llvm-6502/lib/Target/SystemZ/SystemZShortenInst.cpp
Richard Sandiford 259a6006e8 [SystemZ] Define the GR64 low-word logic instructions as pseudo aliases.
Another patch to avoid duplication of encoding information.  Things like
NILF, NILL and NILH are used as both 32-bit and 64-bit instructions.
Here the 64-bit versions are defined as aliases of the 32-bit ones.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191369 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-25 11:11:53 +00:00

160 lines
5.4 KiB
C++

//===-- SystemZShortenInst.cpp - Instruction-shortening pass --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass tries to replace instructions with shorter forms. For example,
// IILF can be replaced with LLILL or LLILH if the constant fits and if the
// other 32 bits of the GR64 destination are not live.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "systemz-shorten-inst"
#include "SystemZTargetMachine.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
using namespace llvm;
namespace {
class SystemZShortenInst : public MachineFunctionPass {
public:
static char ID;
SystemZShortenInst(const SystemZTargetMachine &tm);
virtual const char *getPassName() const {
return "SystemZ Instruction Shortening";
}
bool processBlock(MachineBasicBlock *MBB);
bool runOnMachineFunction(MachineFunction &F);
private:
bool shortenIIF(MachineInstr &MI, unsigned *GPRMap, unsigned LiveOther,
unsigned LLIxL, unsigned LLIxH);
const SystemZInstrInfo *TII;
// LowGPRs[I] has bit N set if LLVM register I includes the low
// word of GPR N. HighGPRs is the same for the high word.
unsigned LowGPRs[SystemZ::NUM_TARGET_REGS];
unsigned HighGPRs[SystemZ::NUM_TARGET_REGS];
};
char SystemZShortenInst::ID = 0;
} // end of anonymous namespace
FunctionPass *llvm::createSystemZShortenInstPass(SystemZTargetMachine &TM) {
return new SystemZShortenInst(TM);
}
SystemZShortenInst::SystemZShortenInst(const SystemZTargetMachine &tm)
: MachineFunctionPass(ID), TII(0), LowGPRs(), HighGPRs() {
// Set up LowGPRs and HighGPRs.
for (unsigned I = 0; I < 16; ++I) {
LowGPRs[SystemZMC::GR32Regs[I]] |= 1 << I;
LowGPRs[SystemZMC::GR64Regs[I]] |= 1 << I;
HighGPRs[SystemZMC::GR64Regs[I]] |= 1 << I;
if (unsigned GR128 = SystemZMC::GR128Regs[I]) {
LowGPRs[GR128] |= 3 << I;
HighGPRs[GR128] |= 3 << I;
}
}
}
// MI loads one word of a GPR using an IIxF instruction and LLIxL and LLIxH
// are the halfword immediate loads for the same word. Try to use one of them
// instead of IIxF. If MI loads the high word, GPRMap[X] is the set of high
// words referenced by LLVM register X while LiveOther is the mask of low
// words that are currently live, and vice versa.
bool SystemZShortenInst::shortenIIF(MachineInstr &MI, unsigned *GPRMap,
unsigned LiveOther, unsigned LLIxL,
unsigned LLIxH) {
unsigned Reg = MI.getOperand(0).getReg();
assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
unsigned GPRs = GPRMap[Reg];
assert(GPRs != 0 && "Register must be a GPR");
if (GPRs & LiveOther)
return false;
uint64_t Imm = MI.getOperand(1).getImm();
if (SystemZ::isImmLL(Imm)) {
MI.setDesc(TII->get(LLIxL));
MI.getOperand(0).setReg(SystemZMC::getRegAsGR64(Reg));
return true;
}
if (SystemZ::isImmLH(Imm)) {
MI.setDesc(TII->get(LLIxH));
MI.getOperand(0).setReg(SystemZMC::getRegAsGR64(Reg));
MI.getOperand(1).setImm(Imm >> 16);
return true;
}
return false;
}
// Process all instructions in MBB. Return true if something changed.
bool SystemZShortenInst::processBlock(MachineBasicBlock *MBB) {
bool Changed = false;
// Work out which words are live on exit from the block.
unsigned LiveLow = 0;
unsigned LiveHigh = 0;
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI) {
for (MachineBasicBlock::livein_iterator LI = (*SI)->livein_begin(),
LE = (*SI)->livein_end(); LI != LE; ++LI) {
unsigned Reg = *LI;
assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
LiveLow |= LowGPRs[Reg];
LiveHigh |= HighGPRs[Reg];
}
}
// Iterate backwards through the block looking for instructions to change.
for (MachineBasicBlock::reverse_iterator MBBI = MBB->rbegin(),
MBBE = MBB->rend(); MBBI != MBBE; ++MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
if (Opcode == SystemZ::IILF)
Changed |= shortenIIF(MI, LowGPRs, LiveHigh, SystemZ::LLILL,
SystemZ::LLILH);
unsigned UsedLow = 0;
unsigned UsedHigh = 0;
for (MachineInstr::mop_iterator MOI = MI.operands_begin(),
MOE = MI.operands_end(); MOI != MOE; ++MOI) {
MachineOperand &MO = *MOI;
if (MO.isReg()) {
if (unsigned Reg = MO.getReg()) {
assert(Reg < SystemZ::NUM_TARGET_REGS && "Invalid register number");
if (MO.isDef()) {
LiveLow &= ~LowGPRs[Reg];
LiveHigh &= ~HighGPRs[Reg];
} else if (!MO.isUndef()) {
UsedLow |= LowGPRs[Reg];
UsedHigh |= HighGPRs[Reg];
}
}
}
}
LiveLow |= UsedLow;
LiveHigh |= UsedHigh;
}
return Changed;
}
bool SystemZShortenInst::runOnMachineFunction(MachineFunction &F) {
TII = static_cast<const SystemZInstrInfo *>(F.getTarget().getInstrInfo());
bool Changed = false;
for (MachineFunction::iterator MFI = F.begin(), MFE = F.end();
MFI != MFE; ++MFI)
Changed |= processBlock(MFI);
return Changed;
}