llvm-6502/include/llvm/CodeGen/LiveIntervalAnalysis.h
Jakob Stoklund Olesen 1b2932024f Remove trailing whitespace.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@110944 91177308-0d34-0410-b5e6-96231b3b80d8
2010-08-12 20:01:23 +00:00

457 lines
19 KiB
C++

//===-- LiveIntervalAnalysis.h - Live Interval Analysis ---------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass. Given some numbering of
// each the machine instructions (in this implemention depth-first order) an
// interval [i, j) is said to be a live interval for register v if there is no
// instruction with number j' > j such that v is live at j' and there is no
// instruction with number i' < i such that v is live at i'. In this
// implementation intervals can have holes, i.e. an interval might look like
// [1,20), [50,65), [1000,1001).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
#define LLVM_CODEGEN_LIVEINTERVAL_ANALYSIS_H
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include <cmath>
#include <iterator>
namespace llvm {
class AliasAnalysis;
class LiveVariables;
class MachineLoopInfo;
class TargetRegisterInfo;
class MachineRegisterInfo;
class TargetInstrInfo;
class TargetRegisterClass;
class VirtRegMap;
class LiveIntervals : public MachineFunctionPass {
MachineFunction* mf_;
MachineRegisterInfo* mri_;
const TargetMachine* tm_;
const TargetRegisterInfo* tri_;
const TargetInstrInfo* tii_;
AliasAnalysis *aa_;
LiveVariables* lv_;
SlotIndexes* indexes_;
/// Special pool allocator for VNInfo's (LiveInterval val#).
///
VNInfo::Allocator VNInfoAllocator;
typedef DenseMap<unsigned, LiveInterval*> Reg2IntervalMap;
Reg2IntervalMap r2iMap_;
/// allocatableRegs_ - A bit vector of allocatable registers.
BitVector allocatableRegs_;
/// CloneMIs - A list of clones as result of re-materialization.
std::vector<MachineInstr*> CloneMIs;
public:
static char ID; // Pass identification, replacement for typeid
LiveIntervals() : MachineFunctionPass(ID) {}
// Calculate the spill weight to assign to a single instruction.
static float getSpillWeight(bool isDef, bool isUse, unsigned loopDepth);
// After summing the spill weights of all defs and uses, the final weight
// should be normalized, dividing the weight of the interval by its size.
// This encourages spilling of intervals that are large and have few uses,
// and discourages spilling of small intervals with many uses.
void normalizeSpillWeight(LiveInterval &li) {
li.weight /= getApproximateInstructionCount(li) + 25;
}
typedef Reg2IntervalMap::iterator iterator;
typedef Reg2IntervalMap::const_iterator const_iterator;
const_iterator begin() const { return r2iMap_.begin(); }
const_iterator end() const { return r2iMap_.end(); }
iterator begin() { return r2iMap_.begin(); }
iterator end() { return r2iMap_.end(); }
unsigned getNumIntervals() const { return (unsigned)r2iMap_.size(); }
LiveInterval &getInterval(unsigned reg) {
Reg2IntervalMap::iterator I = r2iMap_.find(reg);
assert(I != r2iMap_.end() && "Interval does not exist for register");
return *I->second;
}
const LiveInterval &getInterval(unsigned reg) const {
Reg2IntervalMap::const_iterator I = r2iMap_.find(reg);
assert(I != r2iMap_.end() && "Interval does not exist for register");
return *I->second;
}
bool hasInterval(unsigned reg) const {
return r2iMap_.count(reg);
}
/// isAllocatable - is the physical register reg allocatable in the current
/// function?
bool isAllocatable(unsigned reg) const {
return allocatableRegs_.test(reg);
}
/// getScaledIntervalSize - get the size of an interval in "units,"
/// where every function is composed of one thousand units. This
/// measure scales properly with empty index slots in the function.
double getScaledIntervalSize(LiveInterval& I) {
return (1000.0 * I.getSize()) / indexes_->getIndexesLength();
}
/// getFuncInstructionCount - Return the number of instructions in the
/// current function.
unsigned getFuncInstructionCount() {
return indexes_->getFunctionSize();
}
/// getApproximateInstructionCount - computes an estimate of the number
/// of instructions in a given LiveInterval.
unsigned getApproximateInstructionCount(LiveInterval& I) {
double IntervalPercentage = getScaledIntervalSize(I) / 1000.0;
return (unsigned)(IntervalPercentage * indexes_->getFunctionSize());
}
/// conflictsWithPhysReg - Returns true if the specified register is used or
/// defined during the duration of the specified interval. Copies to and
/// from li.reg are allowed. This method is only able to analyze simple
/// ranges that stay within a single basic block. Anything else is
/// considered a conflict.
bool conflictsWithPhysReg(const LiveInterval &li, VirtRegMap &vrm,
unsigned reg);
/// conflictsWithAliasRef - Similar to conflictsWithPhysRegRef except
/// it checks for alias uses and defs.
bool conflictsWithAliasRef(LiveInterval &li, unsigned Reg,
SmallPtrSet<MachineInstr*,32> &JoinedCopies);
// Interval creation
LiveInterval &getOrCreateInterval(unsigned reg) {
Reg2IntervalMap::iterator I = r2iMap_.find(reg);
if (I == r2iMap_.end())
I = r2iMap_.insert(std::make_pair(reg, createInterval(reg))).first;
return *I->second;
}
/// dupInterval - Duplicate a live interval. The caller is responsible for
/// managing the allocated memory.
LiveInterval *dupInterval(LiveInterval *li);
/// addLiveRangeToEndOfBlock - Given a register and an instruction,
/// adds a live range from that instruction to the end of its MBB.
LiveRange addLiveRangeToEndOfBlock(unsigned reg,
MachineInstr* startInst);
// Interval removal
void removeInterval(unsigned Reg) {
DenseMap<unsigned, LiveInterval*>::iterator I = r2iMap_.find(Reg);
delete I->second;
r2iMap_.erase(I);
}
SlotIndex getZeroIndex() const {
return indexes_->getZeroIndex();
}
SlotIndex getInvalidIndex() const {
return indexes_->getInvalidIndex();
}
/// isNotInMIMap - returns true if the specified machine instr has been
/// removed or was never entered in the map.
bool isNotInMIMap(const MachineInstr* Instr) const {
return !indexes_->hasIndex(Instr);
}
/// Returns the base index of the given instruction.
SlotIndex getInstructionIndex(const MachineInstr *instr) const {
return indexes_->getInstructionIndex(instr);
}
/// Returns the instruction associated with the given index.
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
return indexes_->getInstructionFromIndex(index);
}
/// Return the first index in the given basic block.
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
return indexes_->getMBBStartIdx(mbb);
}
/// Return the last index in the given basic block.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
return indexes_->getMBBEndIdx(mbb);
}
bool isLiveInToMBB(const LiveInterval &li,
const MachineBasicBlock *mbb) const {
return li.liveAt(getMBBStartIdx(mbb));
}
LiveRange* findEnteringRange(LiveInterval &li,
const MachineBasicBlock *mbb) {
return li.getLiveRangeContaining(getMBBStartIdx(mbb));
}
bool isLiveOutOfMBB(const LiveInterval &li,
const MachineBasicBlock *mbb) const {
return li.liveAt(getMBBEndIdx(mbb).getPrevSlot());
}
LiveRange* findExitingRange(LiveInterval &li,
const MachineBasicBlock *mbb) {
return li.getLiveRangeContaining(getMBBEndIdx(mbb).getPrevSlot());
}
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
return indexes_->getMBBFromIndex(index);
}
SlotIndex getMBBTerminatorGap(const MachineBasicBlock *mbb) {
return indexes_->getTerminatorGap(mbb);
}
SlotIndex InsertMachineInstrInMaps(MachineInstr *MI) {
return indexes_->insertMachineInstrInMaps(MI);
}
void RemoveMachineInstrFromMaps(MachineInstr *MI) {
indexes_->removeMachineInstrFromMaps(MI);
}
void ReplaceMachineInstrInMaps(MachineInstr *MI, MachineInstr *NewMI) {
indexes_->replaceMachineInstrInMaps(MI, NewMI);
}
void InsertMBBInMaps(MachineBasicBlock *MBB) {
indexes_->insertMBBInMaps(MBB);
}
bool findLiveInMBBs(SlotIndex Start, SlotIndex End,
SmallVectorImpl<MachineBasicBlock*> &MBBs) const {
return indexes_->findLiveInMBBs(Start, End, MBBs);
}
void renumber() {
indexes_->renumberIndexes();
}
VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
/// runOnMachineFunction - pass entry point
virtual bool runOnMachineFunction(MachineFunction&);
/// print - Implement the dump method.
virtual void print(raw_ostream &O, const Module* = 0) const;
/// addIntervalsForSpills - Create new intervals for spilled defs / uses of
/// the given interval. FIXME: It also returns the weight of the spill slot
/// (if any is created) by reference. This is temporary.
std::vector<LiveInterval*>
addIntervalsForSpills(const LiveInterval& i,
SmallVectorImpl<LiveInterval*> &SpillIs,
const MachineLoopInfo *loopInfo, VirtRegMap& vrm);
/// spillPhysRegAroundRegDefsUses - Spill the specified physical register
/// around all defs and uses of the specified interval. Return true if it
/// was able to cut its interval.
bool spillPhysRegAroundRegDefsUses(const LiveInterval &li,
unsigned PhysReg, VirtRegMap &vrm);
/// isReMaterializable - Returns true if every definition of MI of every
/// val# of the specified interval is re-materializable. Also returns true
/// by reference if all of the defs are load instructions.
bool isReMaterializable(const LiveInterval &li,
SmallVectorImpl<LiveInterval*> &SpillIs,
bool &isLoad);
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable.
bool isReMaterializable(const LiveInterval &li, const VNInfo *ValNo,
MachineInstr *MI);
/// getRepresentativeReg - Find the largest super register of the specified
/// physical register.
unsigned getRepresentativeReg(unsigned Reg) const;
/// getNumConflictsWithPhysReg - Return the number of uses and defs of the
/// specified interval that conflicts with the specified physical register.
unsigned getNumConflictsWithPhysReg(const LiveInterval &li,
unsigned PhysReg) const;
/// intervalIsInOneMBB - Returns true if the specified interval is entirely
/// within a single basic block.
bool intervalIsInOneMBB(const LiveInterval &li) const;
private:
/// computeIntervals - Compute live intervals.
void computeIntervals();
/// handleRegisterDef - update intervals for a register def
/// (calls handlePhysicalRegisterDef and
/// handleVirtualRegisterDef)
void handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
SlotIndex MIIdx,
MachineOperand& MO, unsigned MOIdx);
/// isPartialRedef - Return true if the specified def at the specific index
/// is partially re-defining the specified live interval. A common case of
/// this is a definition of the sub-register.
bool isPartialRedef(SlotIndex MIIdx, MachineOperand &MO,
LiveInterval &interval);
/// handleVirtualRegisterDef - update intervals for a virtual
/// register def
void handleVirtualRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
SlotIndex MIIdx, MachineOperand& MO,
unsigned MOIdx,
LiveInterval& interval);
/// handlePhysicalRegisterDef - update intervals for a physical register
/// def.
void handlePhysicalRegisterDef(MachineBasicBlock* mbb,
MachineBasicBlock::iterator mi,
SlotIndex MIIdx, MachineOperand& MO,
LiveInterval &interval,
MachineInstr *CopyMI);
/// handleLiveInRegister - Create interval for a livein register.
void handleLiveInRegister(MachineBasicBlock* mbb,
SlotIndex MIIdx,
LiveInterval &interval, bool isAlias = false);
/// getReMatImplicitUse - If the remat definition MI has one (for now, we
/// only allow one) virtual register operand, then its uses are implicitly
/// using the register. Returns the virtual register.
unsigned getReMatImplicitUse(const LiveInterval &li,
MachineInstr *MI) const;
/// isValNoAvailableAt - Return true if the val# of the specified interval
/// which reaches the given instruction also reaches the specified use
/// index.
bool isValNoAvailableAt(const LiveInterval &li, MachineInstr *MI,
SlotIndex UseIdx) const;
/// isReMaterializable - Returns true if the definition MI of the specified
/// val# of the specified interval is re-materializable. Also returns true
/// by reference if the def is a load.
bool isReMaterializable(const LiveInterval &li, const VNInfo *ValNo,
MachineInstr *MI,
SmallVectorImpl<LiveInterval*> &SpillIs,
bool &isLoad);
/// tryFoldMemoryOperand - Attempts to fold either a spill / restore from
/// slot / to reg or any rematerialized load into ith operand of specified
/// MI. If it is successul, MI is updated with the newly created MI and
/// returns true.
bool tryFoldMemoryOperand(MachineInstr* &MI, VirtRegMap &vrm,
MachineInstr *DefMI, SlotIndex InstrIdx,
SmallVector<unsigned, 2> &Ops,
bool isSS, int FrameIndex, unsigned Reg);
/// canFoldMemoryOperand - Return true if the specified load / store
/// folding is possible.
bool canFoldMemoryOperand(MachineInstr *MI,
SmallVector<unsigned, 2> &Ops,
bool ReMatLoadSS) const;
/// anyKillInMBBAfterIdx - Returns true if there is a kill of the specified
/// VNInfo that's after the specified index but is within the basic block.
bool anyKillInMBBAfterIdx(const LiveInterval &li, const VNInfo *VNI,
MachineBasicBlock *MBB,
SlotIndex Idx) const;
/// hasAllocatableSuperReg - Return true if the specified physical register
/// has any super register that's allocatable.
bool hasAllocatableSuperReg(unsigned Reg) const;
/// SRInfo - Spill / restore info.
struct SRInfo {
SlotIndex index;
unsigned vreg;
bool canFold;
SRInfo(SlotIndex i, unsigned vr, bool f)
: index(i), vreg(vr), canFold(f) {}
};
bool alsoFoldARestore(int Id, SlotIndex index, unsigned vr,
BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> >&RestoreIdxes);
void eraseRestoreInfo(int Id, SlotIndex index, unsigned vr,
BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> >&RestoreIdxes);
/// handleSpilledImpDefs - Remove IMPLICIT_DEF instructions which are being
/// spilled and create empty intervals for their uses.
void handleSpilledImpDefs(const LiveInterval &li, VirtRegMap &vrm,
const TargetRegisterClass* rc,
std::vector<LiveInterval*> &NewLIs);
/// rewriteImplicitOps - Rewrite implicit use operands of MI (i.e. uses of
/// interval on to-be re-materialized operands of MI) with new register.
void rewriteImplicitOps(const LiveInterval &li,
MachineInstr *MI, unsigned NewVReg, VirtRegMap &vrm);
/// rewriteInstructionForSpills, rewriteInstructionsForSpills - Helper
/// functions for addIntervalsForSpills to rewrite uses / defs for the given
/// live range.
bool rewriteInstructionForSpills(const LiveInterval &li, const VNInfo *VNI,
bool TrySplit, SlotIndex index, SlotIndex end,
MachineInstr *MI, MachineInstr *OrigDefMI, MachineInstr *DefMI,
unsigned Slot, int LdSlot,
bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
VirtRegMap &vrm, const TargetRegisterClass* rc,
SmallVector<int, 4> &ReMatIds, const MachineLoopInfo *loopInfo,
unsigned &NewVReg, unsigned ImpUse, bool &HasDef, bool &HasUse,
DenseMap<unsigned,unsigned> &MBBVRegsMap,
std::vector<LiveInterval*> &NewLIs);
void rewriteInstructionsForSpills(const LiveInterval &li, bool TrySplit,
LiveInterval::Ranges::const_iterator &I,
MachineInstr *OrigDefMI, MachineInstr *DefMI, unsigned Slot, int LdSlot,
bool isLoad, bool isLoadSS, bool DefIsReMat, bool CanDelete,
VirtRegMap &vrm, const TargetRegisterClass* rc,
SmallVector<int, 4> &ReMatIds, const MachineLoopInfo *loopInfo,
BitVector &SpillMBBs,
DenseMap<unsigned,std::vector<SRInfo> > &SpillIdxes,
BitVector &RestoreMBBs,
DenseMap<unsigned,std::vector<SRInfo> > &RestoreIdxes,
DenseMap<unsigned,unsigned> &MBBVRegsMap,
std::vector<LiveInterval*> &NewLIs);
// Normalize the spill weight of all the intervals in NewLIs.
void normalizeSpillWeights(std::vector<LiveInterval*> &NewLIs);
static LiveInterval* createInterval(unsigned Reg);
void printInstrs(raw_ostream &O) const;
void dumpInstrs() const;
};
} // End llvm namespace
#endif