mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-15 20:29:48 +00:00
970eaf2520
found last time. Instead of trying to modify the IR while iterating over it, I've change it to keep a list of WeakVH references to dead instructions, and then delete those instructions later. I also added some special case code to detect and handle the situation when both operands of a memcpy intrinsic are referencing the same alloca. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@91459 91177308-0d34-0410-b5e6-96231b3b80d8
1906 lines
78 KiB
C++
1906 lines
78 KiB
C++
//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This transformation implements the well known scalar replacement of
|
|
// aggregates transformation. This xform breaks up alloca instructions of
|
|
// aggregate type (structure or array) into individual alloca instructions for
|
|
// each member (if possible). Then, if possible, it transforms the individual
|
|
// alloca instructions into nice clean scalar SSA form.
|
|
//
|
|
// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
|
|
// often interact, especially for C++ programs. As such, iterating between
|
|
// SRoA, then Mem2Reg until we run out of things to promote works well.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "scalarrepl"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Function.h"
|
|
#include "llvm/GlobalVariable.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Support/IRBuilder.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumReplaced, "Number of allocas broken up");
|
|
STATISTIC(NumPromoted, "Number of allocas promoted");
|
|
STATISTIC(NumConverted, "Number of aggregates converted to scalar");
|
|
STATISTIC(NumGlobals, "Number of allocas copied from constant global");
|
|
|
|
namespace {
|
|
struct SROA : public FunctionPass {
|
|
static char ID; // Pass identification, replacement for typeid
|
|
explicit SROA(signed T = -1) : FunctionPass(&ID) {
|
|
if (T == -1)
|
|
SRThreshold = 128;
|
|
else
|
|
SRThreshold = T;
|
|
}
|
|
|
|
bool runOnFunction(Function &F);
|
|
|
|
bool performScalarRepl(Function &F);
|
|
bool performPromotion(Function &F);
|
|
|
|
// getAnalysisUsage - This pass does not require any passes, but we know it
|
|
// will not alter the CFG, so say so.
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.addRequired<DominatorTree>();
|
|
AU.addRequired<DominanceFrontier>();
|
|
AU.setPreservesCFG();
|
|
}
|
|
|
|
private:
|
|
TargetData *TD;
|
|
|
|
/// DeadInsts - Keep track of instructions we have made dead, so that
|
|
/// we can remove them after we are done working.
|
|
SmallVector<WeakVH, 16> DeadInsts;
|
|
|
|
/// AllocaInfo - When analyzing uses of an alloca instruction, this captures
|
|
/// information about the uses. All these fields are initialized to false
|
|
/// and set to true when something is learned.
|
|
struct AllocaInfo {
|
|
/// isUnsafe - This is set to true if the alloca cannot be SROA'd.
|
|
bool isUnsafe : 1;
|
|
|
|
/// needsCleanup - This is set to true if there is some use of the alloca
|
|
/// that requires cleanup.
|
|
bool needsCleanup : 1;
|
|
|
|
/// isMemCpySrc - This is true if this aggregate is memcpy'd from.
|
|
bool isMemCpySrc : 1;
|
|
|
|
/// isMemCpyDst - This is true if this aggregate is memcpy'd into.
|
|
bool isMemCpyDst : 1;
|
|
|
|
AllocaInfo()
|
|
: isUnsafe(false), needsCleanup(false),
|
|
isMemCpySrc(false), isMemCpyDst(false) {}
|
|
};
|
|
|
|
unsigned SRThreshold;
|
|
|
|
void MarkUnsafe(AllocaInfo &I) { I.isUnsafe = true; }
|
|
|
|
int isSafeAllocaToScalarRepl(AllocaInst *AI);
|
|
|
|
void isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
|
|
uint64_t ArrayOffset, AllocaInfo &Info);
|
|
void isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t &Offset,
|
|
uint64_t &ArrayOffset, AllocaInfo &Info);
|
|
void isSafeMemAccess(AllocaInst *AI, uint64_t Offset, uint64_t ArrayOffset,
|
|
uint64_t MemSize, const Type *MemOpType, bool isStore,
|
|
AllocaInfo &Info);
|
|
bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
|
|
unsigned FindElementAndOffset(const Type *&T, uint64_t &Offset);
|
|
|
|
void DoScalarReplacement(AllocaInst *AI,
|
|
std::vector<AllocaInst*> &WorkList);
|
|
void DeleteDeadInstructions();
|
|
void CleanupGEP(GetElementPtrInst *GEP);
|
|
void CleanupAllocaUsers(Value *V);
|
|
AllocaInst *AddNewAlloca(Function &F, const Type *Ty, AllocaInst *Base);
|
|
|
|
void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
|
void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
|
void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
|
void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
|
|
AllocaInst *AI,
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
|
void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
|
void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
|
|
SmallVector<AllocaInst*, 32> &NewElts);
|
|
|
|
bool CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
|
|
bool &SawVec, uint64_t Offset, unsigned AllocaSize);
|
|
void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
|
|
Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
|
|
uint64_t Offset, IRBuilder<> &Builder);
|
|
Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
|
|
uint64_t Offset, IRBuilder<> &Builder);
|
|
static Instruction *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
|
|
};
|
|
}
|
|
|
|
char SROA::ID = 0;
|
|
static RegisterPass<SROA> X("scalarrepl", "Scalar Replacement of Aggregates");
|
|
|
|
// Public interface to the ScalarReplAggregates pass
|
|
FunctionPass *llvm::createScalarReplAggregatesPass(signed int Threshold) {
|
|
return new SROA(Threshold);
|
|
}
|
|
|
|
|
|
bool SROA::runOnFunction(Function &F) {
|
|
TD = getAnalysisIfAvailable<TargetData>();
|
|
|
|
bool Changed = performPromotion(F);
|
|
|
|
// FIXME: ScalarRepl currently depends on TargetData more than it
|
|
// theoretically needs to. It should be refactored in order to support
|
|
// target-independent IR. Until this is done, just skip the actual
|
|
// scalar-replacement portion of this pass.
|
|
if (!TD) return Changed;
|
|
|
|
while (1) {
|
|
bool LocalChange = performScalarRepl(F);
|
|
if (!LocalChange) break; // No need to repromote if no scalarrepl
|
|
Changed = true;
|
|
LocalChange = performPromotion(F);
|
|
if (!LocalChange) break; // No need to re-scalarrepl if no promotion
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
|
|
bool SROA::performPromotion(Function &F) {
|
|
std::vector<AllocaInst*> Allocas;
|
|
DominatorTree &DT = getAnalysis<DominatorTree>();
|
|
DominanceFrontier &DF = getAnalysis<DominanceFrontier>();
|
|
|
|
BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
|
|
|
|
bool Changed = false;
|
|
|
|
while (1) {
|
|
Allocas.clear();
|
|
|
|
// Find allocas that are safe to promote, by looking at all instructions in
|
|
// the entry node
|
|
for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
|
|
if (isAllocaPromotable(AI))
|
|
Allocas.push_back(AI);
|
|
|
|
if (Allocas.empty()) break;
|
|
|
|
PromoteMemToReg(Allocas, DT, DF);
|
|
NumPromoted += Allocas.size();
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// getNumSAElements - Return the number of elements in the specific struct or
|
|
/// array.
|
|
static uint64_t getNumSAElements(const Type *T) {
|
|
if (const StructType *ST = dyn_cast<StructType>(T))
|
|
return ST->getNumElements();
|
|
return cast<ArrayType>(T)->getNumElements();
|
|
}
|
|
|
|
// performScalarRepl - This algorithm is a simple worklist driven algorithm,
|
|
// which runs on all of the malloc/alloca instructions in the function, removing
|
|
// them if they are only used by getelementptr instructions.
|
|
//
|
|
bool SROA::performScalarRepl(Function &F) {
|
|
std::vector<AllocaInst*> WorkList;
|
|
|
|
// Scan the entry basic block, adding any alloca's and mallocs to the worklist
|
|
BasicBlock &BB = F.getEntryBlock();
|
|
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
|
|
if (AllocaInst *A = dyn_cast<AllocaInst>(I))
|
|
WorkList.push_back(A);
|
|
|
|
// Process the worklist
|
|
bool Changed = false;
|
|
while (!WorkList.empty()) {
|
|
AllocaInst *AI = WorkList.back();
|
|
WorkList.pop_back();
|
|
|
|
// Handle dead allocas trivially. These can be formed by SROA'ing arrays
|
|
// with unused elements.
|
|
if (AI->use_empty()) {
|
|
AI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
// If this alloca is impossible for us to promote, reject it early.
|
|
if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
|
|
continue;
|
|
|
|
// Check to see if this allocation is only modified by a memcpy/memmove from
|
|
// a constant global. If this is the case, we can change all users to use
|
|
// the constant global instead. This is commonly produced by the CFE by
|
|
// constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
|
|
// is only subsequently read.
|
|
if (Instruction *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
|
|
DEBUG(errs() << "Found alloca equal to global: " << *AI << '\n');
|
|
DEBUG(errs() << " memcpy = " << *TheCopy << '\n');
|
|
Constant *TheSrc = cast<Constant>(TheCopy->getOperand(2));
|
|
AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
|
|
TheCopy->eraseFromParent(); // Don't mutate the global.
|
|
AI->eraseFromParent();
|
|
++NumGlobals;
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Check to see if we can perform the core SROA transformation. We cannot
|
|
// transform the allocation instruction if it is an array allocation
|
|
// (allocations OF arrays are ok though), and an allocation of a scalar
|
|
// value cannot be decomposed at all.
|
|
uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
|
|
|
|
// Do not promote [0 x %struct].
|
|
if (AllocaSize == 0) continue;
|
|
|
|
// Do not promote any struct whose size is too big.
|
|
if (AllocaSize > SRThreshold) continue;
|
|
|
|
if ((isa<StructType>(AI->getAllocatedType()) ||
|
|
isa<ArrayType>(AI->getAllocatedType())) &&
|
|
// Do not promote any struct into more than "32" separate vars.
|
|
getNumSAElements(AI->getAllocatedType()) <= SRThreshold/4) {
|
|
// Check that all of the users of the allocation are capable of being
|
|
// transformed.
|
|
switch (isSafeAllocaToScalarRepl(AI)) {
|
|
default: llvm_unreachable("Unexpected value!");
|
|
case 0: // Not safe to scalar replace.
|
|
break;
|
|
case 1: // Safe, but requires cleanup/canonicalizations first
|
|
CleanupAllocaUsers(AI);
|
|
// FALL THROUGH.
|
|
case 3: // Safe to scalar replace.
|
|
DoScalarReplacement(AI, WorkList);
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If we can turn this aggregate value (potentially with casts) into a
|
|
// simple scalar value that can be mem2reg'd into a register value.
|
|
// IsNotTrivial tracks whether this is something that mem2reg could have
|
|
// promoted itself. If so, we don't want to transform it needlessly. Note
|
|
// that we can't just check based on the type: the alloca may be of an i32
|
|
// but that has pointer arithmetic to set byte 3 of it or something.
|
|
bool IsNotTrivial = false;
|
|
const Type *VectorTy = 0;
|
|
bool HadAVector = false;
|
|
if (CanConvertToScalar(AI, IsNotTrivial, VectorTy, HadAVector,
|
|
0, unsigned(AllocaSize)) && IsNotTrivial) {
|
|
AllocaInst *NewAI;
|
|
// If we were able to find a vector type that can handle this with
|
|
// insert/extract elements, and if there was at least one use that had
|
|
// a vector type, promote this to a vector. We don't want to promote
|
|
// random stuff that doesn't use vectors (e.g. <9 x double>) because then
|
|
// we just get a lot of insert/extracts. If at least one vector is
|
|
// involved, then we probably really do have a union of vector/array.
|
|
if (VectorTy && isa<VectorType>(VectorTy) && HadAVector) {
|
|
DEBUG(errs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
|
|
<< *VectorTy << '\n');
|
|
|
|
// Create and insert the vector alloca.
|
|
NewAI = new AllocaInst(VectorTy, 0, "", AI->getParent()->begin());
|
|
ConvertUsesToScalar(AI, NewAI, 0);
|
|
} else {
|
|
DEBUG(errs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
|
|
|
|
// Create and insert the integer alloca.
|
|
const Type *NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
|
|
NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
|
|
ConvertUsesToScalar(AI, NewAI, 0);
|
|
}
|
|
NewAI->takeName(AI);
|
|
AI->eraseFromParent();
|
|
++NumConverted;
|
|
Changed = true;
|
|
continue;
|
|
}
|
|
|
|
// Otherwise, couldn't process this alloca.
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
|
|
/// predicate, do SROA now.
|
|
void SROA::DoScalarReplacement(AllocaInst *AI,
|
|
std::vector<AllocaInst*> &WorkList) {
|
|
DEBUG(errs() << "Found inst to SROA: " << *AI << '\n');
|
|
SmallVector<AllocaInst*, 32> ElementAllocas;
|
|
if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
|
|
ElementAllocas.reserve(ST->getNumContainedTypes());
|
|
for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
|
|
AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
|
|
AI->getAlignment(),
|
|
AI->getName() + "." + Twine(i), AI);
|
|
ElementAllocas.push_back(NA);
|
|
WorkList.push_back(NA); // Add to worklist for recursive processing
|
|
}
|
|
} else {
|
|
const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
|
|
ElementAllocas.reserve(AT->getNumElements());
|
|
const Type *ElTy = AT->getElementType();
|
|
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
|
|
AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
|
|
AI->getName() + "." + Twine(i), AI);
|
|
ElementAllocas.push_back(NA);
|
|
WorkList.push_back(NA); // Add to worklist for recursive processing
|
|
}
|
|
}
|
|
|
|
// Now that we have created the new alloca instructions, rewrite all the
|
|
// uses of the old alloca.
|
|
DeadInsts.push_back(AI);
|
|
RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
|
|
|
|
// Now erase any instructions that were made dead while rewriting the alloca.
|
|
DeleteDeadInstructions();
|
|
|
|
NumReplaced++;
|
|
}
|
|
|
|
/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
|
|
/// recursively including all their operands that become trivially dead.
|
|
void SROA::DeleteDeadInstructions() {
|
|
while (!DeadInsts.empty()) {
|
|
Instruction *I = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
|
|
if (I == 0)
|
|
continue;
|
|
|
|
for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
|
|
if (Instruction *U = dyn_cast<Instruction>(*OI)) {
|
|
// Zero out the operand and see if it becomes trivially dead.
|
|
*OI = 0;
|
|
if (isInstructionTriviallyDead(U))
|
|
DeadInsts.push_back(U);
|
|
}
|
|
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// AllUsersAreLoads - Return true if all users of this value are loads.
|
|
static bool AllUsersAreLoads(Value *Ptr) {
|
|
for (Value::use_iterator I = Ptr->use_begin(), E = Ptr->use_end();
|
|
I != E; ++I)
|
|
if (cast<Instruction>(*I)->getOpcode() != Instruction::Load)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
|
|
/// performing scalar replacement of alloca AI. The results are flagged in
|
|
/// the Info parameter. Offset and ArrayOffset indicate the position within
|
|
/// AI that is referenced by this instruction.
|
|
void SROA::isSafeForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
|
|
uint64_t ArrayOffset, AllocaInfo &Info) {
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
|
|
isSafeForScalarRepl(BC, AI, Offset, ArrayOffset, Info);
|
|
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
|
|
uint64_t GEPArrayOffset = ArrayOffset;
|
|
uint64_t GEPOffset = Offset;
|
|
isSafeGEP(GEPI, AI, GEPOffset, GEPArrayOffset, Info);
|
|
if (!Info.isUnsafe)
|
|
isSafeForScalarRepl(GEPI, AI, GEPOffset, GEPArrayOffset, Info);
|
|
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(UI)) {
|
|
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
|
|
if (Length)
|
|
isSafeMemAccess(AI, Offset, ArrayOffset, Length->getZExtValue(), 0,
|
|
UI.getOperandNo() == 1, Info);
|
|
else
|
|
MarkUnsafe(Info);
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
|
if (!LI->isVolatile()) {
|
|
const Type *LIType = LI->getType();
|
|
isSafeMemAccess(AI, Offset, ArrayOffset, TD->getTypeAllocSize(LIType),
|
|
LIType, false, Info);
|
|
} else
|
|
MarkUnsafe(Info);
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
|
// Store is ok if storing INTO the pointer, not storing the pointer
|
|
if (!SI->isVolatile() && SI->getOperand(0) != I) {
|
|
const Type *SIType = SI->getOperand(0)->getType();
|
|
isSafeMemAccess(AI, Offset, ArrayOffset, TD->getTypeAllocSize(SIType),
|
|
SIType, true, Info);
|
|
} else
|
|
MarkUnsafe(Info);
|
|
} else if (isa<DbgInfoIntrinsic>(UI)) {
|
|
// If one user is DbgInfoIntrinsic then check if all users are
|
|
// DbgInfoIntrinsics.
|
|
if (OnlyUsedByDbgInfoIntrinsics(I)) {
|
|
Info.needsCleanup = true;
|
|
return;
|
|
}
|
|
MarkUnsafe(Info);
|
|
} else {
|
|
DEBUG(errs() << " Transformation preventing inst: " << *User << '\n');
|
|
MarkUnsafe(Info);
|
|
}
|
|
if (Info.isUnsafe) return;
|
|
}
|
|
}
|
|
|
|
/// isSafeGEP - Check if a GEP instruction can be handled for scalar
|
|
/// replacement. It is safe when all the indices are constant, in-bounds
|
|
/// references, and when the resulting offset corresponds to an element within
|
|
/// the alloca type. The results are flagged in the Info parameter. Upon
|
|
/// return, Offset is adjusted as specified by the GEP indices. For the
|
|
/// special case of a variable index to a 2-element array, ArrayOffset is set
|
|
/// to the array element size.
|
|
void SROA::isSafeGEP(GetElementPtrInst *GEPI, AllocaInst *AI,
|
|
uint64_t &Offset, uint64_t &ArrayOffset,
|
|
AllocaInfo &Info) {
|
|
gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
|
|
if (GEPIt == E)
|
|
return;
|
|
|
|
// The first GEP index must be zero.
|
|
if (!isa<ConstantInt>(GEPIt.getOperand()) ||
|
|
!cast<ConstantInt>(GEPIt.getOperand())->isZero())
|
|
return MarkUnsafe(Info);
|
|
if (++GEPIt == E)
|
|
return;
|
|
|
|
// If the first index is a non-constant index into an array, see if we can
|
|
// handle it as a special case.
|
|
const Type *ArrayEltTy = 0;
|
|
if (ArrayOffset == 0 && Offset == 0) {
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
|
|
if (!isa<ConstantInt>(GEPIt.getOperand())) {
|
|
uint64_t NumElements = AT->getNumElements();
|
|
|
|
// If this is an array index and the index is not constant, we cannot
|
|
// promote... that is unless the array has exactly one or two elements
|
|
// in it, in which case we CAN promote it, but we have to canonicalize
|
|
// this out if this is the only problem.
|
|
if ((NumElements != 1 && NumElements != 2) || !AllUsersAreLoads(GEPI))
|
|
return MarkUnsafe(Info);
|
|
Info.needsCleanup = true;
|
|
ArrayOffset = TD->getTypeAllocSizeInBits(AT->getElementType());
|
|
ArrayEltTy = AT->getElementType();
|
|
++GEPIt;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Walk through the GEP type indices, checking the types that this indexes
|
|
// into.
|
|
for (; GEPIt != E; ++GEPIt) {
|
|
// Ignore struct elements, no extra checking needed for these.
|
|
if (isa<StructType>(*GEPIt))
|
|
continue;
|
|
|
|
ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
|
|
if (!IdxVal)
|
|
return MarkUnsafe(Info);
|
|
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(*GEPIt)) {
|
|
// This GEP indexes an array. Verify that this is an in-range constant
|
|
// integer. Specifically, consider A[0][i]. We cannot know that the user
|
|
// isn't doing invalid things like allowing i to index an out-of-range
|
|
// subscript that accesses A[1]. Because of this, we have to reject SROA
|
|
// of any accesses into structs where any of the components are variables.
|
|
if (IdxVal->getZExtValue() >= AT->getNumElements())
|
|
return MarkUnsafe(Info);
|
|
} else {
|
|
const VectorType *VT = dyn_cast<VectorType>(*GEPIt);
|
|
assert(VT && "unexpected type in GEP type iterator");
|
|
if (IdxVal->getZExtValue() >= VT->getNumElements())
|
|
return MarkUnsafe(Info);
|
|
}
|
|
}
|
|
|
|
// All the indices are safe. Now compute the offset due to this GEP and
|
|
// check if the alloca has a component element at that offset.
|
|
if (ArrayOffset == 0) {
|
|
SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
|
|
Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
|
|
&Indices[0], Indices.size());
|
|
} else {
|
|
// Both array elements have the same type, so it suffices to check one of
|
|
// them. Copy the GEP indices starting from the array index, but replace
|
|
// that variable index with a constant zero.
|
|
SmallVector<Value*, 8> Indices(GEPI->op_begin() + 2, GEPI->op_end());
|
|
Indices[0] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
|
|
const Type *ArrayEltPtr = PointerType::getUnqual(ArrayEltTy);
|
|
Offset += TD->getIndexedOffset(ArrayEltPtr, &Indices[0], Indices.size());
|
|
}
|
|
if (!TypeHasComponent(AI->getAllocatedType(), Offset, 0))
|
|
MarkUnsafe(Info);
|
|
}
|
|
|
|
/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
|
|
/// alloca or has an offset and size that corresponds to a component element
|
|
/// within it. The offset checked here may have been formed from a GEP with a
|
|
/// pointer bitcasted to a different type.
|
|
void SROA::isSafeMemAccess(AllocaInst *AI, uint64_t Offset,
|
|
uint64_t ArrayOffset, uint64_t MemSize,
|
|
const Type *MemOpType, bool isStore,
|
|
AllocaInfo &Info) {
|
|
// Check if this is a load/store of the entire alloca.
|
|
if (Offset == 0 && ArrayOffset == 0 &&
|
|
MemSize == TD->getTypeAllocSize(AI->getAllocatedType())) {
|
|
bool UsesAggregateType = (MemOpType == AI->getAllocatedType());
|
|
// This is safe for MemIntrinsics (where MemOpType is 0), integer types
|
|
// (which are essentially the same as the MemIntrinsics, especially with
|
|
// regard to copying padding between elements), or references using the
|
|
// aggregate type of the alloca.
|
|
if (!MemOpType || isa<IntegerType>(MemOpType) || UsesAggregateType) {
|
|
if (!UsesAggregateType) {
|
|
if (isStore)
|
|
Info.isMemCpyDst = true;
|
|
else
|
|
Info.isMemCpySrc = true;
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
// Check if the offset/size correspond to a component within the alloca type.
|
|
const Type *T = AI->getAllocatedType();
|
|
if (TypeHasComponent(T, Offset, MemSize) &&
|
|
(ArrayOffset == 0 || TypeHasComponent(T, Offset + ArrayOffset, MemSize)))
|
|
return;
|
|
|
|
return MarkUnsafe(Info);
|
|
}
|
|
|
|
/// TypeHasComponent - Return true if T has a component type with the
|
|
/// specified offset and size. If Size is zero, do not check the size.
|
|
bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
|
|
const Type *EltTy;
|
|
uint64_t EltSize;
|
|
if (const StructType *ST = dyn_cast<StructType>(T)) {
|
|
const StructLayout *Layout = TD->getStructLayout(ST);
|
|
unsigned EltIdx = Layout->getElementContainingOffset(Offset);
|
|
EltTy = ST->getContainedType(EltIdx);
|
|
EltSize = TD->getTypeAllocSize(EltTy);
|
|
Offset -= Layout->getElementOffset(EltIdx);
|
|
} else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
|
|
EltTy = AT->getElementType();
|
|
EltSize = TD->getTypeAllocSize(EltTy);
|
|
Offset %= EltSize;
|
|
} else {
|
|
return false;
|
|
}
|
|
if (Offset == 0 && (Size == 0 || EltSize == Size))
|
|
return true;
|
|
// Check if the component spans multiple elements.
|
|
if (Offset + Size > EltSize)
|
|
return false;
|
|
return TypeHasComponent(EltTy, Offset, Size);
|
|
}
|
|
|
|
/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
|
|
/// the instruction I, which references it, to use the separate elements.
|
|
/// Offset indicates the position within AI that is referenced by this
|
|
/// instruction.
|
|
void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
|
|
SmallVector<AllocaInst*, 32> &NewElts) {
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
|
|
RewriteBitCast(BC, AI, Offset, NewElts);
|
|
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
|
|
RewriteGEP(GEPI, AI, Offset, NewElts);
|
|
} else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
|
|
ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
|
|
uint64_t MemSize = Length->getZExtValue();
|
|
if (Offset == 0 &&
|
|
MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
|
|
RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
|
|
} else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
|
const Type *LIType = LI->getType();
|
|
if (LIType == AI->getAllocatedType()) {
|
|
// Replace:
|
|
// %res = load { i32, i32 }* %alloc
|
|
// with:
|
|
// %load.0 = load i32* %alloc.0
|
|
// %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
|
|
// %load.1 = load i32* %alloc.1
|
|
// %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
|
|
// (Also works for arrays instead of structs)
|
|
Value *Insert = UndefValue::get(LIType);
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
Value *Load = new LoadInst(NewElts[i], "load", LI);
|
|
Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
|
|
}
|
|
LI->replaceAllUsesWith(Insert);
|
|
DeadInsts.push_back(LI);
|
|
} else if (isa<IntegerType>(LIType) &&
|
|
TD->getTypeAllocSize(LIType) ==
|
|
TD->getTypeAllocSize(AI->getAllocatedType())) {
|
|
// If this is a load of the entire alloca to an integer, rewrite it.
|
|
RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
|
|
}
|
|
} else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
|
Value *Val = SI->getOperand(0);
|
|
const Type *SIType = Val->getType();
|
|
if (SIType == AI->getAllocatedType()) {
|
|
// Replace:
|
|
// store { i32, i32 } %val, { i32, i32 }* %alloc
|
|
// with:
|
|
// %val.0 = extractvalue { i32, i32 } %val, 0
|
|
// store i32 %val.0, i32* %alloc.0
|
|
// %val.1 = extractvalue { i32, i32 } %val, 1
|
|
// store i32 %val.1, i32* %alloc.1
|
|
// (Also works for arrays instead of structs)
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
|
|
new StoreInst(Extract, NewElts[i], SI);
|
|
}
|
|
DeadInsts.push_back(SI);
|
|
} else if (isa<IntegerType>(SIType) &&
|
|
TD->getTypeAllocSize(SIType) ==
|
|
TD->getTypeAllocSize(AI->getAllocatedType())) {
|
|
// If this is a store of the entire alloca from an integer, rewrite it.
|
|
RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
|
|
/// and recursively continue updating all of its uses.
|
|
void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
|
|
SmallVector<AllocaInst*, 32> &NewElts) {
|
|
RewriteForScalarRepl(BC, AI, Offset, NewElts);
|
|
if (BC->getOperand(0) != AI)
|
|
return;
|
|
|
|
// The bitcast references the original alloca. Replace its uses with
|
|
// references to the first new element alloca.
|
|
Instruction *Val = NewElts[0];
|
|
if (Val->getType() != BC->getDestTy()) {
|
|
Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
|
|
Val->takeName(BC);
|
|
}
|
|
BC->replaceAllUsesWith(Val);
|
|
DeadInsts.push_back(BC);
|
|
}
|
|
|
|
/// FindElementAndOffset - Return the index of the element containing Offset
|
|
/// within the specified type, which must be either a struct or an array.
|
|
/// Sets T to the type of the element and Offset to the offset within that
|
|
/// element.
|
|
unsigned SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset) {
|
|
unsigned Idx = 0;
|
|
if (const StructType *ST = dyn_cast<StructType>(T)) {
|
|
const StructLayout *Layout = TD->getStructLayout(ST);
|
|
Idx = Layout->getElementContainingOffset(Offset);
|
|
T = ST->getContainedType(Idx);
|
|
Offset -= Layout->getElementOffset(Idx);
|
|
} else {
|
|
const ArrayType *AT = dyn_cast<ArrayType>(T);
|
|
assert(AT && "unexpected type for scalar replacement");
|
|
T = AT->getElementType();
|
|
uint64_t EltSize = TD->getTypeAllocSize(T);
|
|
Idx = (unsigned)(Offset / EltSize);
|
|
Offset -= Idx * EltSize;
|
|
}
|
|
return Idx;
|
|
}
|
|
|
|
/// RewriteGEP - Check if this GEP instruction moves the pointer across
|
|
/// elements of the alloca that are being split apart, and if so, rewrite
|
|
/// the GEP to be relative to the new element.
|
|
void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
|
|
SmallVector<AllocaInst*, 32> &NewElts) {
|
|
uint64_t OldOffset = Offset;
|
|
SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
|
|
Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
|
|
&Indices[0], Indices.size());
|
|
|
|
RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
|
|
|
|
const Type *T = AI->getAllocatedType();
|
|
unsigned OldIdx = FindElementAndOffset(T, OldOffset);
|
|
if (GEPI->getOperand(0) == AI)
|
|
OldIdx = ~0U; // Force the GEP to be rewritten.
|
|
|
|
T = AI->getAllocatedType();
|
|
uint64_t EltOffset = Offset;
|
|
unsigned Idx = FindElementAndOffset(T, EltOffset);
|
|
|
|
// If this GEP does not move the pointer across elements of the alloca
|
|
// being split, then it does not needs to be rewritten.
|
|
if (Idx == OldIdx)
|
|
return;
|
|
|
|
const Type *i32Ty = Type::getInt32Ty(AI->getContext());
|
|
SmallVector<Value*, 8> NewArgs;
|
|
NewArgs.push_back(Constant::getNullValue(i32Ty));
|
|
while (EltOffset != 0) {
|
|
unsigned EltIdx = FindElementAndOffset(T, EltOffset);
|
|
NewArgs.push_back(ConstantInt::get(i32Ty, EltIdx));
|
|
}
|
|
Instruction *Val = NewElts[Idx];
|
|
if (NewArgs.size() > 1) {
|
|
Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
|
|
NewArgs.end(), "", GEPI);
|
|
Val->takeName(GEPI);
|
|
}
|
|
if (Val->getType() != GEPI->getType())
|
|
Val = new BitCastInst(Val, GEPI->getType(), Val->getNameStr(), GEPI);
|
|
GEPI->replaceAllUsesWith(Val);
|
|
DeadInsts.push_back(GEPI);
|
|
}
|
|
|
|
/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
|
|
/// Rewrite it to copy or set the elements of the scalarized memory.
|
|
void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
|
|
AllocaInst *AI,
|
|
SmallVector<AllocaInst*, 32> &NewElts) {
|
|
// If this is a memcpy/memmove, construct the other pointer as the
|
|
// appropriate type. The "Other" pointer is the pointer that goes to memory
|
|
// that doesn't have anything to do with the alloca that we are promoting. For
|
|
// memset, this Value* stays null.
|
|
Value *OtherPtr = 0;
|
|
LLVMContext &Context = MI->getContext();
|
|
unsigned MemAlignment = MI->getAlignment();
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
|
|
if (Inst == MTI->getRawDest())
|
|
OtherPtr = MTI->getRawSource();
|
|
else {
|
|
assert(Inst == MTI->getRawSource());
|
|
OtherPtr = MTI->getRawDest();
|
|
}
|
|
}
|
|
|
|
// If there is an other pointer, we want to convert it to the same pointer
|
|
// type as AI has, so we can GEP through it safely.
|
|
if (OtherPtr) {
|
|
|
|
// Remove bitcasts and all-zero GEPs from OtherPtr. This is an
|
|
// optimization, but it's also required to detect the corner case where
|
|
// both pointer operands are referencing the same memory, and where
|
|
// OtherPtr may be a bitcast or GEP that currently being rewritten. (This
|
|
// function is only called for mem intrinsics that access the whole
|
|
// aggregate, so non-zero GEPs are not an issue here.)
|
|
while (1) {
|
|
if (BitCastInst *BC = dyn_cast<BitCastInst>(OtherPtr)) {
|
|
OtherPtr = BC->getOperand(0);
|
|
continue;
|
|
}
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(OtherPtr)) {
|
|
// All zero GEPs are effectively bitcasts.
|
|
if (GEP->hasAllZeroIndices()) {
|
|
OtherPtr = GEP->getOperand(0);
|
|
continue;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
// If OtherPtr has already been rewritten, this intrinsic will be dead.
|
|
if (OtherPtr == NewElts[0])
|
|
return;
|
|
|
|
if (ConstantExpr *BCE = dyn_cast<ConstantExpr>(OtherPtr))
|
|
if (BCE->getOpcode() == Instruction::BitCast)
|
|
OtherPtr = BCE->getOperand(0);
|
|
|
|
// If the pointer is not the right type, insert a bitcast to the right
|
|
// type.
|
|
if (OtherPtr->getType() != AI->getType())
|
|
OtherPtr = new BitCastInst(OtherPtr, AI->getType(), OtherPtr->getName(),
|
|
MI);
|
|
}
|
|
|
|
// Process each element of the aggregate.
|
|
Value *TheFn = MI->getOperand(0);
|
|
const Type *BytePtrTy = MI->getRawDest()->getType();
|
|
bool SROADest = MI->getRawDest() == Inst;
|
|
|
|
Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
|
|
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
// If this is a memcpy/memmove, emit a GEP of the other element address.
|
|
Value *OtherElt = 0;
|
|
unsigned OtherEltAlign = MemAlignment;
|
|
|
|
if (OtherPtr == AI) {
|
|
OtherElt = NewElts[i];
|
|
OtherEltAlign = 0;
|
|
} else if (OtherPtr) {
|
|
Value *Idx[2] = { Zero,
|
|
ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
|
|
OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
|
|
OtherPtr->getNameStr()+"."+Twine(i),
|
|
MI);
|
|
uint64_t EltOffset;
|
|
const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
|
|
if (const StructType *ST =
|
|
dyn_cast<StructType>(OtherPtrTy->getElementType())) {
|
|
EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
|
|
} else {
|
|
const Type *EltTy =
|
|
cast<SequentialType>(OtherPtr->getType())->getElementType();
|
|
EltOffset = TD->getTypeAllocSize(EltTy)*i;
|
|
}
|
|
|
|
// The alignment of the other pointer is the guaranteed alignment of the
|
|
// element, which is affected by both the known alignment of the whole
|
|
// mem intrinsic and the alignment of the element. If the alignment of
|
|
// the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
|
|
// known alignment is just 4 bytes.
|
|
OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
|
|
}
|
|
|
|
Value *EltPtr = NewElts[i];
|
|
const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
|
|
|
|
// If we got down to a scalar, insert a load or store as appropriate.
|
|
if (EltTy->isSingleValueType()) {
|
|
if (isa<MemTransferInst>(MI)) {
|
|
if (SROADest) {
|
|
// From Other to Alloca.
|
|
Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
|
|
new StoreInst(Elt, EltPtr, MI);
|
|
} else {
|
|
// From Alloca to Other.
|
|
Value *Elt = new LoadInst(EltPtr, "tmp", MI);
|
|
new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
|
|
}
|
|
continue;
|
|
}
|
|
assert(isa<MemSetInst>(MI));
|
|
|
|
// If the stored element is zero (common case), just store a null
|
|
// constant.
|
|
Constant *StoreVal;
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getOperand(2))) {
|
|
if (CI->isZero()) {
|
|
StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
|
|
} else {
|
|
// If EltTy is a vector type, get the element type.
|
|
const Type *ValTy = EltTy->getScalarType();
|
|
|
|
// Construct an integer with the right value.
|
|
unsigned EltSize = TD->getTypeSizeInBits(ValTy);
|
|
APInt OneVal(EltSize, CI->getZExtValue());
|
|
APInt TotalVal(OneVal);
|
|
// Set each byte.
|
|
for (unsigned i = 0; 8*i < EltSize; ++i) {
|
|
TotalVal = TotalVal.shl(8);
|
|
TotalVal |= OneVal;
|
|
}
|
|
|
|
// Convert the integer value to the appropriate type.
|
|
StoreVal = ConstantInt::get(Context, TotalVal);
|
|
if (isa<PointerType>(ValTy))
|
|
StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
|
|
else if (ValTy->isFloatingPoint())
|
|
StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
|
|
assert(StoreVal->getType() == ValTy && "Type mismatch!");
|
|
|
|
// If the requested value was a vector constant, create it.
|
|
if (EltTy != ValTy) {
|
|
unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
|
|
SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
|
|
StoreVal = ConstantVector::get(&Elts[0], NumElts);
|
|
}
|
|
}
|
|
new StoreInst(StoreVal, EltPtr, MI);
|
|
continue;
|
|
}
|
|
// Otherwise, if we're storing a byte variable, use a memset call for
|
|
// this element.
|
|
}
|
|
|
|
// Cast the element pointer to BytePtrTy.
|
|
if (EltPtr->getType() != BytePtrTy)
|
|
EltPtr = new BitCastInst(EltPtr, BytePtrTy, EltPtr->getNameStr(), MI);
|
|
|
|
// Cast the other pointer (if we have one) to BytePtrTy.
|
|
if (OtherElt && OtherElt->getType() != BytePtrTy)
|
|
OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
|
|
MI);
|
|
|
|
unsigned EltSize = TD->getTypeAllocSize(EltTy);
|
|
|
|
// Finally, insert the meminst for this element.
|
|
if (isa<MemTransferInst>(MI)) {
|
|
Value *Ops[] = {
|
|
SROADest ? EltPtr : OtherElt, // Dest ptr
|
|
SROADest ? OtherElt : EltPtr, // Src ptr
|
|
ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
|
|
// Align
|
|
ConstantInt::get(Type::getInt32Ty(MI->getContext()), OtherEltAlign)
|
|
};
|
|
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
|
|
} else {
|
|
assert(isa<MemSetInst>(MI));
|
|
Value *Ops[] = {
|
|
EltPtr, MI->getOperand(2), // Dest, Value,
|
|
ConstantInt::get(MI->getOperand(3)->getType(), EltSize), // Size
|
|
Zero // Align
|
|
};
|
|
CallInst::Create(TheFn, Ops, Ops + 4, "", MI);
|
|
}
|
|
}
|
|
DeadInsts.push_back(MI);
|
|
}
|
|
|
|
/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
|
|
/// overwrites the entire allocation. Extract out the pieces of the stored
|
|
/// integer and store them individually.
|
|
void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
|
|
SmallVector<AllocaInst*, 32> &NewElts){
|
|
// Extract each element out of the integer according to its structure offset
|
|
// and store the element value to the individual alloca.
|
|
Value *SrcVal = SI->getOperand(0);
|
|
const Type *AllocaEltTy = AI->getAllocatedType();
|
|
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
|
|
|
|
// Handle tail padding by extending the operand
|
|
if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
|
|
SrcVal = new ZExtInst(SrcVal,
|
|
IntegerType::get(SI->getContext(), AllocaSizeBits),
|
|
"", SI);
|
|
|
|
DEBUG(errs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
|
|
<< '\n');
|
|
|
|
// There are two forms here: AI could be an array or struct. Both cases
|
|
// have different ways to compute the element offset.
|
|
if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
|
|
const StructLayout *Layout = TD->getStructLayout(EltSTy);
|
|
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
// Get the number of bits to shift SrcVal to get the value.
|
|
const Type *FieldTy = EltSTy->getElementType(i);
|
|
uint64_t Shift = Layout->getElementOffsetInBits(i);
|
|
|
|
if (TD->isBigEndian())
|
|
Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
|
|
|
|
Value *EltVal = SrcVal;
|
|
if (Shift) {
|
|
Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
|
|
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
|
|
"sroa.store.elt", SI);
|
|
}
|
|
|
|
// Truncate down to an integer of the right size.
|
|
uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
|
|
|
|
// Ignore zero sized fields like {}, they obviously contain no data.
|
|
if (FieldSizeBits == 0) continue;
|
|
|
|
if (FieldSizeBits != AllocaSizeBits)
|
|
EltVal = new TruncInst(EltVal,
|
|
IntegerType::get(SI->getContext(), FieldSizeBits),
|
|
"", SI);
|
|
Value *DestField = NewElts[i];
|
|
if (EltVal->getType() == FieldTy) {
|
|
// Storing to an integer field of this size, just do it.
|
|
} else if (FieldTy->isFloatingPoint() || isa<VectorType>(FieldTy)) {
|
|
// Bitcast to the right element type (for fp/vector values).
|
|
EltVal = new BitCastInst(EltVal, FieldTy, "", SI);
|
|
} else {
|
|
// Otherwise, bitcast the dest pointer (for aggregates).
|
|
DestField = new BitCastInst(DestField,
|
|
PointerType::getUnqual(EltVal->getType()),
|
|
"", SI);
|
|
}
|
|
new StoreInst(EltVal, DestField, SI);
|
|
}
|
|
|
|
} else {
|
|
const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
|
|
const Type *ArrayEltTy = ATy->getElementType();
|
|
uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
|
|
uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
|
|
|
|
uint64_t Shift;
|
|
|
|
if (TD->isBigEndian())
|
|
Shift = AllocaSizeBits-ElementOffset;
|
|
else
|
|
Shift = 0;
|
|
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
// Ignore zero sized fields like {}, they obviously contain no data.
|
|
if (ElementSizeBits == 0) continue;
|
|
|
|
Value *EltVal = SrcVal;
|
|
if (Shift) {
|
|
Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
|
|
EltVal = BinaryOperator::CreateLShr(EltVal, ShiftVal,
|
|
"sroa.store.elt", SI);
|
|
}
|
|
|
|
// Truncate down to an integer of the right size.
|
|
if (ElementSizeBits != AllocaSizeBits)
|
|
EltVal = new TruncInst(EltVal,
|
|
IntegerType::get(SI->getContext(),
|
|
ElementSizeBits),"",SI);
|
|
Value *DestField = NewElts[i];
|
|
if (EltVal->getType() == ArrayEltTy) {
|
|
// Storing to an integer field of this size, just do it.
|
|
} else if (ArrayEltTy->isFloatingPoint() || isa<VectorType>(ArrayEltTy)) {
|
|
// Bitcast to the right element type (for fp/vector values).
|
|
EltVal = new BitCastInst(EltVal, ArrayEltTy, "", SI);
|
|
} else {
|
|
// Otherwise, bitcast the dest pointer (for aggregates).
|
|
DestField = new BitCastInst(DestField,
|
|
PointerType::getUnqual(EltVal->getType()),
|
|
"", SI);
|
|
}
|
|
new StoreInst(EltVal, DestField, SI);
|
|
|
|
if (TD->isBigEndian())
|
|
Shift -= ElementOffset;
|
|
else
|
|
Shift += ElementOffset;
|
|
}
|
|
}
|
|
|
|
DeadInsts.push_back(SI);
|
|
}
|
|
|
|
/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
|
|
/// an integer. Load the individual pieces to form the aggregate value.
|
|
void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
|
|
SmallVector<AllocaInst*, 32> &NewElts) {
|
|
// Extract each element out of the NewElts according to its structure offset
|
|
// and form the result value.
|
|
const Type *AllocaEltTy = AI->getAllocatedType();
|
|
uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
|
|
|
|
DEBUG(errs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
|
|
<< '\n');
|
|
|
|
// There are two forms here: AI could be an array or struct. Both cases
|
|
// have different ways to compute the element offset.
|
|
const StructLayout *Layout = 0;
|
|
uint64_t ArrayEltBitOffset = 0;
|
|
if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
|
|
Layout = TD->getStructLayout(EltSTy);
|
|
} else {
|
|
const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
|
|
ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
|
|
}
|
|
|
|
Value *ResultVal =
|
|
Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
|
|
|
|
for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
|
|
// Load the value from the alloca. If the NewElt is an aggregate, cast
|
|
// the pointer to an integer of the same size before doing the load.
|
|
Value *SrcField = NewElts[i];
|
|
const Type *FieldTy =
|
|
cast<PointerType>(SrcField->getType())->getElementType();
|
|
uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
|
|
|
|
// Ignore zero sized fields like {}, they obviously contain no data.
|
|
if (FieldSizeBits == 0) continue;
|
|
|
|
const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
|
|
FieldSizeBits);
|
|
if (!isa<IntegerType>(FieldTy) && !FieldTy->isFloatingPoint() &&
|
|
!isa<VectorType>(FieldTy))
|
|
SrcField = new BitCastInst(SrcField,
|
|
PointerType::getUnqual(FieldIntTy),
|
|
"", LI);
|
|
SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
|
|
|
|
// If SrcField is a fp or vector of the right size but that isn't an
|
|
// integer type, bitcast to an integer so we can shift it.
|
|
if (SrcField->getType() != FieldIntTy)
|
|
SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
|
|
|
|
// Zero extend the field to be the same size as the final alloca so that
|
|
// we can shift and insert it.
|
|
if (SrcField->getType() != ResultVal->getType())
|
|
SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
|
|
|
|
// Determine the number of bits to shift SrcField.
|
|
uint64_t Shift;
|
|
if (Layout) // Struct case.
|
|
Shift = Layout->getElementOffsetInBits(i);
|
|
else // Array case.
|
|
Shift = i*ArrayEltBitOffset;
|
|
|
|
if (TD->isBigEndian())
|
|
Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
|
|
|
|
if (Shift) {
|
|
Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
|
|
SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
|
|
}
|
|
|
|
ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
|
|
}
|
|
|
|
// Handle tail padding by truncating the result
|
|
if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
|
|
ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
|
|
|
|
LI->replaceAllUsesWith(ResultVal);
|
|
DeadInsts.push_back(LI);
|
|
}
|
|
|
|
/// HasPadding - Return true if the specified type has any structure or
|
|
/// alignment padding, false otherwise.
|
|
static bool HasPadding(const Type *Ty, const TargetData &TD) {
|
|
if (const StructType *STy = dyn_cast<StructType>(Ty)) {
|
|
const StructLayout *SL = TD.getStructLayout(STy);
|
|
unsigned PrevFieldBitOffset = 0;
|
|
for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
|
|
unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
|
|
|
|
// Padding in sub-elements?
|
|
if (HasPadding(STy->getElementType(i), TD))
|
|
return true;
|
|
|
|
// Check to see if there is any padding between this element and the
|
|
// previous one.
|
|
if (i) {
|
|
unsigned PrevFieldEnd =
|
|
PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
|
|
if (PrevFieldEnd < FieldBitOffset)
|
|
return true;
|
|
}
|
|
|
|
PrevFieldBitOffset = FieldBitOffset;
|
|
}
|
|
|
|
// Check for tail padding.
|
|
if (unsigned EltCount = STy->getNumElements()) {
|
|
unsigned PrevFieldEnd = PrevFieldBitOffset +
|
|
TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
|
|
if (PrevFieldEnd < SL->getSizeInBits())
|
|
return true;
|
|
}
|
|
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
|
|
return HasPadding(ATy->getElementType(), TD);
|
|
} else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
|
return HasPadding(VTy->getElementType(), TD);
|
|
}
|
|
return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
|
|
}
|
|
|
|
/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
|
|
/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
|
|
/// or 1 if safe after canonicalization has been performed.
|
|
int SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
|
|
// Loop over the use list of the alloca. We can only transform it if all of
|
|
// the users are safe to transform.
|
|
AllocaInfo Info;
|
|
|
|
isSafeForScalarRepl(AI, AI, 0, 0, Info);
|
|
if (Info.isUnsafe) {
|
|
DEBUG(errs() << "Cannot transform: " << *AI << '\n');
|
|
return 0;
|
|
}
|
|
|
|
// Okay, we know all the users are promotable. If the aggregate is a memcpy
|
|
// source and destination, we have to be careful. In particular, the memcpy
|
|
// could be moving around elements that live in structure padding of the LLVM
|
|
// types, but may actually be used. In these cases, we refuse to promote the
|
|
// struct.
|
|
if (Info.isMemCpySrc && Info.isMemCpyDst &&
|
|
HasPadding(AI->getAllocatedType(), *TD))
|
|
return 0;
|
|
|
|
// If we require cleanup, return 1, otherwise return 3.
|
|
return Info.needsCleanup ? 1 : 3;
|
|
}
|
|
|
|
/// CleanupGEP - GEP is used by an Alloca, which can be promoted after the GEP
|
|
/// is canonicalized here.
|
|
void SROA::CleanupGEP(GetElementPtrInst *GEPI) {
|
|
gep_type_iterator I = gep_type_begin(GEPI);
|
|
++I;
|
|
|
|
const ArrayType *AT = dyn_cast<ArrayType>(*I);
|
|
if (!AT)
|
|
return;
|
|
|
|
uint64_t NumElements = AT->getNumElements();
|
|
|
|
if (isa<ConstantInt>(I.getOperand()))
|
|
return;
|
|
|
|
if (NumElements == 1) {
|
|
GEPI->setOperand(2,
|
|
Constant::getNullValue(Type::getInt32Ty(GEPI->getContext())));
|
|
return;
|
|
}
|
|
|
|
assert(NumElements == 2 && "Unhandled case!");
|
|
// All users of the GEP must be loads. At each use of the GEP, insert
|
|
// two loads of the appropriate indexed GEP and select between them.
|
|
Value *IsOne = new ICmpInst(GEPI, ICmpInst::ICMP_NE, I.getOperand(),
|
|
Constant::getNullValue(I.getOperand()->getType()),
|
|
"isone");
|
|
// Insert the new GEP instructions, which are properly indexed.
|
|
SmallVector<Value*, 8> Indices(GEPI->op_begin()+1, GEPI->op_end());
|
|
Indices[1] = Constant::getNullValue(Type::getInt32Ty(GEPI->getContext()));
|
|
Value *ZeroIdx = GetElementPtrInst::CreateInBounds(GEPI->getOperand(0),
|
|
Indices.begin(),
|
|
Indices.end(),
|
|
GEPI->getName()+".0",GEPI);
|
|
Indices[1] = ConstantInt::get(Type::getInt32Ty(GEPI->getContext()), 1);
|
|
Value *OneIdx = GetElementPtrInst::CreateInBounds(GEPI->getOperand(0),
|
|
Indices.begin(),
|
|
Indices.end(),
|
|
GEPI->getName()+".1", GEPI);
|
|
// Replace all loads of the variable index GEP with loads from both
|
|
// indexes and a select.
|
|
while (!GEPI->use_empty()) {
|
|
LoadInst *LI = cast<LoadInst>(GEPI->use_back());
|
|
Value *Zero = new LoadInst(ZeroIdx, LI->getName()+".0", LI);
|
|
Value *One = new LoadInst(OneIdx , LI->getName()+".1", LI);
|
|
Value *R = SelectInst::Create(IsOne, One, Zero, LI->getName(), LI);
|
|
LI->replaceAllUsesWith(R);
|
|
LI->eraseFromParent();
|
|
}
|
|
}
|
|
|
|
/// CleanupAllocaUsers - If SROA reported that it can promote the specified
|
|
/// allocation, but only if cleaned up, perform the cleanups required.
|
|
void SROA::CleanupAllocaUsers(Value *V) {
|
|
// At this point, we know that the end result will be SROA'd and promoted, so
|
|
// we can insert ugly code if required so long as sroa+mem2reg will clean it
|
|
// up.
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
|
|
UI != E; ) {
|
|
User *U = *UI++;
|
|
if (isa<BitCastInst>(U)) {
|
|
CleanupAllocaUsers(U);
|
|
} else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
|
|
CleanupGEP(GEPI);
|
|
CleanupAllocaUsers(GEPI);
|
|
if (GEPI->use_empty()) GEPI->eraseFromParent();
|
|
} else {
|
|
Instruction *I = cast<Instruction>(U);
|
|
SmallVector<DbgInfoIntrinsic *, 2> DbgInUses;
|
|
if (!isa<StoreInst>(I) && OnlyUsedByDbgInfoIntrinsics(I, &DbgInUses)) {
|
|
// Safe to remove debug info uses.
|
|
while (!DbgInUses.empty()) {
|
|
DbgInfoIntrinsic *DI = DbgInUses.back(); DbgInUses.pop_back();
|
|
DI->eraseFromParent();
|
|
}
|
|
I->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// MergeInType - Add the 'In' type to the accumulated type (Accum) so far at
|
|
/// the offset specified by Offset (which is specified in bytes).
|
|
///
|
|
/// There are two cases we handle here:
|
|
/// 1) A union of vector types of the same size and potentially its elements.
|
|
/// Here we turn element accesses into insert/extract element operations.
|
|
/// This promotes a <4 x float> with a store of float to the third element
|
|
/// into a <4 x float> that uses insert element.
|
|
/// 2) A fully general blob of memory, which we turn into some (potentially
|
|
/// large) integer type with extract and insert operations where the loads
|
|
/// and stores would mutate the memory.
|
|
static void MergeInType(const Type *In, uint64_t Offset, const Type *&VecTy,
|
|
unsigned AllocaSize, const TargetData &TD,
|
|
LLVMContext &Context) {
|
|
// If this could be contributing to a vector, analyze it.
|
|
if (VecTy != Type::getVoidTy(Context)) { // either null or a vector type.
|
|
|
|
// If the In type is a vector that is the same size as the alloca, see if it
|
|
// matches the existing VecTy.
|
|
if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
|
|
if (VInTy->getBitWidth()/8 == AllocaSize && Offset == 0) {
|
|
// If we're storing/loading a vector of the right size, allow it as a
|
|
// vector. If this the first vector we see, remember the type so that
|
|
// we know the element size.
|
|
if (VecTy == 0)
|
|
VecTy = VInTy;
|
|
return;
|
|
}
|
|
} else if (In->isFloatTy() || In->isDoubleTy() ||
|
|
(isa<IntegerType>(In) && In->getPrimitiveSizeInBits() >= 8 &&
|
|
isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
|
|
// If we're accessing something that could be an element of a vector, see
|
|
// if the implied vector agrees with what we already have and if Offset is
|
|
// compatible with it.
|
|
unsigned EltSize = In->getPrimitiveSizeInBits()/8;
|
|
if (Offset % EltSize == 0 &&
|
|
AllocaSize % EltSize == 0 &&
|
|
(VecTy == 0 ||
|
|
cast<VectorType>(VecTy)->getElementType()
|
|
->getPrimitiveSizeInBits()/8 == EltSize)) {
|
|
if (VecTy == 0)
|
|
VecTy = VectorType::get(In, AllocaSize/EltSize);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, we have a case that we can't handle with an optimized vector
|
|
// form. We can still turn this into a large integer.
|
|
VecTy = Type::getVoidTy(Context);
|
|
}
|
|
|
|
/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
|
|
/// its accesses to a single vector type, return true and set VecTy to
|
|
/// the new type. If we could convert the alloca into a single promotable
|
|
/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
|
|
/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
|
|
/// is the current offset from the base of the alloca being analyzed.
|
|
///
|
|
/// If we see at least one access to the value that is as a vector type, set the
|
|
/// SawVec flag.
|
|
bool SROA::CanConvertToScalar(Value *V, bool &IsNotTrivial, const Type *&VecTy,
|
|
bool &SawVec, uint64_t Offset,
|
|
unsigned AllocaSize) {
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
|
// Don't break volatile loads.
|
|
if (LI->isVolatile())
|
|
return false;
|
|
MergeInType(LI->getType(), Offset, VecTy,
|
|
AllocaSize, *TD, V->getContext());
|
|
SawVec |= isa<VectorType>(LI->getType());
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
|
// Storing the pointer, not into the value?
|
|
if (SI->getOperand(0) == V || SI->isVolatile()) return 0;
|
|
MergeInType(SI->getOperand(0)->getType(), Offset,
|
|
VecTy, AllocaSize, *TD, V->getContext());
|
|
SawVec |= isa<VectorType>(SI->getOperand(0)->getType());
|
|
continue;
|
|
}
|
|
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
|
|
if (!CanConvertToScalar(BCI, IsNotTrivial, VecTy, SawVec, Offset,
|
|
AllocaSize))
|
|
return false;
|
|
IsNotTrivial = true;
|
|
continue;
|
|
}
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
|
|
// If this is a GEP with a variable indices, we can't handle it.
|
|
if (!GEP->hasAllConstantIndices())
|
|
return false;
|
|
|
|
// Compute the offset that this GEP adds to the pointer.
|
|
SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
|
|
uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
|
|
&Indices[0], Indices.size());
|
|
// See if all uses can be converted.
|
|
if (!CanConvertToScalar(GEP, IsNotTrivial, VecTy, SawVec,Offset+GEPOffset,
|
|
AllocaSize))
|
|
return false;
|
|
IsNotTrivial = true;
|
|
continue;
|
|
}
|
|
|
|
// If this is a constant sized memset of a constant value (e.g. 0) we can
|
|
// handle it.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
|
|
// Store of constant value and constant size.
|
|
if (isa<ConstantInt>(MSI->getValue()) &&
|
|
isa<ConstantInt>(MSI->getLength())) {
|
|
IsNotTrivial = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// If this is a memcpy or memmove into or out of the whole allocation, we
|
|
// can handle it like a load or store of the scalar type.
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
|
|
if (ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength()))
|
|
if (Len->getZExtValue() == AllocaSize && Offset == 0) {
|
|
IsNotTrivial = true;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Ignore dbg intrinsic.
|
|
if (isa<DbgInfoIntrinsic>(User))
|
|
continue;
|
|
|
|
// Otherwise, we cannot handle this!
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
|
|
/// directly. This happens when we are converting an "integer union" to a
|
|
/// single integer scalar, or when we are converting a "vector union" to a
|
|
/// vector with insert/extractelement instructions.
|
|
///
|
|
/// Offset is an offset from the original alloca, in bits that need to be
|
|
/// shifted to the right. By the end of this, there should be no uses of Ptr.
|
|
void SROA::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset) {
|
|
while (!Ptr->use_empty()) {
|
|
Instruction *User = cast<Instruction>(Ptr->use_back());
|
|
|
|
if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
|
|
ConvertUsesToScalar(CI, NewAI, Offset);
|
|
CI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
|
|
// Compute the offset that this GEP adds to the pointer.
|
|
SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
|
|
uint64_t GEPOffset = TD->getIndexedOffset(GEP->getPointerOperandType(),
|
|
&Indices[0], Indices.size());
|
|
ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
|
|
GEP->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
IRBuilder<> Builder(User->getParent(), User);
|
|
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
|
|
// The load is a bit extract from NewAI shifted right by Offset bits.
|
|
Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
|
|
Value *NewLoadVal
|
|
= ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
|
|
LI->replaceAllUsesWith(NewLoadVal);
|
|
LI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
|
|
assert(SI->getOperand(0) != Ptr && "Consistency error!");
|
|
// FIXME: Remove once builder has Twine API.
|
|
Value *Old = Builder.CreateLoad(NewAI,
|
|
(NewAI->getName()+".in").str().c_str());
|
|
Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
|
|
Builder);
|
|
Builder.CreateStore(New, NewAI);
|
|
SI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
// If this is a constant sized memset of a constant value (e.g. 0) we can
|
|
// transform it into a store of the expanded constant value.
|
|
if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
|
|
assert(MSI->getRawDest() == Ptr && "Consistency error!");
|
|
unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
|
|
if (NumBytes != 0) {
|
|
unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
|
|
|
|
// Compute the value replicated the right number of times.
|
|
APInt APVal(NumBytes*8, Val);
|
|
|
|
// Splat the value if non-zero.
|
|
if (Val)
|
|
for (unsigned i = 1; i != NumBytes; ++i)
|
|
APVal |= APVal << 8;
|
|
|
|
// FIXME: Remove once builder has Twine API.
|
|
Value *Old = Builder.CreateLoad(NewAI,
|
|
(NewAI->getName()+".in").str().c_str());
|
|
Value *New = ConvertScalar_InsertValue(
|
|
ConstantInt::get(User->getContext(), APVal),
|
|
Old, Offset, Builder);
|
|
Builder.CreateStore(New, NewAI);
|
|
}
|
|
MSI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
// If this is a memcpy or memmove into or out of the whole allocation, we
|
|
// can handle it like a load or store of the scalar type.
|
|
if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
|
|
assert(Offset == 0 && "must be store to start of alloca");
|
|
|
|
// If the source and destination are both to the same alloca, then this is
|
|
// a noop copy-to-self, just delete it. Otherwise, emit a load and store
|
|
// as appropriate.
|
|
AllocaInst *OrigAI = cast<AllocaInst>(Ptr->getUnderlyingObject());
|
|
|
|
if (MTI->getSource()->getUnderlyingObject() != OrigAI) {
|
|
// Dest must be OrigAI, change this to be a load from the original
|
|
// pointer (bitcasted), then a store to our new alloca.
|
|
assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
|
|
Value *SrcPtr = MTI->getSource();
|
|
SrcPtr = Builder.CreateBitCast(SrcPtr, NewAI->getType());
|
|
|
|
LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
|
|
SrcVal->setAlignment(MTI->getAlignment());
|
|
Builder.CreateStore(SrcVal, NewAI);
|
|
} else if (MTI->getDest()->getUnderlyingObject() != OrigAI) {
|
|
// Src must be OrigAI, change this to be a load from NewAI then a store
|
|
// through the original dest pointer (bitcasted).
|
|
assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
|
|
LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
|
|
|
|
Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), NewAI->getType());
|
|
StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
|
|
NewStore->setAlignment(MTI->getAlignment());
|
|
} else {
|
|
// Noop transfer. Src == Dst
|
|
}
|
|
|
|
|
|
MTI->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
// If user is a dbg info intrinsic then it is safe to remove it.
|
|
if (isa<DbgInfoIntrinsic>(User)) {
|
|
User->eraseFromParent();
|
|
continue;
|
|
}
|
|
|
|
llvm_unreachable("Unsupported operation!");
|
|
}
|
|
}
|
|
|
|
/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
|
|
/// or vector value FromVal, extracting the bits from the offset specified by
|
|
/// Offset. This returns the value, which is of type ToType.
|
|
///
|
|
/// This happens when we are converting an "integer union" to a single
|
|
/// integer scalar, or when we are converting a "vector union" to a vector with
|
|
/// insert/extractelement instructions.
|
|
///
|
|
/// Offset is an offset from the original alloca, in bits that need to be
|
|
/// shifted to the right.
|
|
Value *SROA::ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
|
|
uint64_t Offset, IRBuilder<> &Builder) {
|
|
// If the load is of the whole new alloca, no conversion is needed.
|
|
if (FromVal->getType() == ToType && Offset == 0)
|
|
return FromVal;
|
|
|
|
// If the result alloca is a vector type, this is either an element
|
|
// access or a bitcast to another vector type of the same size.
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
|
|
if (isa<VectorType>(ToType))
|
|
return Builder.CreateBitCast(FromVal, ToType, "tmp");
|
|
|
|
// Otherwise it must be an element access.
|
|
unsigned Elt = 0;
|
|
if (Offset) {
|
|
unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
|
|
Elt = Offset/EltSize;
|
|
assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
|
|
}
|
|
// Return the element extracted out of it.
|
|
Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
|
|
Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
|
|
if (V->getType() != ToType)
|
|
V = Builder.CreateBitCast(V, ToType, "tmp");
|
|
return V;
|
|
}
|
|
|
|
// If ToType is a first class aggregate, extract out each of the pieces and
|
|
// use insertvalue's to form the FCA.
|
|
if (const StructType *ST = dyn_cast<StructType>(ToType)) {
|
|
const StructLayout &Layout = *TD->getStructLayout(ST);
|
|
Value *Res = UndefValue::get(ST);
|
|
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
|
|
Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
|
|
Offset+Layout.getElementOffsetInBits(i),
|
|
Builder);
|
|
Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
|
|
uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
|
|
Value *Res = UndefValue::get(AT);
|
|
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
|
|
Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
|
|
Offset+i*EltSize, Builder);
|
|
Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
|
|
}
|
|
return Res;
|
|
}
|
|
|
|
// Otherwise, this must be a union that was converted to an integer value.
|
|
const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
|
|
|
|
// If this is a big-endian system and the load is narrower than the
|
|
// full alloca type, we need to do a shift to get the right bits.
|
|
int ShAmt = 0;
|
|
if (TD->isBigEndian()) {
|
|
// On big-endian machines, the lowest bit is stored at the bit offset
|
|
// from the pointer given by getTypeStoreSizeInBits. This matters for
|
|
// integers with a bitwidth that is not a multiple of 8.
|
|
ShAmt = TD->getTypeStoreSizeInBits(NTy) -
|
|
TD->getTypeStoreSizeInBits(ToType) - Offset;
|
|
} else {
|
|
ShAmt = Offset;
|
|
}
|
|
|
|
// Note: we support negative bitwidths (with shl) which are not defined.
|
|
// We do this to support (f.e.) loads off the end of a structure where
|
|
// only some bits are used.
|
|
if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
|
|
FromVal = Builder.CreateLShr(FromVal,
|
|
ConstantInt::get(FromVal->getType(),
|
|
ShAmt), "tmp");
|
|
else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
|
|
FromVal = Builder.CreateShl(FromVal,
|
|
ConstantInt::get(FromVal->getType(),
|
|
-ShAmt), "tmp");
|
|
|
|
// Finally, unconditionally truncate the integer to the right width.
|
|
unsigned LIBitWidth = TD->getTypeSizeInBits(ToType);
|
|
if (LIBitWidth < NTy->getBitWidth())
|
|
FromVal =
|
|
Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
|
|
LIBitWidth), "tmp");
|
|
else if (LIBitWidth > NTy->getBitWidth())
|
|
FromVal =
|
|
Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
|
|
LIBitWidth), "tmp");
|
|
|
|
// If the result is an integer, this is a trunc or bitcast.
|
|
if (isa<IntegerType>(ToType)) {
|
|
// Should be done.
|
|
} else if (ToType->isFloatingPoint() || isa<VectorType>(ToType)) {
|
|
// Just do a bitcast, we know the sizes match up.
|
|
FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
|
|
} else {
|
|
// Otherwise must be a pointer.
|
|
FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
|
|
}
|
|
assert(FromVal->getType() == ToType && "Didn't convert right?");
|
|
return FromVal;
|
|
}
|
|
|
|
/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
|
|
/// or vector value "Old" at the offset specified by Offset.
|
|
///
|
|
/// This happens when we are converting an "integer union" to a
|
|
/// single integer scalar, or when we are converting a "vector union" to a
|
|
/// vector with insert/extractelement instructions.
|
|
///
|
|
/// Offset is an offset from the original alloca, in bits that need to be
|
|
/// shifted to the right.
|
|
Value *SROA::ConvertScalar_InsertValue(Value *SV, Value *Old,
|
|
uint64_t Offset, IRBuilder<> &Builder) {
|
|
|
|
// Convert the stored type to the actual type, shift it left to insert
|
|
// then 'or' into place.
|
|
const Type *AllocaType = Old->getType();
|
|
LLVMContext &Context = Old->getContext();
|
|
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
|
|
uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
|
|
uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
|
|
|
|
// Changing the whole vector with memset or with an access of a different
|
|
// vector type?
|
|
if (ValSize == VecSize)
|
|
return Builder.CreateBitCast(SV, AllocaType, "tmp");
|
|
|
|
uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
|
|
|
|
// Must be an element insertion.
|
|
unsigned Elt = Offset/EltSize;
|
|
|
|
if (SV->getType() != VTy->getElementType())
|
|
SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
|
|
|
|
SV = Builder.CreateInsertElement(Old, SV,
|
|
ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
|
|
"tmp");
|
|
return SV;
|
|
}
|
|
|
|
// If SV is a first-class aggregate value, insert each value recursively.
|
|
if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
|
|
const StructLayout &Layout = *TD->getStructLayout(ST);
|
|
for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
|
|
Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
|
|
Old = ConvertScalar_InsertValue(Elt, Old,
|
|
Offset+Layout.getElementOffsetInBits(i),
|
|
Builder);
|
|
}
|
|
return Old;
|
|
}
|
|
|
|
if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
|
|
uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
|
|
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
|
|
Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
|
|
Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
|
|
}
|
|
return Old;
|
|
}
|
|
|
|
// If SV is a float, convert it to the appropriate integer type.
|
|
// If it is a pointer, do the same.
|
|
unsigned SrcWidth = TD->getTypeSizeInBits(SV->getType());
|
|
unsigned DestWidth = TD->getTypeSizeInBits(AllocaType);
|
|
unsigned SrcStoreWidth = TD->getTypeStoreSizeInBits(SV->getType());
|
|
unsigned DestStoreWidth = TD->getTypeStoreSizeInBits(AllocaType);
|
|
if (SV->getType()->isFloatingPoint() || isa<VectorType>(SV->getType()))
|
|
SV = Builder.CreateBitCast(SV,
|
|
IntegerType::get(SV->getContext(),SrcWidth), "tmp");
|
|
else if (isa<PointerType>(SV->getType()))
|
|
SV = Builder.CreatePtrToInt(SV, TD->getIntPtrType(SV->getContext()), "tmp");
|
|
|
|
// Zero extend or truncate the value if needed.
|
|
if (SV->getType() != AllocaType) {
|
|
if (SV->getType()->getPrimitiveSizeInBits() <
|
|
AllocaType->getPrimitiveSizeInBits())
|
|
SV = Builder.CreateZExt(SV, AllocaType, "tmp");
|
|
else {
|
|
// Truncation may be needed if storing more than the alloca can hold
|
|
// (undefined behavior).
|
|
SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
|
|
SrcWidth = DestWidth;
|
|
SrcStoreWidth = DestStoreWidth;
|
|
}
|
|
}
|
|
|
|
// If this is a big-endian system and the store is narrower than the
|
|
// full alloca type, we need to do a shift to get the right bits.
|
|
int ShAmt = 0;
|
|
if (TD->isBigEndian()) {
|
|
// On big-endian machines, the lowest bit is stored at the bit offset
|
|
// from the pointer given by getTypeStoreSizeInBits. This matters for
|
|
// integers with a bitwidth that is not a multiple of 8.
|
|
ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
|
|
} else {
|
|
ShAmt = Offset;
|
|
}
|
|
|
|
// Note: we support negative bitwidths (with shr) which are not defined.
|
|
// We do this to support (f.e.) stores off the end of a structure where
|
|
// only some bits in the structure are set.
|
|
APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
|
|
if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
|
|
SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
|
|
ShAmt), "tmp");
|
|
Mask <<= ShAmt;
|
|
} else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
|
|
SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
|
|
-ShAmt), "tmp");
|
|
Mask = Mask.lshr(-ShAmt);
|
|
}
|
|
|
|
// Mask out the bits we are about to insert from the old value, and or
|
|
// in the new bits.
|
|
if (SrcWidth != DestWidth) {
|
|
assert(DestWidth > SrcWidth);
|
|
Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
|
|
SV = Builder.CreateOr(Old, SV, "ins");
|
|
}
|
|
return SV;
|
|
}
|
|
|
|
|
|
|
|
/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
|
|
/// some part of a constant global variable. This intentionally only accepts
|
|
/// constant expressions because we don't can't rewrite arbitrary instructions.
|
|
static bool PointsToConstantGlobal(Value *V) {
|
|
if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return GV->isConstant();
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
|
|
if (CE->getOpcode() == Instruction::BitCast ||
|
|
CE->getOpcode() == Instruction::GetElementPtr)
|
|
return PointsToConstantGlobal(CE->getOperand(0));
|
|
return false;
|
|
}
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
|
|
/// pointer to an alloca. Ignore any reads of the pointer, return false if we
|
|
/// see any stores or other unknown uses. If we see pointer arithmetic, keep
|
|
/// track of whether it moves the pointer (with isOffset) but otherwise traverse
|
|
/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
|
|
/// the alloca, and if the source pointer is a pointer to a constant global, we
|
|
/// can optimize this.
|
|
static bool isOnlyCopiedFromConstantGlobal(Value *V, Instruction *&TheCopy,
|
|
bool isOffset) {
|
|
for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
|
|
if (LoadInst *LI = dyn_cast<LoadInst>(*UI))
|
|
// Ignore non-volatile loads, they are always ok.
|
|
if (!LI->isVolatile())
|
|
continue;
|
|
|
|
if (BitCastInst *BCI = dyn_cast<BitCastInst>(*UI)) {
|
|
// If uses of the bitcast are ok, we are ok.
|
|
if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
|
|
return false;
|
|
continue;
|
|
}
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(*UI)) {
|
|
// If the GEP has all zero indices, it doesn't offset the pointer. If it
|
|
// doesn't, it does.
|
|
if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
|
|
isOffset || !GEP->hasAllZeroIndices()))
|
|
return false;
|
|
continue;
|
|
}
|
|
|
|
// If this is isn't our memcpy/memmove, reject it as something we can't
|
|
// handle.
|
|
if (!isa<MemTransferInst>(*UI))
|
|
return false;
|
|
|
|
// If we already have seen a copy, reject the second one.
|
|
if (TheCopy) return false;
|
|
|
|
// If the pointer has been offset from the start of the alloca, we can't
|
|
// safely handle this.
|
|
if (isOffset) return false;
|
|
|
|
// If the memintrinsic isn't using the alloca as the dest, reject it.
|
|
if (UI.getOperandNo() != 1) return false;
|
|
|
|
MemIntrinsic *MI = cast<MemIntrinsic>(*UI);
|
|
|
|
// If the source of the memcpy/move is not a constant global, reject it.
|
|
if (!PointsToConstantGlobal(MI->getOperand(2)))
|
|
return false;
|
|
|
|
// Otherwise, the transform is safe. Remember the copy instruction.
|
|
TheCopy = MI;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
|
|
/// modified by a copy from a constant global. If we can prove this, we can
|
|
/// replace any uses of the alloca with uses of the global directly.
|
|
Instruction *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
|
|
Instruction *TheCopy = 0;
|
|
if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
|
|
return TheCopy;
|
|
return 0;
|
|
}
|