llvm-6502/test/CodeGen/Mips/cconv/arguments-hard-float.ll
David Blaikie 198d8baafb [opaque pointer type] Add textual IR support for explicit type parameter to getelementptr instruction
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.

This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.

* This doesn't modify gep operators, only instructions (operators will be
  handled separately)

* Textual IR changes only. Bitcode (including upgrade) and changing the
  in-memory representation will be in separate changes.

* geps of vectors are transformed as:
    getelementptr <4 x float*> %x, ...
  ->getelementptr float, <4 x float*> %x, ...
  Then, once the opaque pointer type is introduced, this will ultimately look
  like:
    getelementptr float, <4 x ptr> %x
  with the unambiguous interpretation that it is a vector of pointers to float.

* address spaces remain on the pointer, not the type:
    getelementptr float addrspace(1)* %x
  ->getelementptr float, float addrspace(1)* %x
  Then, eventually:
    getelementptr float, ptr addrspace(1) %x

Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.

update.py:
import fileinput
import sys
import re

ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile(       r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")

def conv(match, line):
  if not match:
    return line
  line = match.groups()[0]
  if len(match.groups()[5]) == 0:
    line += match.groups()[2]
  line += match.groups()[3]
  line += ", "
  line += match.groups()[1]
  line += "\n"
  return line

for line in sys.stdin:
  if line.find("getelementptr ") == line.find("getelementptr inbounds"):
    if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
      line = conv(re.match(ibrep, line), line)
  elif line.find("getelementptr ") != line.find("getelementptr ("):
    line = conv(re.match(normrep, line), line)
  sys.stdout.write(line)

apply.sh:
for name in "$@"
do
  python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
  rm -f "$name.tmp"
done

The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh

After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).

The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.

Reviewers: rafael, dexonsmith, grosser

Differential Revision: http://reviews.llvm.org/D7636

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@230786 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-27 19:29:02 +00:00

212 lines
10 KiB
LLVM

; RUN: llc -march=mips -relocation-model=static < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32BE %s
; RUN: llc -march=mipsel -relocation-model=static < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 --check-prefix=O32LE %s
; RUN-TODO: llc -march=mips64 -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s
; RUN-TODO: llc -march=mips64el -relocation-model=static -target-abi o32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=O32 %s
; RUN: llc -march=mips64 -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s
; RUN: llc -march=mips64el -relocation-model=static -target-abi n32 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM32 --check-prefix=NEW %s
; RUN: llc -march=mips64 -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s
; RUN: llc -march=mips64el -relocation-model=static -target-abi n64 < %s | FileCheck --check-prefix=ALL --check-prefix=SYM64 --check-prefix=NEW %s
; Test the floating point arguments for all ABI's and byte orders as specified
; by section 5 of MD00305 (MIPS ABIs Described).
;
; N32/N64 are identical in this area so their checks have been combined into
; the 'NEW' prefix (the N stands for New).
@bytes = global [11 x i8] zeroinitializer
@dwords = global [11 x i64] zeroinitializer
@floats = global [11 x float] zeroinitializer
@doubles = global [11 x double] zeroinitializer
define void @double_args(double %a, double %b, double %c, double %d, double %e,
double %f, double %g, double %h, double %i) nounwind {
entry:
%0 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
store volatile double %a, double* %0
%1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 2
store volatile double %b, double* %1
%2 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 3
store volatile double %c, double* %2
%3 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 4
store volatile double %d, double* %3
%4 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 5
store volatile double %e, double* %4
%5 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 6
store volatile double %f, double* %5
%6 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 7
store volatile double %g, double* %6
%7 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 8
store volatile double %h, double* %7
%8 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 9
store volatile double %i, double* %8
ret void
}
; ALL-LABEL: double_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)(
; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG: sdc1 $f12, 8([[R2]])
; O32-DAG: sdc1 $f14, 16([[R2]])
; NEW-DAG: sdc1 $f13, 16([[R2]])
; O32 has run out of argument registers and starts using the stack
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG: sdc1 [[F1]], 24([[R2]])
; NEW-DAG: sdc1 $f14, 24([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG: sdc1 [[F1]], 32([[R2]])
; NEW-DAG: sdc1 $f15, 32([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG: sdc1 [[F1]], 40([[R2]])
; NEW-DAG: sdc1 $f16, 40([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 40($sp)
; O32-DAG: sdc1 [[F1]], 48([[R2]])
; NEW-DAG: sdc1 $f17, 48([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 48($sp)
; O32-DAG: sdc1 [[F1]], 56([[R2]])
; NEW-DAG: sdc1 $f18, 56([[R2]])
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 56($sp)
; O32-DAG: sdc1 [[F1]], 64([[R2]])
; NEW-DAG: sdc1 $f19, 64([[R2]])
; N32/N64 have run out of registers and start using the stack too
; O32-DAG: ldc1 [[F1:\$f[0-9]+]], 64($sp)
; O32-DAG: sdc1 [[F1]], 72([[R2]])
; NEW-DAG: ldc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG: sdc1 [[F1]], 72([[R2]])
define void @float_args(float %a, float %b, float %c, float %d, float %e,
float %f, float %g, float %h, float %i) nounwind {
entry:
%0 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
store volatile float %a, float* %0
%1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 2
store volatile float %b, float* %1
%2 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 3
store volatile float %c, float* %2
%3 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 4
store volatile float %d, float* %3
%4 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 5
store volatile float %e, float* %4
%5 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 6
store volatile float %f, float* %5
%6 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 7
store volatile float %g, float* %6
%7 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 8
store volatile float %h, float* %7
%8 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 9
store volatile float %i, float* %8
ret void
}
; ALL-LABEL: float_args:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(floats)(
; The first argument is floating point so floating point registers are used.
; The first argument is the same for O32/N32/N64 but the second argument differs
; by register
; ALL-DAG: swc1 $f12, 4([[R1]])
; O32-DAG: swc1 $f14, 8([[R1]])
; NEW-DAG: swc1 $f13, 8([[R1]])
; O32 has run out of argument registers and (in theory) starts using the stack
; I've yet to find a reference in the documentation about this but GCC uses up
; the remaining two argument slots in the GPR's first. We'll do the same for
; compatibility.
; O32-DAG: sw $6, 12([[R1]])
; NEW-DAG: swc1 $f14, 12([[R1]])
; O32-DAG: sw $7, 16([[R1]])
; NEW-DAG: swc1 $f15, 16([[R1]])
; O32 is definitely out of registers now and switches to the stack.
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 16($sp)
; O32-DAG: swc1 [[F1]], 20([[R1]])
; NEW-DAG: swc1 $f16, 20([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 20($sp)
; O32-DAG: swc1 [[F1]], 24([[R1]])
; NEW-DAG: swc1 $f17, 24([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 24($sp)
; O32-DAG: swc1 [[F1]], 28([[R1]])
; NEW-DAG: swc1 $f18, 28([[R1]])
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 28($sp)
; O32-DAG: swc1 [[F1]], 32([[R1]])
; NEW-DAG: swc1 $f19, 32([[R1]])
; N32/N64 have run out of registers and start using the stack too
; O32-DAG: lwc1 [[F1:\$f[0-9]+]], 32($sp)
; O32-DAG: swc1 [[F1]], 36([[R1]])
; NEW-DAG: lwc1 [[F1:\$f[0-9]+]], 0($sp)
; NEW-DAG: swc1 [[F1]], 36([[R1]])
define void @double_arg2(i8 %a, double %b) nounwind {
entry:
%0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
store volatile i8 %a, i8* %0
%1 = getelementptr [11 x double], [11 x double]* @doubles, i32 0, i32 1
store volatile double %b, double* %1
ret void
}
; ALL-LABEL: double_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)(
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(doubles)
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(doubles)(
; The first argument is the same in O32/N32/N64.
; ALL-DAG: sb $4, 1([[R1]])
; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; The second slot is insufficiently aligned for double on O32 so it is skipped.
; Also, double occupies two slots on O32 and only one for N32/N64.
; O32LE-DAG: mtc1 $6, [[F1:\$f[0-9]*[02468]+]]
; O32LE-DAG: mtc1 $7, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG: mtc1 $6, [[F2:\$f[0-9]*[13579]+]]
; O32BE-DAG: mtc1 $7, [[F1:\$f[0-9]*[02468]+]]
; O32-DAG: sdc1 [[F1]], 8([[R2]])
; NEW-DAG: sdc1 $f13, 8([[R2]])
define void @float_arg2(i8 %a, float %b) nounwind {
entry:
%0 = getelementptr [11 x i8], [11 x i8]* @bytes, i32 0, i32 1
store volatile i8 %a, i8* %0
%1 = getelementptr [11 x float], [11 x float]* @floats, i32 0, i32 1
store volatile float %b, float* %1
ret void
}
; ALL-LABEL: float_arg2:
; We won't test the way the global address is calculated in this test. This is
; just to get the register number for the other checks.
; SYM32-DAG: addiu [[R1:\$[0-9]+]], ${{[0-9]+}}, %lo(bytes)
; SYM64-DAG: ld [[R1:\$[0-9]]], %got_disp(bytes)(
; SYM32-DAG: addiu [[R2:\$[0-9]+]], ${{[0-9]+}}, %lo(floats)
; SYM64-DAG: ld [[R2:\$[0-9]]], %got_disp(floats)(
; The first argument is the same in O32/N32/N64.
; ALL-DAG: sb $4, 1([[R1]])
; The first argument isn't floating point so floating point registers are not
; used in O32, but N32/N64 will still use them.
; MD00305 and GCC disagree on this one. MD00305 says that floats are treated
; as 8-byte aligned and occupy two slots on O32. GCC is treating them as 4-byte
; aligned and occupying one slot. We'll use GCC's definition.
; O32-DAG: sw $5, 4([[R2]])
; NEW-DAG: swc1 $f13, 4([[R2]])