llvm-6502/lib/Target/X86/InstPrinter/X86InstComments.cpp
Bruno Cardoso Lopes 53cae1362d The VPERM2F128 is a AVX instruction which permutes between two 256-bit
vectors. It operates on 128-bit elements instead of regular scalar
types. Recognize shuffles that are suitable for VPERM2F128 and teach
the x86 legalizer how to handle them.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137519 91177308-0d34-0410-b5e6-96231b3b80d8
2011-08-12 21:48:26 +00:00

286 lines
9.5 KiB
C++

//===-- X86InstComments.cpp - Generate verbose-asm comments for instrs ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This defines functionality used to emit comments about X86 instructions to
// an output stream for -fverbose-asm.
//
//===----------------------------------------------------------------------===//
#include "X86InstComments.h"
#include "MCTargetDesc/X86MCTargetDesc.h"
#include "Utils/X86ShuffleDecode.h"
#include "llvm/MC/MCInst.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// Top Level Entrypoint
//===----------------------------------------------------------------------===//
/// EmitAnyX86InstComments - This function decodes x86 instructions and prints
/// newline terminated strings to the specified string if desired. This
/// information is shown in disassembly dumps when verbose assembly is enabled.
void llvm::EmitAnyX86InstComments(const MCInst *MI, raw_ostream &OS,
const char *(*getRegName)(unsigned)) {
// If this is a shuffle operation, the switch should fill in this state.
SmallVector<unsigned, 8> ShuffleMask;
const char *DestName = 0, *Src1Name = 0, *Src2Name = 0;
switch (MI->getOpcode()) {
case X86::INSERTPSrr:
Src1Name = getRegName(MI->getOperand(1).getReg());
Src2Name = getRegName(MI->getOperand(2).getReg());
DecodeINSERTPSMask(MI->getOperand(3).getImm(), ShuffleMask);
break;
case X86::MOVLHPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodeMOVLHPSMask(2, ShuffleMask);
break;
case X86::MOVHLPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodeMOVHLPSMask(2, ShuffleMask);
break;
case X86::PSHUFDri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFDmi:
DestName = getRegName(MI->getOperand(0).getReg());
DecodePSHUFMask(4, MI->getOperand(MI->getNumOperands()-1).getImm(),
ShuffleMask);
break;
case X86::PSHUFHWri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFHWmi:
DestName = getRegName(MI->getOperand(0).getReg());
DecodePSHUFHWMask(MI->getOperand(MI->getNumOperands()-1).getImm(),
ShuffleMask);
break;
case X86::PSHUFLWri:
Src1Name = getRegName(MI->getOperand(1).getReg());
// FALL THROUGH.
case X86::PSHUFLWmi:
DestName = getRegName(MI->getOperand(0).getReg());
DecodePSHUFLWMask(MI->getOperand(MI->getNumOperands()-1).getImm(),
ShuffleMask);
break;
case X86::PUNPCKHBWrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHBWrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKHMask(16, ShuffleMask);
break;
case X86::PUNPCKHWDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHWDrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKHMask(8, ShuffleMask);
break;
case X86::PUNPCKHDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKHMask(4, ShuffleMask);
break;
case X86::PUNPCKHQDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKHQDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKHMask(2, ShuffleMask);
break;
case X86::PUNPCKLBWrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLBWrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKLBWMask(16, ShuffleMask);
break;
case X86::PUNPCKLWDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLWDrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKLWDMask(8, ShuffleMask);
break;
case X86::PUNPCKLDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKLDQMask(4, ShuffleMask);
break;
case X86::PUNPCKLQDQrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::PUNPCKLQDQrm:
Src1Name = getRegName(MI->getOperand(0).getReg());
DecodePUNPCKLQDQMask(2, ShuffleMask);
break;
case X86::SHUFPDrri:
DecodeSHUFPSMask(2, MI->getOperand(3).getImm(), ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
Src2Name = getRegName(MI->getOperand(2).getReg());
break;
case X86::SHUFPSrri:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::SHUFPSrmi:
DecodeSHUFPSMask(4, MI->getOperand(3).getImm(), ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::UNPCKLPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKLPDrm:
DecodeUNPCKLPDMask(2, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VUNPCKLPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPDrm:
DecodeUNPCKLPDMask(2, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::VUNPCKLPDYrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPDYrm:
DecodeUNPCKLPDMask(4, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::UNPCKLPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKLPSrm:
DecodeUNPCKLPSMask(4, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VUNPCKLPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPSrm:
DecodeUNPCKLPSMask(4, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::VUNPCKLPSYrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::VUNPCKLPSYrm:
DecodeUNPCKLPSMask(8, ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
break;
case X86::UNPCKHPDrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKHPDrm:
DecodeUNPCKHPMask(2, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::UNPCKHPSrr:
Src2Name = getRegName(MI->getOperand(2).getReg());
// FALL THROUGH.
case X86::UNPCKHPSrm:
DecodeUNPCKHPMask(4, ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPSri:
DecodeVPERMILPSMask(4, MI->getOperand(2).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPSYri:
DecodeVPERMILPSMask(8, MI->getOperand(2).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPDri:
DecodeVPERMILPDMask(2, MI->getOperand(2).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERMILPDYri:
DecodeVPERMILPDMask(4, MI->getOperand(2).getImm(),
ShuffleMask);
Src1Name = getRegName(MI->getOperand(0).getReg());
break;
case X86::VPERM2F128rr:
DecodeVPERM2F128Mask(MI->getOperand(3).getImm(), ShuffleMask);
Src1Name = getRegName(MI->getOperand(1).getReg());
Src2Name = getRegName(MI->getOperand(2).getReg());
break;
}
// If this was a shuffle operation, print the shuffle mask.
if (!ShuffleMask.empty()) {
if (DestName == 0) DestName = Src1Name;
OS << (DestName ? DestName : "mem") << " = ";
// If the two sources are the same, canonicalize the input elements to be
// from the first src so that we get larger element spans.
if (Src1Name == Src2Name) {
for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
if ((int)ShuffleMask[i] >= 0 && // Not sentinel.
ShuffleMask[i] >= e) // From second mask.
ShuffleMask[i] -= e;
}
}
// The shuffle mask specifies which elements of the src1/src2 fill in the
// destination, with a few sentinel values. Loop through and print them
// out.
for (unsigned i = 0, e = ShuffleMask.size(); i != e; ++i) {
if (i != 0)
OS << ',';
if (ShuffleMask[i] == SM_SentinelZero) {
OS << "zero";
continue;
}
// Otherwise, it must come from src1 or src2. Print the span of elements
// that comes from this src.
bool isSrc1 = ShuffleMask[i] < ShuffleMask.size();
const char *SrcName = isSrc1 ? Src1Name : Src2Name;
OS << (SrcName ? SrcName : "mem") << '[';
bool IsFirst = true;
while (i != e &&
(int)ShuffleMask[i] >= 0 &&
(ShuffleMask[i] < ShuffleMask.size()) == isSrc1) {
if (!IsFirst)
OS << ',';
else
IsFirst = false;
OS << ShuffleMask[i] % ShuffleMask.size();
++i;
}
OS << ']';
--i; // For loop increments element #.
}
//MI->print(OS, 0);
OS << "\n";
}
}