HIRESERVE = 0xffff // Highest reserved index
|
|
};
|
|
|
|
// Section types.
|
|
enum {
|
|
SHT_NULL = 0, // No associated section (inactive entry).
|
|
SHT_PROGBITS = 1, // Program-defined contents.
|
|
SHT_SYMTAB = 2, // Symbol table.
|
|
SHT_STRTAB = 3, // String table.
|
|
SHT_RELA = 4, // Relocation entries; explicit addends.
|
|
SHT_HASH = 5, // Symbol hash table.
|
|
SHT_DYNAMIC = 6, // Information for dynamic linking.
|
|
SHT_NOTE = 7, // Information about the file.
|
|
SHT_NOBITS = 8, // Data occupies no space in the file.
|
|
SHT_REL = 9, // Relocation entries; no explicit addends.
|
|
SHT_SHLIB = 10, // Reserved.
|
|
SHT_DYNSYM = 11, // Symbol table.
|
|
SHT_INIT_ARRAY = 14, // Pointers to initialization functions.
|
|
SHT_FINI_ARRAY = 15, // Pointers to termination functions.
|
|
SHT_PREINIT_ARRAY = 16, // Pointers to pre-init functions.
|
|
SHT_GROUP = 17, // Section group.
|
|
SHT_SYMTAB_SHNDX = 18, // Indices for SHN_XINDEX entries.
|
|
SHT_LOOS = 0x60000000, // Lowest operating system-specific type.
|
|
SHT_HIOS = 0x6fffffff, // Highest operating system-specific type.
|
|
SHT_LOPROC = 0x70000000, // Lowest processor architecture-specific type.
|
|
// Fixme: All this is duplicated in MCSectionELF. Why??
|
|
// Exception Index table
|
|
SHT_ARM_EXIDX = 0x70000001U,
|
|
// BPABI DLL dynamic linking pre-emption map
|
|
SHT_ARM_PREEMPTMAP = 0x70000002U,
|
|
// Object file compatibility attributes
|
|
SHT_ARM_ATTRIBUTES = 0x70000003U,
|
|
SHT_ARM_DEBUGOVERLAY = 0x70000004U,
|
|
SHT_ARM_OVERLAYSECTION = 0x70000005U,
|
|
|
|
SHT_X86_64_UNWIND = 0x70000001, // Unwind information
|
|
|
|
SHT_HIPROC = 0x7fffffff, // Highest processor architecture-specific type.
|
|
SHT_LOUSER = 0x80000000, // Lowest type reserved for applications.
|
|
SHT_HIUSER = 0xffffffff // Highest type reserved for applications.
|
|
};
|
|
|
|
// Section flags.
|
|
enum {
|
|
// Section data should be writable during execution.
|
|
SHF_WRITE = 0x1,
|
|
|
|
// Section occupies memory during program execution.
|
|
SHF_ALLOC = 0x2,
|
|
|
|
// Section contains executable machine instructions.
|
|
SHF_EXECINSTR = 0x4,
|
|
|
|
// The data in this section may be merged.
|
|
SHF_MERGE = 0x10,
|
|
|
|
// The data in this section is null-terminated strings.
|
|
SHF_STRINGS = 0x20,
|
|
|
|
// A field in this section holds a section header table index.
|
|
SHF_INFO_LINK = 0x40U,
|
|
|
|
// Adds special ordering requirements for link editors.
|
|
SHF_LINK_ORDER = 0x80U,
|
|
|
|
// This section requires special OS-specific processing to avoid incorrect
|
|
// behavior.
|
|
SHF_OS_NONCONFORMING = 0x100U,
|
|
|
|
// This section is a member of a section group.
|
|
SHF_GROUP = 0x200U,
|
|
|
|
// This section holds Thread-Local Storage.
|
|
SHF_TLS = 0x400U,
|
|
|
|
// Start of target-specific flags.
|
|
|
|
/// XCORE_SHF_CP_SECTION - All sections with the "c" flag are grouped
|
|
/// together by the linker to form the constant pool and the cp register is
|
|
/// set to the start of the constant pool by the boot code.
|
|
XCORE_SHF_CP_SECTION = 0x800U,
|
|
|
|
/// XCORE_SHF_DP_SECTION - All sections with the "d" flag are grouped
|
|
/// together by the linker to form the data section and the dp register is
|
|
/// set to the start of the section by the boot code.
|
|
XCORE_SHF_DP_SECTION = 0x1000U,
|
|
|
|
SHF_MASKOS = 0x0ff00000,
|
|
|
|
// Bits indicating processor-specific flags.
|
|
SHF_MASKPROC = 0xf0000000,
|
|
|
|
// If an object file section does not have this flag set, then it may not hold
|
|
// more than 2GB and can be freely referred to in objects using smaller code
|
|
// models. Otherwise, only objects using larger code models can refer to them.
|
|
// For example, a medium code model object can refer to data in a section that
|
|
// sets this flag besides being able to refer to data in a section that does
|
|
// not set it; likewise, a small code model object can refer only to code in a
|
|
// section that does not set this flag.
|
|
SHF_X86_64_LARGE = 0x10000000
|
|
};
|
|
|
|
// Section Group Flags
|
|
enum {
|
|
GRP_COMDAT = 0x1,
|
|
GRP_MASKOS = 0x0ff00000,
|
|
GRP_MASKPROC = 0xf0000000
|
|
};
|
|
|
|
// Symbol table entries for ELF32.
|
|
struct Elf32_Sym {
|
|
Elf32_Word st_name; // Symbol name (index into string table)
|
|
Elf32_Addr st_value; // Value or address associated with the symbol
|
|
Elf32_Word st_size; // Size of the symbol
|
|
unsigned char st_info; // Symbol's type and binding attributes
|
|
unsigned char st_other; // Must be zero; reserved
|
|
Elf32_Half st_shndx; // Which section (header table index) it's defined in
|
|
|
|
// These accessors and mutators correspond to the ELF32_ST_BIND,
|
|
// ELF32_ST_TYPE, and ELF32_ST_INFO macros defined in the ELF specification:
|
|
unsigned char getBinding() const { return st_info >> 4; }
|
|
unsigned char getType() const { return st_info & 0x0f; }
|
|
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
|
|
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
|
|
void setBindingAndType(unsigned char b, unsigned char t) {
|
|
st_info = (b << 4) + (t & 0x0f);
|
|
}
|
|
};
|
|
|
|
// Symbol table entries for ELF64.
|
|
struct Elf64_Sym {
|
|
Elf64_Word st_name; // Symbol name (index into string table)
|
|
unsigned char st_info; // Symbol's type and binding attributes
|
|
unsigned char st_other; // Must be zero; reserved
|
|
Elf64_Half st_shndx; // Which section (header table index) it's defined in
|
|
Elf64_Addr st_value; // Value or address associated with the symbol
|
|
Elf64_Xword st_size; // Size of the symbol
|
|
|
|
// These accessors and mutators are identical to those defined for ELF32
|
|
// symbol table entries.
|
|
unsigned char getBinding() const { return st_info >> 4; }
|
|
unsigned char getType() const { return st_info & 0x0f; }
|
|
void setBinding(unsigned char b) { setBindingAndType(b, getType()); }
|
|
void setType(unsigned char t) { setBindingAndType(getBinding(), t); }
|
|
void setBindingAndType(unsigned char b, unsigned char t) {
|
|
st_info = (b << 4) + (t & 0x0f);
|
|
}
|
|
};
|
|
|
|
// The size (in bytes) of symbol table entries.
|
|
enum {
|
|
SYMENTRY_SIZE32 = 16, // 32-bit symbol entry size
|
|
SYMENTRY_SIZE64 = 24 // 64-bit symbol entry size.
|
|
};
|
|
|
|
// Symbol bindings.
|
|
enum {
|
|
STB_LOCAL = 0, // Local symbol, not visible outside obj file containing def
|
|
STB_GLOBAL = 1, // Global symbol, visible to all object files being combined
|
|
STB_WEAK = 2, // Weak symbol, like global but lower-precedence
|
|
STB_LOOS = 10, // Lowest operating system-specific binding type
|
|
STB_HIOS = 12, // Highest operating system-specific binding type
|
|
STB_LOPROC = 13, // Lowest processor-specific binding type
|
|
STB_HIPROC = 15 // Highest processor-specific binding type
|
|
};
|
|
|
|
// Symbol types.
|
|
enum {
|
|
STT_NOTYPE = 0, // Symbol's type is not specified
|
|
STT_OBJECT = 1, // Symbol is a data object (variable, array, etc.)
|
|
STT_FUNC = 2, // Symbol is executable code (function, etc.)
|
|
STT_SECTION = 3, // Symbol refers to a section
|
|
STT_FILE = 4, // Local, absolute symbol that refers to a file
|
|
STT_COMMON = 5, // An uninitialized common block
|
|
STT_TLS = 6, // Thread local data object
|
|
STT_LOOS = 7, // Lowest operating system-specific symbol type
|
|
STT_HIOS = 8, // Highest operating system-specific symbol type
|
|
STT_LOPROC = 13, // Lowest processor-specific symbol type
|
|
STT_HIPROC = 15 // Highest processor-specific symbol type
|
|
};
|
|
|
|
enum {
|
|
STV_DEFAULT = 0, // Visibility is specified by binding type
|
|
STV_INTERNAL = 1, // Defined by processor supplements
|
|
STV_HIDDEN = 2, // Not visible to other components
|
|
STV_PROTECTED = 3 // Visible in other components but not preemptable
|
|
};
|
|
|
|
// Relocation entry, without explicit addend.
|
|
struct Elf32_Rel {
|
|
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
|
|
Elf32_Word r_info; // Symbol table index and type of relocation to apply
|
|
|
|
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
|
|
// and ELF32_R_INFO macros defined in the ELF specification:
|
|
Elf32_Word getSymbol() const { return (r_info >> 8); }
|
|
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
|
|
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
|
|
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
|
|
void setSymbolAndType(Elf32_Word s, unsigned char t) {
|
|
r_info = (s << 8) + t;
|
|
}
|
|
};
|
|
|
|
// Relocation entry with explicit addend.
|
|
struct Elf32_Rela {
|
|
Elf32_Addr r_offset; // Location (file byte offset, or program virtual addr)
|
|
Elf32_Word r_info; // Symbol table index and type of relocation to apply
|
|
Elf32_Sword r_addend; // Compute value for relocatable field by adding this
|
|
|
|
// These accessors and mutators correspond to the ELF32_R_SYM, ELF32_R_TYPE,
|
|
// and ELF32_R_INFO macros defined in the ELF specification:
|
|
Elf32_Word getSymbol() const { return (r_info >> 8); }
|
|
unsigned char getType() const { return (unsigned char) (r_info & 0x0ff); }
|
|
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
|
|
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
|
|
void setSymbolAndType(Elf32_Word s, unsigned char t) {
|
|
r_info = (s << 8) + t;
|
|
}
|
|
};
|
|
|
|
// Relocation entry, without explicit addend.
|
|
struct Elf64_Rel {
|
|
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
|
|
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
|
|
|
|
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
|
|
// and ELF64_R_INFO macros defined in the ELF specification:
|
|
Elf64_Xword getSymbol() const { return (r_info >> 32); }
|
|
unsigned char getType() const {
|
|
return (unsigned char) (r_info & 0xffffffffL);
|
|
}
|
|
void setSymbol(Elf32_Word s) { setSymbolAndType(s, getType()); }
|
|
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
|
|
void setSymbolAndType(Elf64_Xword s, unsigned char t) {
|
|
r_info = (s << 32) + (t&0xffffffffL);
|
|
}
|
|
};
|
|
|
|
// Relocation entry with explicit addend.
|
|
struct Elf64_Rela {
|
|
Elf64_Addr r_offset; // Location (file byte offset, or program virtual addr).
|
|
Elf64_Xword r_info; // Symbol table index and type of relocation to apply.
|
|
Elf64_Sxword r_addend; // Compute value for relocatable field by adding this.
|
|
|
|
// These accessors and mutators correspond to the ELF64_R_SYM, ELF64_R_TYPE,
|
|
// and ELF64_R_INFO macros defined in the ELF specification:
|
|
Elf64_Xword getSymbol() const { return (r_info >> 32); }
|
|
unsigned char getType() const {
|
|
return (unsigned char) (r_info & 0xffffffffL);
|
|
}
|
|
void setSymbol(Elf64_Xword s) { setSymbolAndType(s, getType()); }
|
|
void setType(unsigned char t) { setSymbolAndType(getSymbol(), t); }
|
|
void setSymbolAndType(Elf64_Xword s, unsigned char t) {
|
|
r_info = (s << 32) + (t&0xffffffffL);
|
|
}
|
|
};
|
|
|
|
// Program header for ELF32.
|
|
struct Elf32_Phdr {
|
|
Elf32_Word p_type; // Type of segment
|
|
Elf32_Off p_offset; // File offset where segment is located, in bytes
|
|
Elf32_Addr p_vaddr; // Virtual address of beginning of segment
|
|
Elf32_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
|
|
Elf32_Word p_filesz; // Num. of bytes in file image of segment (may be zero)
|
|
Elf32_Word p_memsz; // Num. of bytes in mem image of segment (may be zero)
|
|
Elf32_Word p_flags; // Segment flags
|
|
Elf32_Word p_align; // Segment alignment constraint
|
|
};
|
|
|
|
// Program header for ELF64.
|
|
struct Elf64_Phdr {
|
|
Elf64_Word p_type; // Type of segment
|
|
Elf64_Word p_flags; // Segment flags
|
|
Elf64_Off p_offset; // File offset where segment is located, in bytes
|
|
Elf64_Addr p_vaddr; // Virtual address of beginning of segment
|
|
Elf64_Addr p_paddr; // Physical address of beginning of segment (OS-specific)
|
|
Elf64_Xword p_filesz; // Num. of bytes in file image of segment (may be zero)
|
|
Elf64_Xword p_memsz; // Num. of bytes in mem image of segment (may be zero)
|
|
Elf64_Xword p_align; // Segment alignment constraint
|
|
};
|
|
|
|
// Segment types.
|
|
enum {
|
|
PT_NULL = 0, // Unused segment.
|
|
PT_LOAD = 1, // Loadable segment.
|
|
PT_DYNAMIC = 2, // Dynamic linking information.
|
|
PT_INTERP = 3, // Interpreter pathname.
|
|
PT_NOTE = 4, // Auxiliary information.
|
|
PT_SHLIB = 5, // Reserved.
|
|
PT_PHDR = 6, // The program header table itself.
|
|
PT_TLS = 7, // The thread-local storage template.
|
|
PT_LOOS = 0x60000000, // Lowest operating system-specific pt entry type.
|
|
|
|
// x86-64 program header types.
|
|
// These all contain stack unwind tables.
|
|
PT_GNU_EH_FRAME = 0x6474e550,
|
|
PT_SUNW_EH_FRAME = 0x6474e550,
|
|
PT_SUNW_UNWIND = 0x6464e550,
|
|
|
|
PT_HIOS = 0x6fffffff, // Highest operating system-specific pt entry type.
|
|
PT_LOPROC = 0x70000000, // Lowest processor-specific program hdr entry type.
|
|
PT_HIPROC = 0x7fffffff // Highest processor-specific program hdr entry type.
|
|
};
|
|
|
|
// Segment flag bits.
|
|
enum {
|
|
PF_X = 1, // Execute
|
|
PF_W = 2, // Write
|
|
PF_R = 4, // Read
|
|
PF_MASKOS = 0x0ff00000,// Bits for operating system-specific semantics.
|
|
PF_MASKPROC = 0xf0000000 // Bits for processor-specific semantics.
|
|
};
|
|
|
|
// Dynamic table entry for ELF32.
|
|
struct Elf32_Dyn
|
|
{
|
|
Elf32_Sword d_tag; // Type of dynamic table entry.
|
|
union
|
|
{
|
|
Elf32_Word d_val; // Integer value of entry.
|
|
Elf32_Addr d_ptr; // Pointer value of entry.
|
|
} d_un;
|
|
};
|
|
|
|
// Dynamic table entry for ELF64.
|
|
struct Elf64_Dyn
|
|
{
|
|
Elf64_Sxword d_tag; // Type of dynamic table entry.
|
|
union
|
|
{
|
|
Elf64_Xword d_val; // Integer value of entry.
|
|
Elf64_Addr d_ptr; // Pointer value of entry.
|
|
} d_un;
|
|
};
|
|
|
|
// Dynamic table entry tags.
|
|
enum {
|
|
DT_NULL = 0, // Marks end of dynamic array.
|
|
DT_NEEDED = 1, // String table offset of needed library.
|
|
DT_PLTRELSZ = 2, // Size of relocation entries in PLT.
|
|
DT_PLTGOT = 3, // Address associated with linkage table.
|
|
DT_HASH = 4, // Address of symbolic hash table.
|
|
DT_STRTAB = 5, // Address of dynamic string table.
|
|
DT_SYMTAB = 6, // Address of dynamic symbol table.
|
|
DT_RELA = 7, // Address of relocation table (Rela entries).
|
|
DT_RELASZ = 8, // Size of Rela relocation table.
|
|
DT_RELAENT = 9, // Size of a Rela relocation entry.
|
|
DT_STRSZ = 10, // Total size of the string table.
|
|
DT_SYMENT = 11, // Size of a symbol table entry.
|
|
DT_INIT = 12, // Address of initialization function.
|
|
DT_FINI = 13, // Address of termination function.
|
|
DT_SONAME = 14, // String table offset of a shared objects name.
|
|
DT_RPATH = 15, // String table offset of library search path.
|
|
DT_SYMBOLIC = 16, // Changes symbol resolution algorithm.
|
|
DT_REL = 17, // Address of relocation table (Rel entries).
|
|
DT_RELSZ = 18, // Size of Rel relocation table.
|
|
DT_RELENT = 19, // Size of a Rel relocation entry.
|
|
DT_PLTREL = 20, // Type of relocation entry used for linking.
|
|
DT_DEBUG = 21, // Reserved for debugger.
|
|
DT_TEXTREL = 22, // Relocations exist for non-writable segments.
|
|
DT_JMPREL = 23, // Address of relocations associated with PLT.
|
|
DT_BIND_NOW = 24, // Process all relocations before execution.
|
|
DT_INIT_ARRAY = 25, // Pointer to array of initialization functions.
|
|
DT_FINI_ARRAY = 26, // Pointer to array of termination functions.
|
|
DT_INIT_ARRAYSZ = 27, // Size of DT_INIT_ARRAY.
|
|
DT_FINI_ARRAYSZ = 28, // Size of DT_FINI_ARRAY.
|
|
DT_RUNPATH = 29, // String table offset of lib search path.
|
|
DT_FLAGS = 30, // Flags.
|
|
DT_ENCODING = 32, // Values from here to DT_LOOS follow the rules
|
|
// for the interpretation of the d_un union.
|
|
|
|
DT_PREINIT_ARRAY = 32, // Pointer to array of preinit functions.
|
|
DT_PREINIT_ARRAYSZ = 33, // Size of the DT_PREINIT_ARRAY array.
|
|
|
|
DT_LOOS = 0x60000000, // Start of environment specific tags.
|
|
DT_HIOS = 0x6FFFFFFF, // End of environment specific tags.
|
|
DT_LOPROC = 0x70000000, // Start of processor specific tags.
|
|
DT_HIPROC = 0x7FFFFFFF // End of processor specific tags.
|
|
};
|
|
|
|
// DT_FLAGS values.
|
|
enum {
|
|
DF_ORIGIN = 0x01, // The object may reference $ORIGIN.
|
|
DF_SYMBOLIC = 0x02, // Search the shared lib before searching the exe.
|
|
DF_TEXTREL = 0x04, // Relocations may modify a non-writable segment.
|
|
DF_BIND_NOW = 0x08, // Process all relocations on load.
|
|
DF_STATIC_TLS = 0x10 // Reject attempts to load dynamically.
|
|
};
|
|
|
|
} // end namespace ELF
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|