llvm-6502/lib/Target/X86/AsmPrinter/X86ATTAsmPrinter.cpp
Chris Lattner c08872ec60 rename decorateName -> DecorateCygMingName, make it assert if not
cygming, make the two callers only call it if cygming.  Other minor
cleanups.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@75744 91177308-0d34-0410-b5e6-96231b3b80d8
2009-07-15 04:55:56 +00:00

1007 lines
33 KiB
C++

//===-- X86ATTAsmPrinter.cpp - Convert X86 LLVM code to AT&T assembly -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a printer that converts from our internal representation
// of machine-dependent LLVM code to AT&T format assembly
// language. This printer is the output mechanism used by `llc'.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "asm-printer"
#include "X86ATTAsmPrinter.h"
#include "X86.h"
#include "X86COFF.h"
#include "X86MachineFunctionInfo.h"
#include "X86TargetMachine.h"
#include "X86TargetAsmInfo.h"
#include "llvm/CallingConv.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/MDNode.h"
#include "llvm/Type.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/CodeGen/DwarfWriter.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/Mangler.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/Target/TargetOptions.h"
using namespace llvm;
STATISTIC(EmittedInsts, "Number of machine instrs printed");
static cl::opt<bool> NewAsmPrinter("experimental-asm-printer",
cl::Hidden);
//===----------------------------------------------------------------------===//
// Primitive Helper Functions.
//===----------------------------------------------------------------------===//
void X86ATTAsmPrinter::PrintPICBaseSymbol() const {
if (Subtarget->isTargetDarwin())
O << "\"L" << getFunctionNumber() << "$pb\"";
else if (Subtarget->isTargetELF())
O << ".Lllvm$" << getFunctionNumber() << ".$piclabel";
else
llvm_unreachable("Don't know how to print PIC label!");
}
/// PrintUnmangledNameSafely - Print out the printable characters in the name.
/// Don't print things like \\n or \\0.
static void PrintUnmangledNameSafely(const Value *V,
formatted_raw_ostream &OS) {
for (const char *Name = V->getNameStart(), *E = Name+V->getNameLen();
Name != E; ++Name)
if (isprint(*Name))
OS << *Name;
}
static X86MachineFunctionInfo calculateFunctionInfo(const Function *F,
const TargetData *TD) {
X86MachineFunctionInfo Info;
uint64_t Size = 0;
switch (F->getCallingConv()) {
case CallingConv::X86_StdCall:
Info.setDecorationStyle(StdCall);
break;
case CallingConv::X86_FastCall:
Info.setDecorationStyle(FastCall);
break;
default:
return Info;
}
unsigned argNum = 1;
for (Function::const_arg_iterator AI = F->arg_begin(), AE = F->arg_end();
AI != AE; ++AI, ++argNum) {
const Type* Ty = AI->getType();
// 'Dereference' type in case of byval parameter attribute
if (F->paramHasAttr(argNum, Attribute::ByVal))
Ty = cast<PointerType>(Ty)->getElementType();
// Size should be aligned to DWORD boundary
Size += ((TD->getTypeAllocSize(Ty) + 3)/4)*4;
}
// We're not supporting tooooo huge arguments :)
Info.setBytesToPopOnReturn((unsigned int)Size);
return Info;
}
/// DecorateCygMingName - Query FunctionInfoMap and use this information for
/// various name decorations for Cygwin and MingW.
void X86ATTAsmPrinter::DecorateCygMingName(std::string &Name,
const GlobalValue *GV) {
assert(Subtarget->isTargetCygMing() && "This is only for cygwin and mingw");
const Function *F = dyn_cast<Function>(GV);
if (!F) return;
// Save function name for later type emission.
if (F->isDeclaration())
CygMingStubs.insert(Name);
// We don't want to decorate non-stdcall or non-fastcall functions right now
unsigned CC = F->getCallingConv();
if (CC != CallingConv::X86_StdCall && CC != CallingConv::X86_FastCall)
return;
const X86MachineFunctionInfo *Info;
FMFInfoMap::const_iterator info_item = FunctionInfoMap.find(F);
if (info_item == FunctionInfoMap.end()) {
// Calculate apropriate function info and populate map
FunctionInfoMap[F] = calculateFunctionInfo(F, TM.getTargetData());
Info = &FunctionInfoMap[F];
} else {
Info = &info_item->second;
}
const FunctionType *FT = F->getFunctionType();
switch (Info->getDecorationStyle()) {
case None:
break;
case StdCall:
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || (FT->getNumParams() == 0) ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
break;
case FastCall:
// "Pure" variadic functions do not receive @0 suffix.
if (!FT->isVarArg() || (FT->getNumParams() == 0) ||
(FT->getNumParams() == 1 && F->hasStructRetAttr()))
Name += '@' + utostr_32(Info->getBytesToPopOnReturn());
if (Name[0] == '_') {
Name[0] = '@';
} else {
Name = '@' + Name;
}
break;
default:
llvm_unreachable("Unsupported DecorationStyle");
}
}
void X86ATTAsmPrinter::emitFunctionHeader(const MachineFunction &MF) {
unsigned FnAlign = MF.getAlignment();
const Function *F = MF.getFunction();
if (Subtarget->isTargetCygMing())
DecorateCygMingName(CurrentFnName, F);
SwitchToSection(TAI->SectionForGlobal(F));
switch (F->getLinkage()) {
default: llvm_unreachable("Unknown linkage type!");
case Function::InternalLinkage: // Symbols default to internal.
case Function::PrivateLinkage:
EmitAlignment(FnAlign, F);
break;
case Function::DLLExportLinkage:
case Function::ExternalLinkage:
EmitAlignment(FnAlign, F);
O << "\t.globl\t" << CurrentFnName << '\n';
break;
case Function::LinkOnceAnyLinkage:
case Function::LinkOnceODRLinkage:
case Function::WeakAnyLinkage:
case Function::WeakODRLinkage:
EmitAlignment(FnAlign, F);
if (Subtarget->isTargetDarwin()) {
O << "\t.globl\t" << CurrentFnName << '\n';
O << TAI->getWeakDefDirective() << CurrentFnName << '\n';
} else if (Subtarget->isTargetCygMing()) {
O << "\t.globl\t" << CurrentFnName << "\n"
"\t.linkonce discard\n";
} else {
O << "\t.weak\t" << CurrentFnName << '\n';
}
break;
}
printVisibility(CurrentFnName, F->getVisibility());
if (Subtarget->isTargetELF())
O << "\t.type\t" << CurrentFnName << ",@function\n";
else if (Subtarget->isTargetCygMing()) {
O << "\t.def\t " << CurrentFnName
<< ";\t.scl\t" <<
(F->hasInternalLinkage() ? COFF::C_STAT : COFF::C_EXT)
<< ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
<< ";\t.endef\n";
}
O << CurrentFnName << ":\n";
// Add some workaround for linkonce linkage on Cygwin\MinGW
if (Subtarget->isTargetCygMing() &&
(F->hasLinkOnceLinkage() || F->hasWeakLinkage()))
O << "Lllvm$workaround$fake$stub$" << CurrentFnName << ":\n";
}
/// runOnMachineFunction - This uses the printMachineInstruction()
/// method to print assembly for each instruction.
///
bool X86ATTAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
const Function *F = MF.getFunction();
this->MF = &MF;
unsigned CC = F->getCallingConv();
SetupMachineFunction(MF);
O << "\n\n";
// Populate function information map. Actually, We don't want to populate
// non-stdcall or non-fastcall functions' information right now.
if (CC == CallingConv::X86_StdCall || CC == CallingConv::X86_FastCall)
FunctionInfoMap[F] = *MF.getInfo<X86MachineFunctionInfo>();
// Print out constants referenced by the function
EmitConstantPool(MF.getConstantPool());
if (F->hasDLLExportLinkage())
DLLExportedFns.insert(Mang->getMangledName(F));
// Print the 'header' of function
emitFunctionHeader(MF);
// Emit pre-function debug and/or EH information.
if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
DW->BeginFunction(&MF);
// Print out code for the function.
bool hasAnyRealCode = false;
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I) {
// Print a label for the basic block.
if (!VerboseAsm && (I->pred_empty() || I->isOnlyReachableByFallthrough())) {
// This is an entry block or a block that's only reachable via a
// fallthrough edge. In non-VerboseAsm mode, don't print the label.
} else {
printBasicBlockLabel(I, true, true, VerboseAsm);
O << '\n';
}
for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
II != IE; ++II) {
// Print the assembly for the instruction.
if (!II->isLabel())
hasAnyRealCode = true;
printMachineInstruction(II);
}
}
if (Subtarget->isTargetDarwin() && !hasAnyRealCode) {
// If the function is empty, then we need to emit *something*. Otherwise,
// the function's label might be associated with something that it wasn't
// meant to be associated with. We emit a noop in this situation.
// We are assuming inline asms are code.
O << "\tnop\n";
}
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size\t" << CurrentFnName << ", .-" << CurrentFnName << '\n';
// Emit post-function debug information.
if (TAI->doesSupportDebugInformation() || TAI->doesSupportExceptionHandling())
DW->EndFunction(&MF);
// Print out jump tables referenced by the function.
EmitJumpTableInfo(MF.getJumpTableInfo(), MF);
O.flush();
// We didn't modify anything.
return false;
}
/// printSymbolOperand - Print a raw symbol reference operand. This handles
/// jump tables, constant pools, global address and external symbols, all of
/// which print to a label with various suffixes for relocation types etc.
void X86ATTAsmPrinter::printSymbolOperand(const MachineOperand &MO) {
switch (MO.getType()) {
default: llvm_unreachable("unknown symbol type!");
case MachineOperand::MO_JumpTableIndex:
O << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_'
<< MO.getIndex();
break;
case MachineOperand::MO_ConstantPoolIndex:
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< MO.getIndex();
printOffset(MO.getOffset());
break;
case MachineOperand::MO_GlobalAddress: {
const GlobalValue *GV = MO.getGlobal();
const char *Suffix = "";
if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB)
Suffix = "$stub";
else if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE ||
MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
Suffix = "$non_lazy_ptr";
std::string Name = Mang->getMangledName(GV, Suffix, Suffix[0] != '\0');
if (Subtarget->isTargetCygMing())
DecorateCygMingName(Name, GV);
// Handle dllimport linkage.
if (MO.getTargetFlags() == X86II::MO_DLLIMPORT)
Name = "__imp_" + Name;
if (MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_NONLAZY_PIC_BASE)
GVStubs[Name] = Mang->getMangledName(GV);
else if (MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY ||
MO.getTargetFlags() == X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE)
HiddenGVStubs[Name] = Mang->getMangledName(GV);
else if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB)
FnStubs[Name] = Mang->getMangledName(GV);
// If the name begins with a dollar-sign, enclose it in parens. We do this
// to avoid having it look like an integer immediate to the assembler.
if (Name[0] == '$')
O << '(' << Name << ')';
else
O << Name;
printOffset(MO.getOffset());
break;
}
case MachineOperand::MO_ExternalSymbol: {
std::string Name = Mang->makeNameProper(MO.getSymbolName());
if (MO.getTargetFlags() == X86II::MO_DARWIN_STUB) {
FnStubs[Name+"$stub"] = Name;
Name += "$stub";
}
// If the name begins with a dollar-sign, enclose it in parens. We do this
// to avoid having it look like an integer immediate to the assembler.
if (Name[0] == '$')
O << '(' << Name << ')';
else
O << Name;
break;
}
}
switch (MO.getTargetFlags()) {
default:
llvm_unreachable("Unknown target flag on GV operand");
case X86II::MO_NO_FLAG: // No flag.
break;
case X86II::MO_DARWIN_NONLAZY:
case X86II::MO_DARWIN_HIDDEN_NONLAZY:
case X86II::MO_DLLIMPORT:
case X86II::MO_DARWIN_STUB:
// These affect the name of the symbol, not any suffix.
break;
case X86II::MO_GOT_ABSOLUTE_ADDRESS:
O << " + [.-";
PrintPICBaseSymbol();
O << ']';
break;
case X86II::MO_PIC_BASE_OFFSET:
case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
O << '-';
PrintPICBaseSymbol();
break;
case X86II::MO_TLSGD: O << "@TLSGD"; break;
case X86II::MO_GOTTPOFF: O << "@GOTTPOFF"; break;
case X86II::MO_INDNTPOFF: O << "@INDNTPOFF"; break;
case X86II::MO_TPOFF: O << "@TPOFF"; break;
case X86II::MO_NTPOFF: O << "@NTPOFF"; break;
case X86II::MO_GOTPCREL: O << "@GOTPCREL"; break;
case X86II::MO_GOT: O << "@GOT"; break;
case X86II::MO_GOTOFF: O << "@GOTOFF"; break;
case X86II::MO_PLT: O << "@PLT"; break;
}
}
/// print_pcrel_imm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value. These print slightly differently, for
/// example, a $ is not emitted.
void X86ATTAsmPrinter::print_pcrel_imm(const MachineInstr *MI, unsigned OpNo) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
default: llvm_unreachable("Unknown pcrel immediate operand");
case MachineOperand::MO_Immediate:
O << MO.getImm();
return;
case MachineOperand::MO_MachineBasicBlock:
printBasicBlockLabel(MO.getMBB(), false, false, VerboseAsm);
return;
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol:
printSymbolOperand(MO);
return;
}
}
void X86ATTAsmPrinter::printOperand(const MachineInstr *MI, unsigned OpNo,
const char *Modifier) {
const MachineOperand &MO = MI->getOperand(OpNo);
switch (MO.getType()) {
default: llvm_unreachable("unknown operand type!");
case MachineOperand::MO_Register: {
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
"Virtual registers should not make it this far!");
O << '%';
unsigned Reg = MO.getReg();
if (Modifier && strncmp(Modifier, "subreg", strlen("subreg")) == 0) {
MVT VT = (strcmp(Modifier+6,"64") == 0) ?
MVT::i64 : ((strcmp(Modifier+6, "32") == 0) ? MVT::i32 :
((strcmp(Modifier+6,"16") == 0) ? MVT::i16 : MVT::i8));
Reg = getX86SubSuperRegister(Reg, VT);
}
O << TRI->getAsmName(Reg);
return;
}
case MachineOperand::MO_Immediate:
O << '$' << MO.getImm();
return;
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_ExternalSymbol: {
O << '$';
printSymbolOperand(MO);
break;
}
}
}
void X86ATTAsmPrinter::printSSECC(const MachineInstr *MI, unsigned Op) {
unsigned char value = MI->getOperand(Op).getImm();
assert(value <= 7 && "Invalid ssecc argument!");
switch (value) {
case 0: O << "eq"; break;
case 1: O << "lt"; break;
case 2: O << "le"; break;
case 3: O << "unord"; break;
case 4: O << "neq"; break;
case 5: O << "nlt"; break;
case 6: O << "nle"; break;
case 7: O << "ord"; break;
}
}
void X86ATTAsmPrinter::printLeaMemReference(const MachineInstr *MI, unsigned Op,
const char *Modifier) {
const MachineOperand &BaseReg = MI->getOperand(Op);
const MachineOperand &IndexReg = MI->getOperand(Op+2);
const MachineOperand &DispSpec = MI->getOperand(Op+3);
// If we really don't want to print out (rip), don't.
bool HasBaseReg = BaseReg.getReg() != 0;
if (HasBaseReg && Modifier && !strcmp(Modifier, "no-rip") &&
BaseReg.getReg() == X86::RIP)
HasBaseReg = false;
// HasParenPart - True if we will print out the () part of the mem ref.
bool HasParenPart = IndexReg.getReg() || HasBaseReg;
if (DispSpec.isImm()) {
int DispVal = DispSpec.getImm();
if (DispVal || !HasParenPart)
O << DispVal;
} else {
assert(DispSpec.isGlobal() || DispSpec.isCPI() ||
DispSpec.isJTI() || DispSpec.isSymbol());
printSymbolOperand(MI->getOperand(Op+3));
}
if (HasParenPart) {
assert(IndexReg.getReg() != X86::ESP &&
"X86 doesn't allow scaling by ESP");
O << '(';
if (HasBaseReg)
printOperand(MI, Op, Modifier);
if (IndexReg.getReg()) {
O << ',';
printOperand(MI, Op+2, Modifier);
unsigned ScaleVal = MI->getOperand(Op+1).getImm();
if (ScaleVal != 1)
O << ',' << ScaleVal;
}
O << ')';
}
}
void X86ATTAsmPrinter::printMemReference(const MachineInstr *MI, unsigned Op,
const char *Modifier) {
assert(isMem(MI, Op) && "Invalid memory reference!");
const MachineOperand &Segment = MI->getOperand(Op+4);
if (Segment.getReg()) {
printOperand(MI, Op+4, Modifier);
O << ':';
}
printLeaMemReference(MI, Op, Modifier);
}
void X86ATTAsmPrinter::printPICJumpTableSetLabel(unsigned uid,
const MachineBasicBlock *MBB) const {
if (!TAI->getSetDirective())
return;
// We don't need .set machinery if we have GOT-style relocations
if (Subtarget->isPICStyleGOT())
return;
O << TAI->getSetDirective() << ' ' << TAI->getPrivateGlobalPrefix()
<< getFunctionNumber() << '_' << uid << "_set_" << MBB->getNumber() << ',';
printBasicBlockLabel(MBB, false, false, false);
if (Subtarget->isPICStyleRIPRel())
O << '-' << TAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber()
<< '_' << uid << '\n';
else {
O << '-';
PrintPICBaseSymbol();
O << '\n';
}
}
void X86ATTAsmPrinter::printPICLabel(const MachineInstr *MI, unsigned Op) {
PrintPICBaseSymbol();
O << '\n';
PrintPICBaseSymbol();
O << ':';
}
void X86ATTAsmPrinter::printPICJumpTableEntry(const MachineJumpTableInfo *MJTI,
const MachineBasicBlock *MBB,
unsigned uid) const {
const char *JTEntryDirective = MJTI->getEntrySize() == 4 ?
TAI->getData32bitsDirective() : TAI->getData64bitsDirective();
O << JTEntryDirective << ' ';
if (Subtarget->isPICStyleRIPRel() || Subtarget->isPICStyleStubPIC()) {
O << TAI->getPrivateGlobalPrefix() << getFunctionNumber()
<< '_' << uid << "_set_" << MBB->getNumber();
} else if (Subtarget->isPICStyleGOT()) {
printBasicBlockLabel(MBB, false, false, false);
O << "@GOTOFF";
} else
printBasicBlockLabel(MBB, false, false, false);
}
bool X86ATTAsmPrinter::printAsmMRegister(const MachineOperand &MO, char Mode) {
unsigned Reg = MO.getReg();
switch (Mode) {
default: return true; // Unknown mode.
case 'b': // Print QImode register
Reg = getX86SubSuperRegister(Reg, MVT::i8);
break;
case 'h': // Print QImode high register
Reg = getX86SubSuperRegister(Reg, MVT::i8, true);
break;
case 'w': // Print HImode register
Reg = getX86SubSuperRegister(Reg, MVT::i16);
break;
case 'k': // Print SImode register
Reg = getX86SubSuperRegister(Reg, MVT::i32);
break;
case 'q': // Print DImode register
Reg = getX86SubSuperRegister(Reg, MVT::i64);
break;
}
O << '%'<< TRI->getAsmName(Reg);
return false;
}
/// PrintAsmOperand - Print out an operand for an inline asm expression.
///
bool X86ATTAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
// Does this asm operand have a single letter operand modifier?
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
const MachineOperand &MO = MI->getOperand(OpNo);
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'c': // Don't print "$" before a global var name or constant.
if (MO.isImm())
O << MO.getImm();
else if (MO.isGlobal() || MO.isCPI() || MO.isJTI() || MO.isSymbol())
printSymbolOperand(MO);
else
printOperand(MI, OpNo);
return false;
case 'A': // Print '*' before a register (it must be a register)
if (MO.isReg()) {
O << '*';
printOperand(MI, OpNo);
return false;
}
return true;
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
case 'q': // Print DImode register
if (MO.isReg())
return printAsmMRegister(MO, ExtraCode[0]);
printOperand(MI, OpNo);
return false;
case 'P': // This is the operand of a call, treat specially.
print_pcrel_imm(MI, OpNo);
return false;
case 'n': // Negate the immediate or print a '-' before the operand.
// Note: this is a temporary solution. It should be handled target
// independently as part of the 'MC' work.
if (MO.isImm()) {
O << -MO.getImm();
return false;
}
O << '-';
}
}
printOperand(MI, OpNo);
return false;
}
bool X86ATTAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode) {
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0) return true; // Unknown modifier.
switch (ExtraCode[0]) {
default: return true; // Unknown modifier.
case 'b': // Print QImode register
case 'h': // Print QImode high register
case 'w': // Print HImode register
case 'k': // Print SImode register
case 'q': // Print SImode register
// These only apply to registers, ignore on mem.
break;
case 'P': // Don't print @PLT, but do print as memory.
printMemReference(MI, OpNo, "no-rip");
return false;
}
}
printMemReference(MI, OpNo);
return false;
}
static void lower_lea64_32mem(MCInst *MI, unsigned OpNo) {
// Convert registers in the addr mode according to subreg64.
for (unsigned i = 0; i != 4; ++i) {
if (!MI->getOperand(i).isReg()) continue;
unsigned Reg = MI->getOperand(i).getReg();
if (Reg == 0) continue;
MI->getOperand(i).setReg(getX86SubSuperRegister(Reg, MVT::i64));
}
}
/// printMachineInstruction -- Print out a single X86 LLVM instruction MI in
/// AT&T syntax to the current output stream.
///
void X86ATTAsmPrinter::printMachineInstruction(const MachineInstr *MI) {
++EmittedInsts;
if (NewAsmPrinter) {
if (MI->getOpcode() == TargetInstrInfo::INLINEASM) {
O << "\t";
printInlineAsm(MI);
return;
} else if (MI->isLabel()) {
printLabel(MI);
return;
} else if (MI->getOpcode() == TargetInstrInfo::DECLARE) {
printDeclare(MI);
return;
} else if (MI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
printImplicitDef(MI);
return;
}
O << "NEW: ";
MCInst TmpInst;
TmpInst.setOpcode(MI->getOpcode());
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
MCOperand MCOp;
if (MO.isReg()) {
MCOp.MakeReg(MO.getReg());
} else if (MO.isImm()) {
MCOp.MakeImm(MO.getImm());
} else if (MO.isMBB()) {
MCOp.MakeMBBLabel(getFunctionNumber(), MO.getMBB()->getNumber());
} else {
llvm_unreachable("Unimp");
}
TmpInst.addOperand(MCOp);
}
switch (TmpInst.getOpcode()) {
case X86::LEA64_32r:
// Handle the 'subreg rewriting' for the lea64_32mem operand.
lower_lea64_32mem(&TmpInst, 1);
break;
}
// FIXME: Convert TmpInst.
printInstruction(&TmpInst);
O << "OLD: ";
}
// Call the autogenerated instruction printer routines.
printInstruction(MI);
}
/// doInitialization
bool X86ATTAsmPrinter::doInitialization(Module &M) {
if (NewAsmPrinter) {
Context = new MCContext();
// FIXME: Send this to "O" instead of outs(). For now, we force it to
// stdout to make it easy to compare.
Streamer = createAsmStreamer(*Context, outs());
}
return AsmPrinter::doInitialization(M);
}
void X86ATTAsmPrinter::printModuleLevelGV(const GlobalVariable* GVar) {
const TargetData *TD = TM.getTargetData();
if (!GVar->hasInitializer())
return; // External global require no code
// Check to see if this is a special global used by LLVM, if so, emit it.
if (EmitSpecialLLVMGlobal(GVar)) {
if (Subtarget->isTargetDarwin() &&
TM.getRelocationModel() == Reloc::Static) {
if (GVar->getName() == "llvm.global_ctors")
O << ".reference .constructors_used\n";
else if (GVar->getName() == "llvm.global_dtors")
O << ".reference .destructors_used\n";
}
return;
}
std::string name = Mang->getMangledName(GVar);
Constant *C = GVar->getInitializer();
if (isa<MDNode>(C) || isa<MDString>(C))
return;
const Type *Type = C->getType();
unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
printVisibility(name, GVar->getVisibility());
if (Subtarget->isTargetELF())
O << "\t.type\t" << name << ",@object\n";
SwitchToSection(TAI->SectionForGlobal(GVar));
if (C->isNullValue() && !GVar->hasSection() &&
!(Subtarget->isTargetDarwin() &&
TAI->SectionKindForGlobal(GVar) == SectionKind::RODataMergeStr)) {
// FIXME: This seems to be pretty darwin-specific
if (GVar->hasExternalLinkage()) {
if (const char *Directive = TAI->getZeroFillDirective()) {
O << "\t.globl " << name << '\n';
O << Directive << "__DATA, __common, " << name << ", "
<< Size << ", " << Align << '\n';
return;
}
}
if (!GVar->isThreadLocal() &&
(GVar->hasLocalLinkage() || GVar->isWeakForLinker())) {
if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
if (TAI->getLCOMMDirective() != NULL) {
if (GVar->hasLocalLinkage()) {
O << TAI->getLCOMMDirective() << name << ',' << Size;
if (Subtarget->isTargetDarwin())
O << ',' << Align;
} else if (Subtarget->isTargetDarwin() && !GVar->hasCommonLinkage()) {
O << "\t.globl " << name << '\n'
<< TAI->getWeakDefDirective() << name << '\n';
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm) {
O << "\t\t\t\t" << TAI->getCommentString() << ' ';
PrintUnmangledNameSafely(GVar, O);
}
O << '\n';
EmitGlobalConstant(C);
return;
} else {
O << TAI->getCOMMDirective() << name << ',' << Size;
if (TAI->getCOMMDirectiveTakesAlignment())
O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
} else {
if (!Subtarget->isTargetCygMing()) {
if (GVar->hasLocalLinkage())
O << "\t.local\t" << name << '\n';
}
O << TAI->getCOMMDirective() << name << ',' << Size;
if (TAI->getCOMMDirectiveTakesAlignment())
O << ',' << (TAI->getAlignmentIsInBytes() ? (1 << Align) : Align);
}
if (VerboseAsm) {
O << "\t\t" << TAI->getCommentString() << ' ';
PrintUnmangledNameSafely(GVar, O);
}
O << '\n';
return;
}
}
switch (GVar->getLinkage()) {
case GlobalValue::CommonLinkage:
case GlobalValue::LinkOnceAnyLinkage:
case GlobalValue::LinkOnceODRLinkage:
case GlobalValue::WeakAnyLinkage:
case GlobalValue::WeakODRLinkage:
if (Subtarget->isTargetDarwin()) {
O << "\t.globl " << name << '\n'
<< TAI->getWeakDefDirective() << name << '\n';
} else if (Subtarget->isTargetCygMing()) {
O << "\t.globl\t" << name << "\n"
"\t.linkonce same_size\n";
} else {
O << "\t.weak\t" << name << '\n';
}
break;
case GlobalValue::DLLExportLinkage:
case GlobalValue::AppendingLinkage:
// FIXME: appending linkage variables should go into a section of
// their name or something. For now, just emit them as external.
case GlobalValue::ExternalLinkage:
// If external or appending, declare as a global symbol
O << "\t.globl " << name << '\n';
// FALL THROUGH
case GlobalValue::PrivateLinkage:
case GlobalValue::InternalLinkage:
break;
default:
llvm_unreachable("Unknown linkage type!");
}
EmitAlignment(Align, GVar);
O << name << ":";
if (VerboseAsm){
O << "\t\t\t\t" << TAI->getCommentString() << ' ';
PrintUnmangledNameSafely(GVar, O);
}
O << '\n';
if (TAI->hasDotTypeDotSizeDirective())
O << "\t.size\t" << name << ", " << Size << '\n';
EmitGlobalConstant(C);
}
bool X86ATTAsmPrinter::doFinalization(Module &M) {
// Print out module-level global variables here.
for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
I != E; ++I) {
printModuleLevelGV(I);
if (I->hasDLLExportLinkage())
DLLExportedGVs.insert(Mang->getMangledName(I));
}
if (Subtarget->isTargetDarwin()) {
SwitchToDataSection("");
// Add the (possibly multiple) personalities to the set of global value
// stubs. Only referenced functions get into the Personalities list.
if (TAI->doesSupportExceptionHandling() && MMI && !Subtarget->is64Bit()) {
const std::vector<Function*> &Personalities = MMI->getPersonalities();
for (unsigned i = 0, e = Personalities.size(); i != e; ++i) {
if (Personalities[i])
GVStubs[Mang->getMangledName(Personalities[i], "$non_lazy_ptr",
true /*private label*/)] =
Mang->getMangledName(Personalities[i]);
}
}
// Output stubs for dynamically-linked functions
if (!FnStubs.empty()) {
SwitchToDataSection("\t.section __IMPORT,__jump_table,symbol_stubs,"
"self_modifying_code+pure_instructions,5", 0);
for (StringMap<std::string>::iterator I = FnStubs.begin(),
E = FnStubs.end(); I != E; ++I)
O << I->getKeyData() << ":\n" << "\t.indirect_symbol " << I->second
<< "\n\thlt ; hlt ; hlt ; hlt ; hlt\n";
O << '\n';
}
// Output stubs for external and common global variables.
if (!GVStubs.empty()) {
SwitchToDataSection(
"\t.section __IMPORT,__pointers,non_lazy_symbol_pointers");
for (StringMap<std::string>::iterator I = GVStubs.begin(),
E = GVStubs.end(); I != E; ++I)
O << I->getKeyData() << ":\n\t.indirect_symbol "
<< I->second << "\n\t.long\t0\n";
}
if (!HiddenGVStubs.empty()) {
SwitchToSection(TAI->getDataSection());
EmitAlignment(2);
for (StringMap<std::string>::iterator I = HiddenGVStubs.begin(),
E = HiddenGVStubs.end(); I != E; ++I)
O << I->getKeyData() << ":\n" << TAI->getData32bitsDirective()
<< I->second << '\n';
}
// Funny Darwin hack: This flag tells the linker that no global symbols
// contain code that falls through to other global symbols (e.g. the obvious
// implementation of multiple entry points). If this doesn't occur, the
// linker can safely perform dead code stripping. Since LLVM never
// generates code that does this, it is always safe to set.
O << "\t.subsections_via_symbols\n";
} else if (Subtarget->isTargetCygMing()) {
// Emit type information for external functions
for (StringSet<>::iterator i = CygMingStubs.begin(), e = CygMingStubs.end();
i != e; ++i) {
O << "\t.def\t " << i->getKeyData()
<< ";\t.scl\t" << COFF::C_EXT
<< ";\t.type\t" << (COFF::DT_FCN << COFF::N_BTSHFT)
<< ";\t.endef\n";
}
}
// Output linker support code for dllexported globals on windows.
if (!DLLExportedGVs.empty()) {
SwitchToDataSection(".section .drectve");
for (StringSet<>::iterator i = DLLExportedGVs.begin(),
e = DLLExportedGVs.end(); i != e; ++i)
O << "\t.ascii \" -export:" << i->getKeyData() << ",data\"\n";
}
if (!DLLExportedFns.empty()) {
SwitchToDataSection(".section .drectve");
for (StringSet<>::iterator i = DLLExportedFns.begin(),
e = DLLExportedFns.end();
i != e; ++i)
O << "\t.ascii \" -export:" << i->getKeyData() << "\"\n";
}
// Do common shutdown.
bool Changed = AsmPrinter::doFinalization(M);
if (NewAsmPrinter) {
Streamer->Finish();
delete Streamer;
delete Context;
Streamer = 0;
Context = 0;
}
return Changed;
}
// Include the auto-generated portion of the assembly writer.
#include "X86GenAsmWriter.inc"