mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
245e8bdfba
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@208025 91177308-0d34-0410-b5e6-96231b3b80d8
536 lines
19 KiB
C++
536 lines
19 KiB
C++
//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains some templates that are useful if you are working with the
|
|
// STL at all.
|
|
//
|
|
// No library is required when using these functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_STLEXTRAS_H
|
|
#define LLVM_ADT_STLEXTRAS_H
|
|
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <cstddef> // for std::size_t
|
|
#include <cstdlib> // for qsort
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <memory>
|
|
#include <utility> // for std::pair
|
|
|
|
namespace llvm {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <functional>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
template<class Ty>
|
|
struct identity : public std::unary_function<Ty, Ty> {
|
|
Ty &operator()(Ty &self) const {
|
|
return self;
|
|
}
|
|
const Ty &operator()(const Ty &self) const {
|
|
return self;
|
|
}
|
|
};
|
|
|
|
template<class Ty>
|
|
struct less_ptr : public std::binary_function<Ty, Ty, bool> {
|
|
bool operator()(const Ty* left, const Ty* right) const {
|
|
return *left < *right;
|
|
}
|
|
};
|
|
|
|
template<class Ty>
|
|
struct greater_ptr : public std::binary_function<Ty, Ty, bool> {
|
|
bool operator()(const Ty* left, const Ty* right) const {
|
|
return *right < *left;
|
|
}
|
|
};
|
|
|
|
/// An efficient, type-erasing, non-owning reference to a callable. This is
|
|
/// intended for use as the type of a function parameter that is not used
|
|
/// after the function in question returns.
|
|
///
|
|
/// This class does not own the callable, so it is not in general safe to store
|
|
/// a function_ref.
|
|
template<typename Fn> class function_ref;
|
|
|
|
#if LLVM_HAS_VARIADIC_TEMPLATES
|
|
|
|
template<typename Ret, typename ...Params>
|
|
class function_ref<Ret(Params...)> {
|
|
Ret (*callback)(void *callable, Params ...params);
|
|
void *callable;
|
|
|
|
template<typename Callable>
|
|
static Ret callback_fn(void *callable, Params ...params) {
|
|
return reinterpret_cast<Callable&>(*callable)(
|
|
std::forward<Params>(params)...);
|
|
}
|
|
|
|
public:
|
|
template<typename Callable>
|
|
function_ref(Callable &&callable)
|
|
: callback(callback_fn<Callable>),
|
|
callable(reinterpret_cast<void *>(&callable)) {}
|
|
Ret operator()(Params ...params) const {
|
|
return callback(callable, std::forward<Params>(params)...);
|
|
}
|
|
};
|
|
|
|
#else
|
|
|
|
template<typename Ret>
|
|
class function_ref<Ret()> {
|
|
Ret (*callback)(void *callable);
|
|
void *callable;
|
|
|
|
template<typename Callable>
|
|
static Ret callback_fn(void *callable) {
|
|
return reinterpret_cast<Callable&>(*callable)();
|
|
}
|
|
|
|
public:
|
|
template<typename Callable>
|
|
function_ref(Callable &&callable)
|
|
: callback(callback_fn<Callable>),
|
|
callable(reinterpret_cast<void *>(&callable)) {}
|
|
Ret operator()() const { return callback(callable); }
|
|
};
|
|
|
|
template<typename Ret, typename Param1>
|
|
class function_ref<Ret(Param1)> {
|
|
Ret (*callback)(void *callable, Param1 param1);
|
|
void *callable;
|
|
|
|
template<typename Callable>
|
|
static Ret callback_fn(void *callable, Param1 param1) {
|
|
return reinterpret_cast<Callable&>(*callable)(
|
|
std::forward<Param1>(param1));
|
|
}
|
|
|
|
public:
|
|
template<typename Callable>
|
|
function_ref(Callable &&callable)
|
|
: callback(callback_fn<Callable>),
|
|
callable(reinterpret_cast<void *>(&callable)) {}
|
|
Ret operator()(Param1 param1) {
|
|
return callback(callable, std::forward<Param1>(param1));
|
|
}
|
|
};
|
|
|
|
template<typename Ret, typename Param1, typename Param2>
|
|
class function_ref<Ret(Param1, Param2)> {
|
|
Ret (*callback)(void *callable, Param1 param1, Param2 param2);
|
|
void *callable;
|
|
|
|
template<typename Callable>
|
|
static Ret callback_fn(void *callable, Param1 param1, Param2 param2) {
|
|
return reinterpret_cast<Callable&>(*callable)(
|
|
std::forward<Param1>(param1),
|
|
std::forward<Param2>(param2));
|
|
}
|
|
|
|
public:
|
|
template<typename Callable>
|
|
function_ref(Callable &&callable)
|
|
: callback(callback_fn<Callable>),
|
|
callable(reinterpret_cast<void *>(&callable)) {}
|
|
Ret operator()(Param1 param1, Param2 param2) {
|
|
return callback(callable,
|
|
std::forward<Param1>(param1),
|
|
std::forward<Param2>(param2));
|
|
}
|
|
};
|
|
|
|
template<typename Ret, typename Param1, typename Param2, typename Param3>
|
|
class function_ref<Ret(Param1, Param2, Param3)> {
|
|
Ret (*callback)(void *callable, Param1 param1, Param2 param2, Param3 param3);
|
|
void *callable;
|
|
|
|
template<typename Callable>
|
|
static Ret callback_fn(void *callable, Param1 param1, Param2 param2,
|
|
Param3 param3) {
|
|
return reinterpret_cast<Callable&>(*callable)(
|
|
std::forward<Param1>(param1),
|
|
std::forward<Param2>(param2),
|
|
std::forward<Param3>(param3));
|
|
}
|
|
|
|
public:
|
|
template<typename Callable>
|
|
function_ref(Callable &&callable)
|
|
: callback(callback_fn<Callable>),
|
|
callable(reinterpret_cast<void *>(&callable)) {}
|
|
Ret operator()(Param1 param1, Param2 param2, Param3 param3) {
|
|
return callback(callable,
|
|
std::forward<Param1>(param1),
|
|
std::forward<Param2>(param2),
|
|
std::forward<Param3>(param3));
|
|
}
|
|
};
|
|
|
|
#endif
|
|
|
|
// deleter - Very very very simple method that is used to invoke operator
|
|
// delete on something. It is used like this:
|
|
//
|
|
// for_each(V.begin(), B.end(), deleter<Interval>);
|
|
//
|
|
template <class T>
|
|
inline void deleter(T *Ptr) {
|
|
delete Ptr;
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <iterator>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// mapped_iterator - This is a simple iterator adapter that causes a function to
|
|
// be dereferenced whenever operator* is invoked on the iterator.
|
|
//
|
|
template <class RootIt, class UnaryFunc>
|
|
class mapped_iterator {
|
|
RootIt current;
|
|
UnaryFunc Fn;
|
|
public:
|
|
typedef typename std::iterator_traits<RootIt>::iterator_category
|
|
iterator_category;
|
|
typedef typename std::iterator_traits<RootIt>::difference_type
|
|
difference_type;
|
|
typedef typename UnaryFunc::result_type value_type;
|
|
|
|
typedef void pointer;
|
|
//typedef typename UnaryFunc::result_type *pointer;
|
|
typedef void reference; // Can't modify value returned by fn
|
|
|
|
typedef RootIt iterator_type;
|
|
typedef mapped_iterator<RootIt, UnaryFunc> _Self;
|
|
|
|
inline const RootIt &getCurrent() const { return current; }
|
|
inline const UnaryFunc &getFunc() const { return Fn; }
|
|
|
|
inline explicit mapped_iterator(const RootIt &I, UnaryFunc F)
|
|
: current(I), Fn(F) {}
|
|
|
|
inline value_type operator*() const { // All this work to do this
|
|
return Fn(*current); // little change
|
|
}
|
|
|
|
_Self& operator++() { ++current; return *this; }
|
|
_Self& operator--() { --current; return *this; }
|
|
_Self operator++(int) { _Self __tmp = *this; ++current; return __tmp; }
|
|
_Self operator--(int) { _Self __tmp = *this; --current; return __tmp; }
|
|
_Self operator+ (difference_type n) const {
|
|
return _Self(current + n, Fn);
|
|
}
|
|
_Self& operator+= (difference_type n) { current += n; return *this; }
|
|
_Self operator- (difference_type n) const {
|
|
return _Self(current - n, Fn);
|
|
}
|
|
_Self& operator-= (difference_type n) { current -= n; return *this; }
|
|
reference operator[](difference_type n) const { return *(*this + n); }
|
|
|
|
inline bool operator!=(const _Self &X) const { return !operator==(X); }
|
|
inline bool operator==(const _Self &X) const { return current == X.current; }
|
|
inline bool operator< (const _Self &X) const { return current < X.current; }
|
|
|
|
inline difference_type operator-(const _Self &X) const {
|
|
return current - X.current;
|
|
}
|
|
};
|
|
|
|
template <class _Iterator, class Func>
|
|
inline mapped_iterator<_Iterator, Func>
|
|
operator+(typename mapped_iterator<_Iterator, Func>::difference_type N,
|
|
const mapped_iterator<_Iterator, Func>& X) {
|
|
return mapped_iterator<_Iterator, Func>(X.getCurrent() - N, X.getFunc());
|
|
}
|
|
|
|
|
|
// map_iterator - Provide a convenient way to create mapped_iterators, just like
|
|
// make_pair is useful for creating pairs...
|
|
//
|
|
template <class ItTy, class FuncTy>
|
|
inline mapped_iterator<ItTy, FuncTy> map_iterator(const ItTy &I, FuncTy F) {
|
|
return mapped_iterator<ItTy, FuncTy>(I, F);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <utility>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// \brief Function object to check whether the first component of a std::pair
|
|
/// compares less than the first component of another std::pair.
|
|
struct less_first {
|
|
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
|
|
return lhs.first < rhs.first;
|
|
}
|
|
};
|
|
|
|
/// \brief Function object to check whether the second component of a std::pair
|
|
/// compares less than the second component of another std::pair.
|
|
struct less_second {
|
|
template <typename T> bool operator()(const T &lhs, const T &rhs) const {
|
|
return lhs.second < rhs.second;
|
|
}
|
|
};
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions for arrays
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Find the length of an array.
|
|
template <class T, std::size_t N>
|
|
LLVM_CONSTEXPR inline size_t array_lengthof(T (&)[N]) {
|
|
return N;
|
|
}
|
|
|
|
/// Adapt std::less<T> for array_pod_sort.
|
|
template<typename T>
|
|
inline int array_pod_sort_comparator(const void *P1, const void *P2) {
|
|
if (std::less<T>()(*reinterpret_cast<const T*>(P1),
|
|
*reinterpret_cast<const T*>(P2)))
|
|
return -1;
|
|
if (std::less<T>()(*reinterpret_cast<const T*>(P2),
|
|
*reinterpret_cast<const T*>(P1)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/// get_array_pod_sort_comparator - This is an internal helper function used to
|
|
/// get type deduction of T right.
|
|
template<typename T>
|
|
inline int (*get_array_pod_sort_comparator(const T &))
|
|
(const void*, const void*) {
|
|
return array_pod_sort_comparator<T>;
|
|
}
|
|
|
|
|
|
/// array_pod_sort - This sorts an array with the specified start and end
|
|
/// extent. This is just like std::sort, except that it calls qsort instead of
|
|
/// using an inlined template. qsort is slightly slower than std::sort, but
|
|
/// most sorts are not performance critical in LLVM and std::sort has to be
|
|
/// template instantiated for each type, leading to significant measured code
|
|
/// bloat. This function should generally be used instead of std::sort where
|
|
/// possible.
|
|
///
|
|
/// This function assumes that you have simple POD-like types that can be
|
|
/// compared with std::less and can be moved with memcpy. If this isn't true,
|
|
/// you should use std::sort.
|
|
///
|
|
/// NOTE: If qsort_r were portable, we could allow a custom comparator and
|
|
/// default to std::less.
|
|
template<class IteratorTy>
|
|
inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
|
|
// Don't dereference start iterator of empty sequence.
|
|
if (Start == End) return;
|
|
qsort(&*Start, End-Start, sizeof(*Start),
|
|
get_array_pod_sort_comparator(*Start));
|
|
}
|
|
|
|
template <class IteratorTy>
|
|
inline void array_pod_sort(
|
|
IteratorTy Start, IteratorTy End,
|
|
int (*Compare)(
|
|
const typename std::iterator_traits<IteratorTy>::value_type *,
|
|
const typename std::iterator_traits<IteratorTy>::value_type *)) {
|
|
// Don't dereference start iterator of empty sequence.
|
|
if (Start == End) return;
|
|
qsort(&*Start, End - Start, sizeof(*Start),
|
|
reinterpret_cast<int (*)(const void *, const void *)>(Compare));
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <algorithm>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// For a container of pointers, deletes the pointers and then clears the
|
|
/// container.
|
|
template<typename Container>
|
|
void DeleteContainerPointers(Container &C) {
|
|
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
|
|
delete *I;
|
|
C.clear();
|
|
}
|
|
|
|
/// In a container of pairs (usually a map) whose second element is a pointer,
|
|
/// deletes the second elements and then clears the container.
|
|
template<typename Container>
|
|
void DeleteContainerSeconds(Container &C) {
|
|
for (typename Container::iterator I = C.begin(), E = C.end(); I != E; ++I)
|
|
delete I->second;
|
|
C.clear();
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Extra additions to <memory>
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#if LLVM_HAS_VARIADIC_TEMPLATES
|
|
|
|
// Implement make_unique according to N3656.
|
|
|
|
/// \brief Constructs a `new T()` with the given args and returns a
|
|
/// `unique_ptr<T>` which owns the object.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// auto p = make_unique<int>();
|
|
/// auto p = make_unique<std::tuple<int, int>>(0, 1);
|
|
template <class T, class... Args>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Args &&... args) {
|
|
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
|
|
}
|
|
|
|
/// \brief Constructs a `new T[n]` with the given args and returns a
|
|
/// `unique_ptr<T[]>` which owns the object.
|
|
///
|
|
/// \param n size of the new array.
|
|
///
|
|
/// Example:
|
|
///
|
|
/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
|
|
template <class T>
|
|
typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
|
|
std::unique_ptr<T>>::type
|
|
make_unique(size_t n) {
|
|
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
|
|
}
|
|
|
|
/// This function isn't used and is only here to provide better compile errors.
|
|
template <class T, class... Args>
|
|
typename std::enable_if<std::extent<T>::value != 0>::type
|
|
make_unique(Args &&...) LLVM_DELETED_FUNCTION;
|
|
|
|
#else
|
|
|
|
template <class T>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique() {
|
|
return std::unique_ptr<T>(new T());
|
|
}
|
|
|
|
template <class T, class Arg1>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1) {
|
|
return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2) {
|
|
return std::unique_ptr<T>(
|
|
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2, class Arg3>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3) {
|
|
return std::unique_ptr<T>(new T(std::forward<Arg1>(arg1),
|
|
std::forward<Arg2>(arg2),
|
|
std::forward<Arg3>(arg3)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2, class Arg3, class Arg4>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4) {
|
|
return std::unique_ptr<T>(
|
|
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
|
|
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5) {
|
|
return std::unique_ptr<T>(
|
|
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
|
|
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
|
|
std::forward<Arg5>(arg5)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
|
|
class Arg6>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
|
|
Arg6 &&arg6) {
|
|
return std::unique_ptr<T>(
|
|
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
|
|
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
|
|
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
|
|
class Arg6, class Arg7>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
|
|
Arg6 &&arg6, Arg7 &&arg7) {
|
|
return std::unique_ptr<T>(
|
|
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
|
|
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
|
|
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
|
|
std::forward<Arg7>(arg7)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
|
|
class Arg6, class Arg7, class Arg8>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
|
|
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8) {
|
|
return std::unique_ptr<T>(
|
|
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
|
|
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
|
|
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
|
|
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
|
|
class Arg6, class Arg7, class Arg8, class Arg9>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
|
|
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9) {
|
|
return std::unique_ptr<T>(
|
|
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
|
|
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
|
|
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
|
|
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
|
|
std::forward<Arg9>(arg9)));
|
|
}
|
|
|
|
template <class T, class Arg1, class Arg2, class Arg3, class Arg4, class Arg5,
|
|
class Arg6, class Arg7, class Arg8, class Arg9, class Arg10>
|
|
typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
|
|
make_unique(Arg1 &&arg1, Arg2 &&arg2, Arg3 &&arg3, Arg4 &&arg4, Arg5 &&arg5,
|
|
Arg6 &&arg6, Arg7 &&arg7, Arg8 &&arg8, Arg9 &&arg9, Arg10 &&arg10) {
|
|
return std::unique_ptr<T>(
|
|
new T(std::forward<Arg1>(arg1), std::forward<Arg2>(arg2),
|
|
std::forward<Arg3>(arg3), std::forward<Arg4>(arg4),
|
|
std::forward<Arg5>(arg5), std::forward<Arg6>(arg6),
|
|
std::forward<Arg7>(arg7), std::forward<Arg8>(arg8),
|
|
std::forward<Arg9>(arg9), std::forward<Arg10>(arg10)));
|
|
}
|
|
|
|
template <class T>
|
|
typename std::enable_if<std::is_array<T>::value &&std::extent<T>::value == 0,
|
|
std::unique_ptr<T>>::type
|
|
make_unique(size_t n) {
|
|
return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
|
|
}
|
|
|
|
#endif
|
|
|
|
} // End llvm namespace
|
|
|
|
#endif
|