correlated pairs of pointer arguments at the callsite. This is designed
to recognize the common C++ idiom of begin/end pointer pairs when the
end pointer is a constant offset from the begin pointer. With the
C-based idiom of a pointer and size, the inline cost saw the constant
size calculation, and this provides the same level of information for
begin/end pairs.
In order to propagate this information we have to search for candidate
operations on a pair of pointer function arguments (or derived from
them) which would be simplified if the pointers had a known constant
offset. Then the callsite analysis looks for such pointer pairs in the
argument list, and applies the appropriate bonus.
This helps LLVM detect that half of bounds-checked STL algorithms
(such as hash_combine_range, and some hybrid sort implementations)
disappear when inlined with a constant size input. However, it's not
a complete fix due the inaccuracy of our cost metric for constants in
general. I'm looking into that next.
Benchmarks showed no significant code size change, and very minor
performance changes. However, specific code such as hashing is showing
significantly cleaner inlining decisions.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@152752 91177308-0d34-0410-b5e6-96231b3b80d8