mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-08 03:30:22 +00:00
c86235f4eb
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209076 91177308-0d34-0410-b5e6-96231b3b80d8
1452 lines
52 KiB
C++
1452 lines
52 KiB
C++
//===- MergeFunctions.cpp - Merge identical functions ---------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass looks for equivalent functions that are mergable and folds them.
|
|
//
|
|
// A hash is computed from the function, based on its type and number of
|
|
// basic blocks.
|
|
//
|
|
// Once all hashes are computed, we perform an expensive equality comparison
|
|
// on each function pair. This takes n^2/2 comparisons per bucket, so it's
|
|
// important that the hash function be high quality. The equality comparison
|
|
// iterates through each instruction in each basic block.
|
|
//
|
|
// When a match is found the functions are folded. If both functions are
|
|
// overridable, we move the functionality into a new internal function and
|
|
// leave two overridable thunks to it.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Future work:
|
|
//
|
|
// * virtual functions.
|
|
//
|
|
// Many functions have their address taken by the virtual function table for
|
|
// the object they belong to. However, as long as it's only used for a lookup
|
|
// and call, this is irrelevant, and we'd like to fold such functions.
|
|
//
|
|
// * switch from n^2 pair-wise comparisons to an n-way comparison for each
|
|
// bucket.
|
|
//
|
|
// * be smarter about bitcasts.
|
|
//
|
|
// In order to fold functions, we will sometimes add either bitcast instructions
|
|
// or bitcast constant expressions. Unfortunately, this can confound further
|
|
// analysis since the two functions differ where one has a bitcast and the
|
|
// other doesn't. We should learn to look through bitcasts.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/IPO.h"
|
|
#include "llvm/ADT/DenseSet.h"
|
|
#include "llvm/ADT/FoldingSet.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <vector>
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "mergefunc"
|
|
|
|
STATISTIC(NumFunctionsMerged, "Number of functions merged");
|
|
STATISTIC(NumThunksWritten, "Number of thunks generated");
|
|
STATISTIC(NumAliasesWritten, "Number of aliases generated");
|
|
STATISTIC(NumDoubleWeak, "Number of new functions created");
|
|
|
|
/// Returns the type id for a type to be hashed. We turn pointer types into
|
|
/// integers here because the actual compare logic below considers pointers and
|
|
/// integers of the same size as equal.
|
|
static Type::TypeID getTypeIDForHash(Type *Ty) {
|
|
if (Ty->isPointerTy())
|
|
return Type::IntegerTyID;
|
|
return Ty->getTypeID();
|
|
}
|
|
|
|
/// Creates a hash-code for the function which is the same for any two
|
|
/// functions that will compare equal, without looking at the instructions
|
|
/// inside the function.
|
|
static unsigned profileFunction(const Function *F) {
|
|
FunctionType *FTy = F->getFunctionType();
|
|
|
|
FoldingSetNodeID ID;
|
|
ID.AddInteger(F->size());
|
|
ID.AddInteger(F->getCallingConv());
|
|
ID.AddBoolean(F->hasGC());
|
|
ID.AddBoolean(FTy->isVarArg());
|
|
ID.AddInteger(getTypeIDForHash(FTy->getReturnType()));
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
ID.AddInteger(getTypeIDForHash(FTy->getParamType(i)));
|
|
return ID.ComputeHash();
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// ComparableFunction - A struct that pairs together functions with a
|
|
/// DataLayout so that we can keep them together as elements in the DenseSet.
|
|
class ComparableFunction {
|
|
public:
|
|
static const ComparableFunction EmptyKey;
|
|
static const ComparableFunction TombstoneKey;
|
|
static DataLayout * const LookupOnly;
|
|
|
|
ComparableFunction(Function *Func, const DataLayout *DL)
|
|
: Func(Func), Hash(profileFunction(Func)), DL(DL) {}
|
|
|
|
Function *getFunc() const { return Func; }
|
|
unsigned getHash() const { return Hash; }
|
|
const DataLayout *getDataLayout() const { return DL; }
|
|
|
|
// Drops AssertingVH reference to the function. Outside of debug mode, this
|
|
// does nothing.
|
|
void release() {
|
|
assert(Func &&
|
|
"Attempted to release function twice, or release empty/tombstone!");
|
|
Func = nullptr;
|
|
}
|
|
|
|
private:
|
|
explicit ComparableFunction(unsigned Hash)
|
|
: Func(nullptr), Hash(Hash), DL(nullptr) {}
|
|
|
|
AssertingVH<Function> Func;
|
|
unsigned Hash;
|
|
const DataLayout *DL;
|
|
};
|
|
|
|
const ComparableFunction ComparableFunction::EmptyKey = ComparableFunction(0);
|
|
const ComparableFunction ComparableFunction::TombstoneKey =
|
|
ComparableFunction(1);
|
|
DataLayout *const ComparableFunction::LookupOnly = (DataLayout*)(-1);
|
|
|
|
}
|
|
|
|
namespace llvm {
|
|
template <>
|
|
struct DenseMapInfo<ComparableFunction> {
|
|
static ComparableFunction getEmptyKey() {
|
|
return ComparableFunction::EmptyKey;
|
|
}
|
|
static ComparableFunction getTombstoneKey() {
|
|
return ComparableFunction::TombstoneKey;
|
|
}
|
|
static unsigned getHashValue(const ComparableFunction &CF) {
|
|
return CF.getHash();
|
|
}
|
|
static bool isEqual(const ComparableFunction &LHS,
|
|
const ComparableFunction &RHS);
|
|
};
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// FunctionComparator - Compares two functions to determine whether or not
|
|
/// they will generate machine code with the same behaviour. DataLayout is
|
|
/// used if available. The comparator always fails conservatively (erring on the
|
|
/// side of claiming that two functions are different).
|
|
class FunctionComparator {
|
|
public:
|
|
FunctionComparator(const DataLayout *DL, const Function *F1,
|
|
const Function *F2)
|
|
: F1(F1), F2(F2), DL(DL) {}
|
|
|
|
/// Test whether the two functions have equivalent behaviour.
|
|
bool compare();
|
|
|
|
private:
|
|
/// Test whether two basic blocks have equivalent behaviour.
|
|
bool compare(const BasicBlock *BB1, const BasicBlock *BB2);
|
|
|
|
/// Constants comparison.
|
|
/// Its analog to lexicographical comparison between hypothetical numbers
|
|
/// of next format:
|
|
/// <bitcastability-trait><raw-bit-contents>
|
|
///
|
|
/// 1. Bitcastability.
|
|
/// Check whether L's type could be losslessly bitcasted to R's type.
|
|
/// On this stage method, in case when lossless bitcast is not possible
|
|
/// method returns -1 or 1, thus also defining which type is greater in
|
|
/// context of bitcastability.
|
|
/// Stage 0: If types are equal in terms of cmpTypes, then we can go straight
|
|
/// to the contents comparison.
|
|
/// If types differ, remember types comparison result and check
|
|
/// whether we still can bitcast types.
|
|
/// Stage 1: Types that satisfies isFirstClassType conditions are always
|
|
/// greater then others.
|
|
/// Stage 2: Vector is greater then non-vector.
|
|
/// If both types are vectors, then vector with greater bitwidth is
|
|
/// greater.
|
|
/// If both types are vectors with the same bitwidth, then types
|
|
/// are bitcastable, and we can skip other stages, and go to contents
|
|
/// comparison.
|
|
/// Stage 3: Pointer types are greater than non-pointers. If both types are
|
|
/// pointers of the same address space - go to contents comparison.
|
|
/// Different address spaces: pointer with greater address space is
|
|
/// greater.
|
|
/// Stage 4: Types are neither vectors, nor pointers. And they differ.
|
|
/// We don't know how to bitcast them. So, we better don't do it,
|
|
/// and return types comparison result (so it determines the
|
|
/// relationship among constants we don't know how to bitcast).
|
|
///
|
|
/// Just for clearance, let's see how the set of constants could look
|
|
/// on single dimension axis:
|
|
///
|
|
/// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
|
|
/// Where: NFCT - Not a FirstClassType
|
|
/// FCT - FirstClassTyp:
|
|
///
|
|
/// 2. Compare raw contents.
|
|
/// It ignores types on this stage and only compares bits from L and R.
|
|
/// Returns 0, if L and R has equivalent contents.
|
|
/// -1 or 1 if values are different.
|
|
/// Pretty trivial:
|
|
/// 2.1. If contents are numbers, compare numbers.
|
|
/// Ints with greater bitwidth are greater. Ints with same bitwidths
|
|
/// compared by their contents.
|
|
/// 2.2. "And so on". Just to avoid discrepancies with comments
|
|
/// perhaps it would be better to read the implementation itself.
|
|
/// 3. And again about overall picture. Let's look back at how the ordered set
|
|
/// of constants will look like:
|
|
/// [NFCT], [FCT, "others"], [FCT, pointers], [FCT, vectors]
|
|
///
|
|
/// Now look, what could be inside [FCT, "others"], for example:
|
|
/// [FCT, "others"] =
|
|
/// [
|
|
/// [double 0.1], [double 1.23],
|
|
/// [i32 1], [i32 2],
|
|
/// { double 1.0 }, ; StructTyID, NumElements = 1
|
|
/// { i32 1 }, ; StructTyID, NumElements = 1
|
|
/// { double 1, i32 1 }, ; StructTyID, NumElements = 2
|
|
/// { i32 1, double 1 } ; StructTyID, NumElements = 2
|
|
/// ]
|
|
///
|
|
/// Let's explain the order. Float numbers will be less than integers, just
|
|
/// because of cmpType terms: FloatTyID < IntegerTyID.
|
|
/// Floats (with same fltSemantics) are sorted according to their value.
|
|
/// Then you can see integers, and they are, like a floats,
|
|
/// could be easy sorted among each others.
|
|
/// The structures. Structures are grouped at the tail, again because of their
|
|
/// TypeID: StructTyID > IntegerTyID > FloatTyID.
|
|
/// Structures with greater number of elements are greater. Structures with
|
|
/// greater elements going first are greater.
|
|
/// The same logic with vectors, arrays and other possible complex types.
|
|
///
|
|
/// Bitcastable constants.
|
|
/// Let's assume, that some constant, belongs to some group of
|
|
/// "so-called-equal" values with different types, and at the same time
|
|
/// belongs to another group of constants with equal types
|
|
/// and "really" equal values.
|
|
///
|
|
/// Now, prove that this is impossible:
|
|
///
|
|
/// If constant A with type TyA is bitcastable to B with type TyB, then:
|
|
/// 1. All constants with equal types to TyA, are bitcastable to B. Since
|
|
/// those should be vectors (if TyA is vector), pointers
|
|
/// (if TyA is pointer), or else (if TyA equal to TyB), those types should
|
|
/// be equal to TyB.
|
|
/// 2. All constants with non-equal, but bitcastable types to TyA, are
|
|
/// bitcastable to B.
|
|
/// Once again, just because we allow it to vectors and pointers only.
|
|
/// This statement could be expanded as below:
|
|
/// 2.1. All vectors with equal bitwidth to vector A, has equal bitwidth to
|
|
/// vector B, and thus bitcastable to B as well.
|
|
/// 2.2. All pointers of the same address space, no matter what they point to,
|
|
/// bitcastable. So if C is pointer, it could be bitcasted to A and to B.
|
|
/// So any constant equal or bitcastable to A is equal or bitcastable to B.
|
|
/// QED.
|
|
///
|
|
/// In another words, for pointers and vectors, we ignore top-level type and
|
|
/// look at their particular properties (bit-width for vectors, and
|
|
/// address space for pointers).
|
|
/// If these properties are equal - compare their contents.
|
|
int cmpConstants(const Constant *L, const Constant *R);
|
|
|
|
/// Assign or look up previously assigned numbers for the two values, and
|
|
/// return whether the numbers are equal. Numbers are assigned in the order
|
|
/// visited.
|
|
/// Comparison order:
|
|
/// Stage 0: Value that is function itself is always greater then others.
|
|
/// If left and right values are references to their functions, then
|
|
/// they are equal.
|
|
/// Stage 1: Constants are greater than non-constants.
|
|
/// If both left and right are constants, then the result of
|
|
/// cmpConstants is used as cmpValues result.
|
|
/// Stage 2: InlineAsm instances are greater than others. If both left and
|
|
/// right are InlineAsm instances, InlineAsm* pointers casted to
|
|
/// integers and compared as numbers.
|
|
/// Stage 3: For all other cases we compare order we meet these values in
|
|
/// their functions. If right value was met first during scanning,
|
|
/// then left value is greater.
|
|
/// In another words, we compare serial numbers, for more details
|
|
/// see comments for sn_mapL and sn_mapR.
|
|
int cmpValues(const Value *L, const Value *R);
|
|
|
|
bool enumerate(const Value *V1, const Value *V2) {
|
|
return cmpValues(V1, V2) == 0;
|
|
}
|
|
|
|
/// Compare two Instructions for equivalence, similar to
|
|
/// Instruction::isSameOperationAs but with modifications to the type
|
|
/// comparison.
|
|
/// Stages are listed in "most significant stage first" order:
|
|
/// On each stage below, we do comparison between some left and right
|
|
/// operation parts. If parts are non-equal, we assign parts comparison
|
|
/// result to the operation comparison result and exit from method.
|
|
/// Otherwise we proceed to the next stage.
|
|
/// Stages:
|
|
/// 1. Operations opcodes. Compared as numbers.
|
|
/// 2. Number of operands.
|
|
/// 3. Operation types. Compared with cmpType method.
|
|
/// 4. Compare operation subclass optional data as stream of bytes:
|
|
/// just convert it to integers and call cmpNumbers.
|
|
/// 5. Compare in operation operand types with cmpType in
|
|
/// most significant operand first order.
|
|
/// 6. Last stage. Check operations for some specific attributes.
|
|
/// For example, for Load it would be:
|
|
/// 6.1.Load: volatile (as boolean flag)
|
|
/// 6.2.Load: alignment (as integer numbers)
|
|
/// 6.3.Load: synch-scope (as integer numbers)
|
|
/// On this stage its better to see the code, since its not more than 10-15
|
|
/// strings for particular instruction, and could change sometimes.
|
|
int cmpOperation(const Instruction *L, const Instruction *R) const;
|
|
|
|
bool isEquivalentOperation(const Instruction *I1,
|
|
const Instruction *I2) const {
|
|
return cmpOperation(I1, I2) == 0;
|
|
}
|
|
|
|
/// Compare two GEPs for equivalent pointer arithmetic.
|
|
/// Parts to be compared for each comparison stage,
|
|
/// most significant stage first:
|
|
/// 1. Address space. As numbers.
|
|
/// 2. Constant offset, (if "DataLayout *DL" field is not NULL,
|
|
/// using GEPOperator::accumulateConstantOffset method).
|
|
/// 3. Pointer operand type (using cmpType method).
|
|
/// 4. Number of operands.
|
|
/// 5. Compare operands, using cmpValues method.
|
|
int cmpGEP(const GEPOperator *GEPL, const GEPOperator *GEPR);
|
|
int cmpGEP(const GetElementPtrInst *GEPL, const GetElementPtrInst *GEPR) {
|
|
return cmpGEP(cast<GEPOperator>(GEPL), cast<GEPOperator>(GEPR));
|
|
}
|
|
|
|
bool isEquivalentGEP(const GEPOperator *GEP1, const GEPOperator *GEP2) {
|
|
return cmpGEP(GEP1, GEP2) == 0;
|
|
}
|
|
bool isEquivalentGEP(const GetElementPtrInst *GEP1,
|
|
const GetElementPtrInst *GEP2) {
|
|
return isEquivalentGEP(cast<GEPOperator>(GEP1), cast<GEPOperator>(GEP2));
|
|
}
|
|
|
|
/// cmpType - compares two types,
|
|
/// defines total ordering among the types set.
|
|
///
|
|
/// Return values:
|
|
/// 0 if types are equal,
|
|
/// -1 if Left is less than Right,
|
|
/// +1 if Left is greater than Right.
|
|
///
|
|
/// Description:
|
|
/// Comparison is broken onto stages. Like in lexicographical comparison
|
|
/// stage coming first has higher priority.
|
|
/// On each explanation stage keep in mind total ordering properties.
|
|
///
|
|
/// 0. Before comparison we coerce pointer types of 0 address space to
|
|
/// integer.
|
|
/// We also don't bother with same type at left and right, so
|
|
/// just return 0 in this case.
|
|
///
|
|
/// 1. If types are of different kind (different type IDs).
|
|
/// Return result of type IDs comparison, treating them as numbers.
|
|
/// 2. If types are vectors or integers, compare Type* values as numbers.
|
|
/// 3. Types has same ID, so check whether they belongs to the next group:
|
|
/// * Void
|
|
/// * Float
|
|
/// * Double
|
|
/// * X86_FP80
|
|
/// * FP128
|
|
/// * PPC_FP128
|
|
/// * Label
|
|
/// * Metadata
|
|
/// If so - return 0, yes - we can treat these types as equal only because
|
|
/// their IDs are same.
|
|
/// 4. If Left and Right are pointers, return result of address space
|
|
/// comparison (numbers comparison). We can treat pointer types of same
|
|
/// address space as equal.
|
|
/// 5. If types are complex.
|
|
/// Then both Left and Right are to be expanded and their element types will
|
|
/// be checked with the same way. If we get Res != 0 on some stage, return it.
|
|
/// Otherwise return 0.
|
|
/// 6. For all other cases put llvm_unreachable.
|
|
int cmpType(Type *TyL, Type *TyR) const;
|
|
|
|
bool isEquivalentType(Type *Ty1, Type *Ty2) const {
|
|
return cmpType(Ty1, Ty2) == 0;
|
|
}
|
|
|
|
int cmpNumbers(uint64_t L, uint64_t R) const;
|
|
|
|
int cmpAPInt(const APInt &L, const APInt &R) const;
|
|
int cmpAPFloat(const APFloat &L, const APFloat &R) const;
|
|
int cmpStrings(StringRef L, StringRef R) const;
|
|
int cmpAttrs(const AttributeSet L, const AttributeSet R) const;
|
|
|
|
// The two functions undergoing comparison.
|
|
const Function *F1, *F2;
|
|
|
|
const DataLayout *DL;
|
|
|
|
/// Assign serial numbers to values from left function, and values from
|
|
/// right function.
|
|
/// Explanation:
|
|
/// Being comparing functions we need to compare values we meet at left and
|
|
/// right sides.
|
|
/// Its easy to sort things out for external values. It just should be
|
|
/// the same value at left and right.
|
|
/// But for local values (those were introduced inside function body)
|
|
/// we have to ensure they were introduced at exactly the same place,
|
|
/// and plays the same role.
|
|
/// Let's assign serial number to each value when we meet it first time.
|
|
/// Values that were met at same place will be with same serial numbers.
|
|
/// In this case it would be good to explain few points about values assigned
|
|
/// to BBs and other ways of implementation (see below).
|
|
///
|
|
/// 1. Safety of BB reordering.
|
|
/// It's safe to change the order of BasicBlocks in function.
|
|
/// Relationship with other functions and serial numbering will not be
|
|
/// changed in this case.
|
|
/// As follows from FunctionComparator::compare(), we do CFG walk: we start
|
|
/// from the entry, and then take each terminator. So it doesn't matter how in
|
|
/// fact BBs are ordered in function. And since cmpValues are called during
|
|
/// this walk, the numbering depends only on how BBs located inside the CFG.
|
|
/// So the answer is - yes. We will get the same numbering.
|
|
///
|
|
/// 2. Impossibility to use dominance properties of values.
|
|
/// If we compare two instruction operands: first is usage of local
|
|
/// variable AL from function FL, and second is usage of local variable AR
|
|
/// from FR, we could compare their origins and check whether they are
|
|
/// defined at the same place.
|
|
/// But, we are still not able to compare operands of PHI nodes, since those
|
|
/// could be operands from further BBs we didn't scan yet.
|
|
/// So it's impossible to use dominance properties in general.
|
|
DenseMap<const Value*, int> sn_mapL, sn_mapR;
|
|
};
|
|
|
|
}
|
|
|
|
int FunctionComparator::cmpNumbers(uint64_t L, uint64_t R) const {
|
|
if (L < R) return -1;
|
|
if (L > R) return 1;
|
|
return 0;
|
|
}
|
|
|
|
int FunctionComparator::cmpAPInt(const APInt &L, const APInt &R) const {
|
|
if (int Res = cmpNumbers(L.getBitWidth(), R.getBitWidth()))
|
|
return Res;
|
|
if (L.ugt(R)) return 1;
|
|
if (R.ugt(L)) return -1;
|
|
return 0;
|
|
}
|
|
|
|
int FunctionComparator::cmpAPFloat(const APFloat &L, const APFloat &R) const {
|
|
if (int Res = cmpNumbers((uint64_t)&L.getSemantics(),
|
|
(uint64_t)&R.getSemantics()))
|
|
return Res;
|
|
return cmpAPInt(L.bitcastToAPInt(), R.bitcastToAPInt());
|
|
}
|
|
|
|
int FunctionComparator::cmpStrings(StringRef L, StringRef R) const {
|
|
// Prevent heavy comparison, compare sizes first.
|
|
if (int Res = cmpNumbers(L.size(), R.size()))
|
|
return Res;
|
|
|
|
// Compare strings lexicographically only when it is necessary: only when
|
|
// strings are equal in size.
|
|
return L.compare(R);
|
|
}
|
|
|
|
int FunctionComparator::cmpAttrs(const AttributeSet L,
|
|
const AttributeSet R) const {
|
|
if (int Res = cmpNumbers(L.getNumSlots(), R.getNumSlots()))
|
|
return Res;
|
|
|
|
for (unsigned i = 0, e = L.getNumSlots(); i != e; ++i) {
|
|
AttributeSet::iterator LI = L.begin(i), LE = L.end(i), RI = R.begin(i),
|
|
RE = R.end(i);
|
|
for (; LI != LE && RI != RE; ++LI, ++RI) {
|
|
Attribute LA = *LI;
|
|
Attribute RA = *RI;
|
|
if (LA < RA)
|
|
return -1;
|
|
if (RA < LA)
|
|
return 1;
|
|
}
|
|
if (LI != LE)
|
|
return 1;
|
|
if (RI != RE)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Constants comparison:
|
|
/// 1. Check whether type of L constant could be losslessly bitcasted to R
|
|
/// type.
|
|
/// 2. Compare constant contents.
|
|
/// For more details see declaration comments.
|
|
int FunctionComparator::cmpConstants(const Constant *L, const Constant *R) {
|
|
|
|
Type *TyL = L->getType();
|
|
Type *TyR = R->getType();
|
|
|
|
// Check whether types are bitcastable. This part is just re-factored
|
|
// Type::canLosslesslyBitCastTo method, but instead of returning true/false,
|
|
// we also pack into result which type is "less" for us.
|
|
int TypesRes = cmpType(TyL, TyR);
|
|
if (TypesRes != 0) {
|
|
// Types are different, but check whether we can bitcast them.
|
|
if (!TyL->isFirstClassType()) {
|
|
if (TyR->isFirstClassType())
|
|
return -1;
|
|
// Neither TyL nor TyR are values of first class type. Return the result
|
|
// of comparing the types
|
|
return TypesRes;
|
|
}
|
|
if (!TyR->isFirstClassType()) {
|
|
if (TyL->isFirstClassType())
|
|
return 1;
|
|
return TypesRes;
|
|
}
|
|
|
|
// Vector -> Vector conversions are always lossless if the two vector types
|
|
// have the same size, otherwise not.
|
|
unsigned TyLWidth = 0;
|
|
unsigned TyRWidth = 0;
|
|
|
|
if (const VectorType *VecTyL = dyn_cast<VectorType>(TyL))
|
|
TyLWidth = VecTyL->getBitWidth();
|
|
if (const VectorType *VecTyR = dyn_cast<VectorType>(TyR))
|
|
TyRWidth = VecTyR->getBitWidth();
|
|
|
|
if (TyLWidth != TyRWidth)
|
|
return cmpNumbers(TyLWidth, TyRWidth);
|
|
|
|
// Zero bit-width means neither TyL nor TyR are vectors.
|
|
if (!TyLWidth) {
|
|
PointerType *PTyL = dyn_cast<PointerType>(TyL);
|
|
PointerType *PTyR = dyn_cast<PointerType>(TyR);
|
|
if (PTyL && PTyR) {
|
|
unsigned AddrSpaceL = PTyL->getAddressSpace();
|
|
unsigned AddrSpaceR = PTyR->getAddressSpace();
|
|
if (int Res = cmpNumbers(AddrSpaceL, AddrSpaceR))
|
|
return Res;
|
|
}
|
|
if (PTyL)
|
|
return 1;
|
|
if (PTyR)
|
|
return -1;
|
|
|
|
// TyL and TyR aren't vectors, nor pointers. We don't know how to
|
|
// bitcast them.
|
|
return TypesRes;
|
|
}
|
|
}
|
|
|
|
// OK, types are bitcastable, now check constant contents.
|
|
|
|
if (L->isNullValue() && R->isNullValue())
|
|
return TypesRes;
|
|
if (L->isNullValue() && !R->isNullValue())
|
|
return 1;
|
|
if (!L->isNullValue() && R->isNullValue())
|
|
return -1;
|
|
|
|
if (int Res = cmpNumbers(L->getValueID(), R->getValueID()))
|
|
return Res;
|
|
|
|
switch (L->getValueID()) {
|
|
case Value::UndefValueVal: return TypesRes;
|
|
case Value::ConstantIntVal: {
|
|
const APInt &LInt = cast<ConstantInt>(L)->getValue();
|
|
const APInt &RInt = cast<ConstantInt>(R)->getValue();
|
|
return cmpAPInt(LInt, RInt);
|
|
}
|
|
case Value::ConstantFPVal: {
|
|
const APFloat &LAPF = cast<ConstantFP>(L)->getValueAPF();
|
|
const APFloat &RAPF = cast<ConstantFP>(R)->getValueAPF();
|
|
return cmpAPFloat(LAPF, RAPF);
|
|
}
|
|
case Value::ConstantArrayVal: {
|
|
const ConstantArray *LA = cast<ConstantArray>(L);
|
|
const ConstantArray *RA = cast<ConstantArray>(R);
|
|
uint64_t NumElementsL = cast<ArrayType>(TyL)->getNumElements();
|
|
uint64_t NumElementsR = cast<ArrayType>(TyR)->getNumElements();
|
|
if (int Res = cmpNumbers(NumElementsL, NumElementsR))
|
|
return Res;
|
|
for (uint64_t i = 0; i < NumElementsL; ++i) {
|
|
if (int Res = cmpConstants(cast<Constant>(LA->getOperand(i)),
|
|
cast<Constant>(RA->getOperand(i))))
|
|
return Res;
|
|
}
|
|
return 0;
|
|
}
|
|
case Value::ConstantStructVal: {
|
|
const ConstantStruct *LS = cast<ConstantStruct>(L);
|
|
const ConstantStruct *RS = cast<ConstantStruct>(R);
|
|
unsigned NumElementsL = cast<StructType>(TyL)->getNumElements();
|
|
unsigned NumElementsR = cast<StructType>(TyR)->getNumElements();
|
|
if (int Res = cmpNumbers(NumElementsL, NumElementsR))
|
|
return Res;
|
|
for (unsigned i = 0; i != NumElementsL; ++i) {
|
|
if (int Res = cmpConstants(cast<Constant>(LS->getOperand(i)),
|
|
cast<Constant>(RS->getOperand(i))))
|
|
return Res;
|
|
}
|
|
return 0;
|
|
}
|
|
case Value::ConstantVectorVal: {
|
|
const ConstantVector *LV = cast<ConstantVector>(L);
|
|
const ConstantVector *RV = cast<ConstantVector>(R);
|
|
unsigned NumElementsL = cast<VectorType>(TyL)->getNumElements();
|
|
unsigned NumElementsR = cast<VectorType>(TyR)->getNumElements();
|
|
if (int Res = cmpNumbers(NumElementsL, NumElementsR))
|
|
return Res;
|
|
for (uint64_t i = 0; i < NumElementsL; ++i) {
|
|
if (int Res = cmpConstants(cast<Constant>(LV->getOperand(i)),
|
|
cast<Constant>(RV->getOperand(i))))
|
|
return Res;
|
|
}
|
|
return 0;
|
|
}
|
|
case Value::ConstantExprVal: {
|
|
const ConstantExpr *LE = cast<ConstantExpr>(L);
|
|
const ConstantExpr *RE = cast<ConstantExpr>(R);
|
|
unsigned NumOperandsL = LE->getNumOperands();
|
|
unsigned NumOperandsR = RE->getNumOperands();
|
|
if (int Res = cmpNumbers(NumOperandsL, NumOperandsR))
|
|
return Res;
|
|
for (unsigned i = 0; i < NumOperandsL; ++i) {
|
|
if (int Res = cmpConstants(cast<Constant>(LE->getOperand(i)),
|
|
cast<Constant>(RE->getOperand(i))))
|
|
return Res;
|
|
}
|
|
return 0;
|
|
}
|
|
case Value::FunctionVal:
|
|
case Value::GlobalVariableVal:
|
|
case Value::GlobalAliasVal:
|
|
default: // Unknown constant, cast L and R pointers to numbers and compare.
|
|
return cmpNumbers((uint64_t)L, (uint64_t)R);
|
|
}
|
|
}
|
|
|
|
/// cmpType - compares two types,
|
|
/// defines total ordering among the types set.
|
|
/// See method declaration comments for more details.
|
|
int FunctionComparator::cmpType(Type *TyL, Type *TyR) const {
|
|
|
|
PointerType *PTyL = dyn_cast<PointerType>(TyL);
|
|
PointerType *PTyR = dyn_cast<PointerType>(TyR);
|
|
|
|
if (DL) {
|
|
if (PTyL && PTyL->getAddressSpace() == 0) TyL = DL->getIntPtrType(TyL);
|
|
if (PTyR && PTyR->getAddressSpace() == 0) TyR = DL->getIntPtrType(TyR);
|
|
}
|
|
|
|
if (TyL == TyR)
|
|
return 0;
|
|
|
|
if (int Res = cmpNumbers(TyL->getTypeID(), TyR->getTypeID()))
|
|
return Res;
|
|
|
|
switch (TyL->getTypeID()) {
|
|
default:
|
|
llvm_unreachable("Unknown type!");
|
|
// Fall through in Release mode.
|
|
case Type::IntegerTyID:
|
|
case Type::VectorTyID:
|
|
// TyL == TyR would have returned true earlier.
|
|
return cmpNumbers((uint64_t)TyL, (uint64_t)TyR);
|
|
|
|
case Type::VoidTyID:
|
|
case Type::FloatTyID:
|
|
case Type::DoubleTyID:
|
|
case Type::X86_FP80TyID:
|
|
case Type::FP128TyID:
|
|
case Type::PPC_FP128TyID:
|
|
case Type::LabelTyID:
|
|
case Type::MetadataTyID:
|
|
return 0;
|
|
|
|
case Type::PointerTyID: {
|
|
assert(PTyL && PTyR && "Both types must be pointers here.");
|
|
return cmpNumbers(PTyL->getAddressSpace(), PTyR->getAddressSpace());
|
|
}
|
|
|
|
case Type::StructTyID: {
|
|
StructType *STyL = cast<StructType>(TyL);
|
|
StructType *STyR = cast<StructType>(TyR);
|
|
if (STyL->getNumElements() != STyR->getNumElements())
|
|
return cmpNumbers(STyL->getNumElements(), STyR->getNumElements());
|
|
|
|
if (STyL->isPacked() != STyR->isPacked())
|
|
return cmpNumbers(STyL->isPacked(), STyR->isPacked());
|
|
|
|
for (unsigned i = 0, e = STyL->getNumElements(); i != e; ++i) {
|
|
if (int Res = cmpType(STyL->getElementType(i),
|
|
STyR->getElementType(i)))
|
|
return Res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
case Type::FunctionTyID: {
|
|
FunctionType *FTyL = cast<FunctionType>(TyL);
|
|
FunctionType *FTyR = cast<FunctionType>(TyR);
|
|
if (FTyL->getNumParams() != FTyR->getNumParams())
|
|
return cmpNumbers(FTyL->getNumParams(), FTyR->getNumParams());
|
|
|
|
if (FTyL->isVarArg() != FTyR->isVarArg())
|
|
return cmpNumbers(FTyL->isVarArg(), FTyR->isVarArg());
|
|
|
|
if (int Res = cmpType(FTyL->getReturnType(), FTyR->getReturnType()))
|
|
return Res;
|
|
|
|
for (unsigned i = 0, e = FTyL->getNumParams(); i != e; ++i) {
|
|
if (int Res = cmpType(FTyL->getParamType(i), FTyR->getParamType(i)))
|
|
return Res;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
case Type::ArrayTyID: {
|
|
ArrayType *ATyL = cast<ArrayType>(TyL);
|
|
ArrayType *ATyR = cast<ArrayType>(TyR);
|
|
if (ATyL->getNumElements() != ATyR->getNumElements())
|
|
return cmpNumbers(ATyL->getNumElements(), ATyR->getNumElements());
|
|
return cmpType(ATyL->getElementType(), ATyR->getElementType());
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine whether the two operations are the same except that pointer-to-A
|
|
// and pointer-to-B are equivalent. This should be kept in sync with
|
|
// Instruction::isSameOperationAs.
|
|
// Read method declaration comments for more details.
|
|
int FunctionComparator::cmpOperation(const Instruction *L,
|
|
const Instruction *R) const {
|
|
// Differences from Instruction::isSameOperationAs:
|
|
// * replace type comparison with calls to isEquivalentType.
|
|
// * we test for I->hasSameSubclassOptionalData (nuw/nsw/tail) at the top
|
|
// * because of the above, we don't test for the tail bit on calls later on
|
|
if (int Res = cmpNumbers(L->getOpcode(), R->getOpcode()))
|
|
return Res;
|
|
|
|
if (int Res = cmpNumbers(L->getNumOperands(), R->getNumOperands()))
|
|
return Res;
|
|
|
|
if (int Res = cmpType(L->getType(), R->getType()))
|
|
return Res;
|
|
|
|
if (int Res = cmpNumbers(L->getRawSubclassOptionalData(),
|
|
R->getRawSubclassOptionalData()))
|
|
return Res;
|
|
|
|
// We have two instructions of identical opcode and #operands. Check to see
|
|
// if all operands are the same type
|
|
for (unsigned i = 0, e = L->getNumOperands(); i != e; ++i) {
|
|
if (int Res =
|
|
cmpType(L->getOperand(i)->getType(), R->getOperand(i)->getType()))
|
|
return Res;
|
|
}
|
|
|
|
// Check special state that is a part of some instructions.
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(L)) {
|
|
if (int Res = cmpNumbers(LI->isVolatile(), cast<LoadInst>(R)->isVolatile()))
|
|
return Res;
|
|
if (int Res =
|
|
cmpNumbers(LI->getAlignment(), cast<LoadInst>(R)->getAlignment()))
|
|
return Res;
|
|
if (int Res =
|
|
cmpNumbers(LI->getOrdering(), cast<LoadInst>(R)->getOrdering()))
|
|
return Res;
|
|
return cmpNumbers(LI->getSynchScope(), cast<LoadInst>(R)->getSynchScope());
|
|
}
|
|
if (const StoreInst *SI = dyn_cast<StoreInst>(L)) {
|
|
if (int Res =
|
|
cmpNumbers(SI->isVolatile(), cast<StoreInst>(R)->isVolatile()))
|
|
return Res;
|
|
if (int Res =
|
|
cmpNumbers(SI->getAlignment(), cast<StoreInst>(R)->getAlignment()))
|
|
return Res;
|
|
if (int Res =
|
|
cmpNumbers(SI->getOrdering(), cast<StoreInst>(R)->getOrdering()))
|
|
return Res;
|
|
return cmpNumbers(SI->getSynchScope(), cast<StoreInst>(R)->getSynchScope());
|
|
}
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(L))
|
|
return cmpNumbers(CI->getPredicate(), cast<CmpInst>(R)->getPredicate());
|
|
if (const CallInst *CI = dyn_cast<CallInst>(L)) {
|
|
if (int Res = cmpNumbers(CI->getCallingConv(),
|
|
cast<CallInst>(R)->getCallingConv()))
|
|
return Res;
|
|
return cmpAttrs(CI->getAttributes(), cast<CallInst>(R)->getAttributes());
|
|
}
|
|
if (const InvokeInst *CI = dyn_cast<InvokeInst>(L)) {
|
|
if (int Res = cmpNumbers(CI->getCallingConv(),
|
|
cast<InvokeInst>(R)->getCallingConv()))
|
|
return Res;
|
|
return cmpAttrs(CI->getAttributes(), cast<InvokeInst>(R)->getAttributes());
|
|
}
|
|
if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(L)) {
|
|
ArrayRef<unsigned> LIndices = IVI->getIndices();
|
|
ArrayRef<unsigned> RIndices = cast<InsertValueInst>(R)->getIndices();
|
|
if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
|
|
return Res;
|
|
for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
|
|
if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
|
|
return Res;
|
|
}
|
|
}
|
|
if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(L)) {
|
|
ArrayRef<unsigned> LIndices = EVI->getIndices();
|
|
ArrayRef<unsigned> RIndices = cast<ExtractValueInst>(R)->getIndices();
|
|
if (int Res = cmpNumbers(LIndices.size(), RIndices.size()))
|
|
return Res;
|
|
for (size_t i = 0, e = LIndices.size(); i != e; ++i) {
|
|
if (int Res = cmpNumbers(LIndices[i], RIndices[i]))
|
|
return Res;
|
|
}
|
|
}
|
|
if (const FenceInst *FI = dyn_cast<FenceInst>(L)) {
|
|
if (int Res =
|
|
cmpNumbers(FI->getOrdering(), cast<FenceInst>(R)->getOrdering()))
|
|
return Res;
|
|
return cmpNumbers(FI->getSynchScope(), cast<FenceInst>(R)->getSynchScope());
|
|
}
|
|
|
|
if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(L)) {
|
|
if (int Res = cmpNumbers(CXI->isVolatile(),
|
|
cast<AtomicCmpXchgInst>(R)->isVolatile()))
|
|
return Res;
|
|
if (int Res = cmpNumbers(CXI->getSuccessOrdering(),
|
|
cast<AtomicCmpXchgInst>(R)->getSuccessOrdering()))
|
|
return Res;
|
|
if (int Res = cmpNumbers(CXI->getFailureOrdering(),
|
|
cast<AtomicCmpXchgInst>(R)->getFailureOrdering()))
|
|
return Res;
|
|
return cmpNumbers(CXI->getSynchScope(),
|
|
cast<AtomicCmpXchgInst>(R)->getSynchScope());
|
|
}
|
|
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(L)) {
|
|
if (int Res = cmpNumbers(RMWI->getOperation(),
|
|
cast<AtomicRMWInst>(R)->getOperation()))
|
|
return Res;
|
|
if (int Res = cmpNumbers(RMWI->isVolatile(),
|
|
cast<AtomicRMWInst>(R)->isVolatile()))
|
|
return Res;
|
|
if (int Res = cmpNumbers(RMWI->getOrdering(),
|
|
cast<AtomicRMWInst>(R)->getOrdering()))
|
|
return Res;
|
|
return cmpNumbers(RMWI->getSynchScope(),
|
|
cast<AtomicRMWInst>(R)->getSynchScope());
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Determine whether two GEP operations perform the same underlying arithmetic.
|
|
// Read method declaration comments for more details.
|
|
int FunctionComparator::cmpGEP(const GEPOperator *GEPL,
|
|
const GEPOperator *GEPR) {
|
|
|
|
unsigned int ASL = GEPL->getPointerAddressSpace();
|
|
unsigned int ASR = GEPR->getPointerAddressSpace();
|
|
|
|
if (int Res = cmpNumbers(ASL, ASR))
|
|
return Res;
|
|
|
|
// When we have target data, we can reduce the GEP down to the value in bytes
|
|
// added to the address.
|
|
if (DL) {
|
|
unsigned BitWidth = DL->getPointerSizeInBits(ASL);
|
|
APInt OffsetL(BitWidth, 0), OffsetR(BitWidth, 0);
|
|
if (GEPL->accumulateConstantOffset(*DL, OffsetL) &&
|
|
GEPR->accumulateConstantOffset(*DL, OffsetR))
|
|
return cmpAPInt(OffsetL, OffsetR);
|
|
}
|
|
|
|
if (int Res = cmpNumbers((uint64_t)GEPL->getPointerOperand()->getType(),
|
|
(uint64_t)GEPR->getPointerOperand()->getType()))
|
|
return Res;
|
|
|
|
if (int Res = cmpNumbers(GEPL->getNumOperands(), GEPR->getNumOperands()))
|
|
return Res;
|
|
|
|
for (unsigned i = 0, e = GEPL->getNumOperands(); i != e; ++i) {
|
|
if (int Res = cmpValues(GEPL->getOperand(i), GEPR->getOperand(i)))
|
|
return Res;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// Compare two values used by the two functions under pair-wise comparison. If
|
|
/// this is the first time the values are seen, they're added to the mapping so
|
|
/// that we will detect mismatches on next use.
|
|
/// See comments in declaration for more details.
|
|
int FunctionComparator::cmpValues(const Value *L, const Value *R) {
|
|
// Catch self-reference case.
|
|
if (L == F1) {
|
|
if (R == F2)
|
|
return 0;
|
|
return -1;
|
|
}
|
|
if (R == F2) {
|
|
if (L == F1)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
const Constant *ConstL = dyn_cast<Constant>(L);
|
|
const Constant *ConstR = dyn_cast<Constant>(R);
|
|
if (ConstL && ConstR) {
|
|
if (L == R)
|
|
return 0;
|
|
return cmpConstants(ConstL, ConstR);
|
|
}
|
|
|
|
if (ConstL)
|
|
return 1;
|
|
if (ConstR)
|
|
return -1;
|
|
|
|
const InlineAsm *InlineAsmL = dyn_cast<InlineAsm>(L);
|
|
const InlineAsm *InlineAsmR = dyn_cast<InlineAsm>(R);
|
|
|
|
if (InlineAsmL && InlineAsmR)
|
|
return cmpNumbers((uint64_t)L, (uint64_t)R);
|
|
if (InlineAsmL)
|
|
return 1;
|
|
if (InlineAsmR)
|
|
return -1;
|
|
|
|
auto LeftSN = sn_mapL.insert(std::make_pair(L, sn_mapL.size())),
|
|
RightSN = sn_mapR.insert(std::make_pair(R, sn_mapR.size()));
|
|
|
|
return cmpNumbers(LeftSN.first->second, RightSN.first->second);
|
|
}
|
|
// Test whether two basic blocks have equivalent behaviour.
|
|
bool FunctionComparator::compare(const BasicBlock *BB1, const BasicBlock *BB2) {
|
|
BasicBlock::const_iterator F1I = BB1->begin(), F1E = BB1->end();
|
|
BasicBlock::const_iterator F2I = BB2->begin(), F2E = BB2->end();
|
|
|
|
do {
|
|
if (!enumerate(F1I, F2I))
|
|
return false;
|
|
|
|
if (const GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(F1I)) {
|
|
const GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(F2I);
|
|
if (!GEP2)
|
|
return false;
|
|
|
|
if (!enumerate(GEP1->getPointerOperand(), GEP2->getPointerOperand()))
|
|
return false;
|
|
|
|
if (!isEquivalentGEP(GEP1, GEP2))
|
|
return false;
|
|
} else {
|
|
if (!isEquivalentOperation(F1I, F2I))
|
|
return false;
|
|
|
|
assert(F1I->getNumOperands() == F2I->getNumOperands());
|
|
for (unsigned i = 0, e = F1I->getNumOperands(); i != e; ++i) {
|
|
Value *OpF1 = F1I->getOperand(i);
|
|
Value *OpF2 = F2I->getOperand(i);
|
|
|
|
if (!enumerate(OpF1, OpF2))
|
|
return false;
|
|
|
|
if (OpF1->getValueID() != OpF2->getValueID() ||
|
|
!isEquivalentType(OpF1->getType(), OpF2->getType()))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
++F1I, ++F2I;
|
|
} while (F1I != F1E && F2I != F2E);
|
|
|
|
return F1I == F1E && F2I == F2E;
|
|
}
|
|
|
|
// Test whether the two functions have equivalent behaviour.
|
|
bool FunctionComparator::compare() {
|
|
// We need to recheck everything, but check the things that weren't included
|
|
// in the hash first.
|
|
|
|
sn_mapL.clear();
|
|
sn_mapR.clear();
|
|
|
|
if (F1->getAttributes() != F2->getAttributes())
|
|
return false;
|
|
|
|
if (F1->hasGC() != F2->hasGC())
|
|
return false;
|
|
|
|
if (F1->hasGC() && F1->getGC() != F2->getGC())
|
|
return false;
|
|
|
|
if (F1->hasSection() != F2->hasSection())
|
|
return false;
|
|
|
|
if (F1->hasSection() && F1->getSection() != F2->getSection())
|
|
return false;
|
|
|
|
if (F1->isVarArg() != F2->isVarArg())
|
|
return false;
|
|
|
|
// TODO: if it's internal and only used in direct calls, we could handle this
|
|
// case too.
|
|
if (F1->getCallingConv() != F2->getCallingConv())
|
|
return false;
|
|
|
|
if (!isEquivalentType(F1->getFunctionType(), F2->getFunctionType()))
|
|
return false;
|
|
|
|
assert(F1->arg_size() == F2->arg_size() &&
|
|
"Identically typed functions have different numbers of args!");
|
|
|
|
// Visit the arguments so that they get enumerated in the order they're
|
|
// passed in.
|
|
for (Function::const_arg_iterator f1i = F1->arg_begin(),
|
|
f2i = F2->arg_begin(), f1e = F1->arg_end(); f1i != f1e; ++f1i, ++f2i) {
|
|
if (!enumerate(f1i, f2i))
|
|
llvm_unreachable("Arguments repeat!");
|
|
}
|
|
|
|
// We do a CFG-ordered walk since the actual ordering of the blocks in the
|
|
// linked list is immaterial. Our walk starts at the entry block for both
|
|
// functions, then takes each block from each terminator in order. As an
|
|
// artifact, this also means that unreachable blocks are ignored.
|
|
SmallVector<const BasicBlock *, 8> F1BBs, F2BBs;
|
|
SmallSet<const BasicBlock *, 128> VisitedBBs; // in terms of F1.
|
|
|
|
F1BBs.push_back(&F1->getEntryBlock());
|
|
F2BBs.push_back(&F2->getEntryBlock());
|
|
|
|
VisitedBBs.insert(F1BBs[0]);
|
|
while (!F1BBs.empty()) {
|
|
const BasicBlock *F1BB = F1BBs.pop_back_val();
|
|
const BasicBlock *F2BB = F2BBs.pop_back_val();
|
|
|
|
if (!enumerate(F1BB, F2BB) || !compare(F1BB, F2BB))
|
|
return false;
|
|
|
|
const TerminatorInst *F1TI = F1BB->getTerminator();
|
|
const TerminatorInst *F2TI = F2BB->getTerminator();
|
|
|
|
assert(F1TI->getNumSuccessors() == F2TI->getNumSuccessors());
|
|
for (unsigned i = 0, e = F1TI->getNumSuccessors(); i != e; ++i) {
|
|
if (!VisitedBBs.insert(F1TI->getSuccessor(i)))
|
|
continue;
|
|
|
|
F1BBs.push_back(F1TI->getSuccessor(i));
|
|
F2BBs.push_back(F2TI->getSuccessor(i));
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// MergeFunctions finds functions which will generate identical machine code,
|
|
/// by considering all pointer types to be equivalent. Once identified,
|
|
/// MergeFunctions will fold them by replacing a call to one to a call to a
|
|
/// bitcast of the other.
|
|
///
|
|
class MergeFunctions : public ModulePass {
|
|
public:
|
|
static char ID;
|
|
MergeFunctions()
|
|
: ModulePass(ID), HasGlobalAliases(false) {
|
|
initializeMergeFunctionsPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnModule(Module &M) override;
|
|
|
|
private:
|
|
typedef DenseSet<ComparableFunction> FnSetType;
|
|
|
|
/// A work queue of functions that may have been modified and should be
|
|
/// analyzed again.
|
|
std::vector<WeakVH> Deferred;
|
|
|
|
/// Insert a ComparableFunction into the FnSet, or merge it away if it's
|
|
/// equal to one that's already present.
|
|
bool insert(ComparableFunction &NewF);
|
|
|
|
/// Remove a Function from the FnSet and queue it up for a second sweep of
|
|
/// analysis.
|
|
void remove(Function *F);
|
|
|
|
/// Find the functions that use this Value and remove them from FnSet and
|
|
/// queue the functions.
|
|
void removeUsers(Value *V);
|
|
|
|
/// Replace all direct calls of Old with calls of New. Will bitcast New if
|
|
/// necessary to make types match.
|
|
void replaceDirectCallers(Function *Old, Function *New);
|
|
|
|
/// Merge two equivalent functions. Upon completion, G may be deleted, or may
|
|
/// be converted into a thunk. In either case, it should never be visited
|
|
/// again.
|
|
void mergeTwoFunctions(Function *F, Function *G);
|
|
|
|
/// Replace G with a thunk or an alias to F. Deletes G.
|
|
void writeThunkOrAlias(Function *F, Function *G);
|
|
|
|
/// Replace G with a simple tail call to bitcast(F). Also replace direct uses
|
|
/// of G with bitcast(F). Deletes G.
|
|
void writeThunk(Function *F, Function *G);
|
|
|
|
/// Replace G with an alias to F. Deletes G.
|
|
void writeAlias(Function *F, Function *G);
|
|
|
|
/// The set of all distinct functions. Use the insert() and remove() methods
|
|
/// to modify it.
|
|
FnSetType FnSet;
|
|
|
|
/// DataLayout for more accurate GEP comparisons. May be NULL.
|
|
const DataLayout *DL;
|
|
|
|
/// Whether or not the target supports global aliases.
|
|
bool HasGlobalAliases;
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char MergeFunctions::ID = 0;
|
|
INITIALIZE_PASS(MergeFunctions, "mergefunc", "Merge Functions", false, false)
|
|
|
|
ModulePass *llvm::createMergeFunctionsPass() {
|
|
return new MergeFunctions();
|
|
}
|
|
|
|
bool MergeFunctions::runOnModule(Module &M) {
|
|
bool Changed = false;
|
|
DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
|
|
DL = DLP ? &DLP->getDataLayout() : nullptr;
|
|
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
if (!I->isDeclaration() && !I->hasAvailableExternallyLinkage())
|
|
Deferred.push_back(WeakVH(I));
|
|
}
|
|
FnSet.resize(Deferred.size());
|
|
|
|
do {
|
|
std::vector<WeakVH> Worklist;
|
|
Deferred.swap(Worklist);
|
|
|
|
DEBUG(dbgs() << "size of module: " << M.size() << '\n');
|
|
DEBUG(dbgs() << "size of worklist: " << Worklist.size() << '\n');
|
|
|
|
// Insert only strong functions and merge them. Strong function merging
|
|
// always deletes one of them.
|
|
for (std::vector<WeakVH>::iterator I = Worklist.begin(),
|
|
E = Worklist.end(); I != E; ++I) {
|
|
if (!*I) continue;
|
|
Function *F = cast<Function>(*I);
|
|
if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
|
|
!F->mayBeOverridden()) {
|
|
ComparableFunction CF = ComparableFunction(F, DL);
|
|
Changed |= insert(CF);
|
|
}
|
|
}
|
|
|
|
// Insert only weak functions and merge them. By doing these second we
|
|
// create thunks to the strong function when possible. When two weak
|
|
// functions are identical, we create a new strong function with two weak
|
|
// weak thunks to it which are identical but not mergable.
|
|
for (std::vector<WeakVH>::iterator I = Worklist.begin(),
|
|
E = Worklist.end(); I != E; ++I) {
|
|
if (!*I) continue;
|
|
Function *F = cast<Function>(*I);
|
|
if (!F->isDeclaration() && !F->hasAvailableExternallyLinkage() &&
|
|
F->mayBeOverridden()) {
|
|
ComparableFunction CF = ComparableFunction(F, DL);
|
|
Changed |= insert(CF);
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "size of FnSet: " << FnSet.size() << '\n');
|
|
} while (!Deferred.empty());
|
|
|
|
FnSet.clear();
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool DenseMapInfo<ComparableFunction>::isEqual(const ComparableFunction &LHS,
|
|
const ComparableFunction &RHS) {
|
|
if (LHS.getFunc() == RHS.getFunc() &&
|
|
LHS.getHash() == RHS.getHash())
|
|
return true;
|
|
if (!LHS.getFunc() || !RHS.getFunc())
|
|
return false;
|
|
|
|
// One of these is a special "underlying pointer comparison only" object.
|
|
if (LHS.getDataLayout() == ComparableFunction::LookupOnly ||
|
|
RHS.getDataLayout() == ComparableFunction::LookupOnly)
|
|
return false;
|
|
|
|
assert(LHS.getDataLayout() == RHS.getDataLayout() &&
|
|
"Comparing functions for different targets");
|
|
|
|
return FunctionComparator(LHS.getDataLayout(), LHS.getFunc(),
|
|
RHS.getFunc()).compare();
|
|
}
|
|
|
|
// Replace direct callers of Old with New.
|
|
void MergeFunctions::replaceDirectCallers(Function *Old, Function *New) {
|
|
Constant *BitcastNew = ConstantExpr::getBitCast(New, Old->getType());
|
|
for (auto UI = Old->use_begin(), UE = Old->use_end(); UI != UE;) {
|
|
Use *U = &*UI;
|
|
++UI;
|
|
CallSite CS(U->getUser());
|
|
if (CS && CS.isCallee(U)) {
|
|
remove(CS.getInstruction()->getParent()->getParent());
|
|
U->set(BitcastNew);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Replace G with an alias to F if possible, or else a thunk to F. Deletes G.
|
|
void MergeFunctions::writeThunkOrAlias(Function *F, Function *G) {
|
|
if (HasGlobalAliases && G->hasUnnamedAddr()) {
|
|
if (G->hasExternalLinkage() || G->hasLocalLinkage() ||
|
|
G->hasWeakLinkage()) {
|
|
writeAlias(F, G);
|
|
return;
|
|
}
|
|
}
|
|
|
|
writeThunk(F, G);
|
|
}
|
|
|
|
// Helper for writeThunk,
|
|
// Selects proper bitcast operation,
|
|
// but a bit simpler then CastInst::getCastOpcode.
|
|
static Value *createCast(IRBuilder<false> &Builder, Value *V, Type *DestTy) {
|
|
Type *SrcTy = V->getType();
|
|
if (SrcTy->isStructTy()) {
|
|
assert(DestTy->isStructTy());
|
|
assert(SrcTy->getStructNumElements() == DestTy->getStructNumElements());
|
|
Value *Result = UndefValue::get(DestTy);
|
|
for (unsigned int I = 0, E = SrcTy->getStructNumElements(); I < E; ++I) {
|
|
Value *Element = createCast(
|
|
Builder, Builder.CreateExtractValue(V, ArrayRef<unsigned int>(I)),
|
|
DestTy->getStructElementType(I));
|
|
|
|
Result =
|
|
Builder.CreateInsertValue(Result, Element, ArrayRef<unsigned int>(I));
|
|
}
|
|
return Result;
|
|
}
|
|
assert(!DestTy->isStructTy());
|
|
if (SrcTy->isIntegerTy() && DestTy->isPointerTy())
|
|
return Builder.CreateIntToPtr(V, DestTy);
|
|
else if (SrcTy->isPointerTy() && DestTy->isIntegerTy())
|
|
return Builder.CreatePtrToInt(V, DestTy);
|
|
else
|
|
return Builder.CreateBitCast(V, DestTy);
|
|
}
|
|
|
|
// Replace G with a simple tail call to bitcast(F). Also replace direct uses
|
|
// of G with bitcast(F). Deletes G.
|
|
void MergeFunctions::writeThunk(Function *F, Function *G) {
|
|
if (!G->mayBeOverridden()) {
|
|
// Redirect direct callers of G to F.
|
|
replaceDirectCallers(G, F);
|
|
}
|
|
|
|
// If G was internal then we may have replaced all uses of G with F. If so,
|
|
// stop here and delete G. There's no need for a thunk.
|
|
if (G->hasLocalLinkage() && G->use_empty()) {
|
|
G->eraseFromParent();
|
|
return;
|
|
}
|
|
|
|
Function *NewG = Function::Create(G->getFunctionType(), G->getLinkage(), "",
|
|
G->getParent());
|
|
BasicBlock *BB = BasicBlock::Create(F->getContext(), "", NewG);
|
|
IRBuilder<false> Builder(BB);
|
|
|
|
SmallVector<Value *, 16> Args;
|
|
unsigned i = 0;
|
|
FunctionType *FFTy = F->getFunctionType();
|
|
for (Function::arg_iterator AI = NewG->arg_begin(), AE = NewG->arg_end();
|
|
AI != AE; ++AI) {
|
|
Args.push_back(createCast(Builder, (Value*)AI, FFTy->getParamType(i)));
|
|
++i;
|
|
}
|
|
|
|
CallInst *CI = Builder.CreateCall(F, Args);
|
|
CI->setTailCall();
|
|
CI->setCallingConv(F->getCallingConv());
|
|
if (NewG->getReturnType()->isVoidTy()) {
|
|
Builder.CreateRetVoid();
|
|
} else {
|
|
Builder.CreateRet(createCast(Builder, CI, NewG->getReturnType()));
|
|
}
|
|
|
|
NewG->copyAttributesFrom(G);
|
|
NewG->takeName(G);
|
|
removeUsers(G);
|
|
G->replaceAllUsesWith(NewG);
|
|
G->eraseFromParent();
|
|
|
|
DEBUG(dbgs() << "writeThunk: " << NewG->getName() << '\n');
|
|
++NumThunksWritten;
|
|
}
|
|
|
|
// Replace G with an alias to F and delete G.
|
|
void MergeFunctions::writeAlias(Function *F, Function *G) {
|
|
PointerType *PTy = G->getType();
|
|
auto *GA = GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
|
|
G->getLinkage(), "", F);
|
|
F->setAlignment(std::max(F->getAlignment(), G->getAlignment()));
|
|
GA->takeName(G);
|
|
GA->setVisibility(G->getVisibility());
|
|
removeUsers(G);
|
|
G->replaceAllUsesWith(GA);
|
|
G->eraseFromParent();
|
|
|
|
DEBUG(dbgs() << "writeAlias: " << GA->getName() << '\n');
|
|
++NumAliasesWritten;
|
|
}
|
|
|
|
// Merge two equivalent functions. Upon completion, Function G is deleted.
|
|
void MergeFunctions::mergeTwoFunctions(Function *F, Function *G) {
|
|
if (F->mayBeOverridden()) {
|
|
assert(G->mayBeOverridden());
|
|
|
|
if (HasGlobalAliases) {
|
|
// Make them both thunks to the same internal function.
|
|
Function *H = Function::Create(F->getFunctionType(), F->getLinkage(), "",
|
|
F->getParent());
|
|
H->copyAttributesFrom(F);
|
|
H->takeName(F);
|
|
removeUsers(F);
|
|
F->replaceAllUsesWith(H);
|
|
|
|
unsigned MaxAlignment = std::max(G->getAlignment(), H->getAlignment());
|
|
|
|
writeAlias(F, G);
|
|
writeAlias(F, H);
|
|
|
|
F->setAlignment(MaxAlignment);
|
|
F->setLinkage(GlobalValue::PrivateLinkage);
|
|
} else {
|
|
// We can't merge them. Instead, pick one and update all direct callers
|
|
// to call it and hope that we improve the instruction cache hit rate.
|
|
replaceDirectCallers(G, F);
|
|
}
|
|
|
|
++NumDoubleWeak;
|
|
} else {
|
|
writeThunkOrAlias(F, G);
|
|
}
|
|
|
|
++NumFunctionsMerged;
|
|
}
|
|
|
|
// Insert a ComparableFunction into the FnSet, or merge it away if equal to one
|
|
// that was already inserted.
|
|
bool MergeFunctions::insert(ComparableFunction &NewF) {
|
|
std::pair<FnSetType::iterator, bool> Result = FnSet.insert(NewF);
|
|
if (Result.second) {
|
|
DEBUG(dbgs() << "Inserting as unique: " << NewF.getFunc()->getName() << '\n');
|
|
return false;
|
|
}
|
|
|
|
const ComparableFunction &OldF = *Result.first;
|
|
|
|
// Don't merge tiny functions, since it can just end up making the function
|
|
// larger.
|
|
// FIXME: Should still merge them if they are unnamed_addr and produce an
|
|
// alias.
|
|
if (NewF.getFunc()->size() == 1) {
|
|
if (NewF.getFunc()->front().size() <= 2) {
|
|
DEBUG(dbgs() << NewF.getFunc()->getName()
|
|
<< " is to small to bother merging\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Never thunk a strong function to a weak function.
|
|
assert(!OldF.getFunc()->mayBeOverridden() ||
|
|
NewF.getFunc()->mayBeOverridden());
|
|
|
|
DEBUG(dbgs() << " " << OldF.getFunc()->getName() << " == "
|
|
<< NewF.getFunc()->getName() << '\n');
|
|
|
|
Function *DeleteF = NewF.getFunc();
|
|
NewF.release();
|
|
mergeTwoFunctions(OldF.getFunc(), DeleteF);
|
|
return true;
|
|
}
|
|
|
|
// Remove a function from FnSet. If it was already in FnSet, add it to Deferred
|
|
// so that we'll look at it in the next round.
|
|
void MergeFunctions::remove(Function *F) {
|
|
// We need to make sure we remove F, not a function "equal" to F per the
|
|
// function equality comparator.
|
|
//
|
|
// The special "lookup only" ComparableFunction bypasses the expensive
|
|
// function comparison in favour of a pointer comparison on the underlying
|
|
// Function*'s.
|
|
ComparableFunction CF = ComparableFunction(F, ComparableFunction::LookupOnly);
|
|
if (FnSet.erase(CF)) {
|
|
DEBUG(dbgs() << "Removed " << F->getName() << " from set and deferred it.\n");
|
|
Deferred.push_back(F);
|
|
}
|
|
}
|
|
|
|
// For each instruction used by the value, remove() the function that contains
|
|
// the instruction. This should happen right before a call to RAUW.
|
|
void MergeFunctions::removeUsers(Value *V) {
|
|
std::vector<Value *> Worklist;
|
|
Worklist.push_back(V);
|
|
while (!Worklist.empty()) {
|
|
Value *V = Worklist.back();
|
|
Worklist.pop_back();
|
|
|
|
for (User *U : V->users()) {
|
|
if (Instruction *I = dyn_cast<Instruction>(U)) {
|
|
remove(I->getParent()->getParent());
|
|
} else if (isa<GlobalValue>(U)) {
|
|
// do nothing
|
|
} else if (Constant *C = dyn_cast<Constant>(U)) {
|
|
for (User *UU : C->users())
|
|
Worklist.push_back(UU);
|
|
}
|
|
}
|
|
}
|
|
}
|