mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-20 09:30:43 +00:00
086ec9976f
track of the number of live registers, which is all the set was being used for. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@56498 91177308-0d34-0410-b5e6-96231b3b80d8
1910 lines
64 KiB
C++
1910 lines
64 KiB
C++
//===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements bottom-up and top-down register pressure reduction list
|
|
// schedulers, using standard algorithms. The basic approach uses a priority
|
|
// queue of available nodes to schedule. One at a time, nodes are taken from
|
|
// the priority queue (thus in priority order), checked for legality to
|
|
// schedule, and emitted if legal.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "pre-RA-sched"
|
|
#include "llvm/CodeGen/ScheduleDAG.h"
|
|
#include "llvm/CodeGen/SchedulerRegistry.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/PriorityQueue.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include <climits>
|
|
#include "llvm/Support/CommandLine.h"
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
|
|
STATISTIC(NumUnfolds, "Number of nodes unfolded");
|
|
STATISTIC(NumDups, "Number of duplicated nodes");
|
|
STATISTIC(NumCCCopies, "Number of cross class copies");
|
|
|
|
static RegisterScheduler
|
|
burrListDAGScheduler("list-burr",
|
|
" Bottom-up register reduction list scheduling",
|
|
createBURRListDAGScheduler);
|
|
static RegisterScheduler
|
|
tdrListrDAGScheduler("list-tdrr",
|
|
" Top-down register reduction list scheduling",
|
|
createTDRRListDAGScheduler);
|
|
|
|
namespace {
|
|
//===----------------------------------------------------------------------===//
|
|
/// ScheduleDAGRRList - The actual register reduction list scheduler
|
|
/// implementation. This supports both top-down and bottom-up scheduling.
|
|
///
|
|
class VISIBILITY_HIDDEN ScheduleDAGRRList : public ScheduleDAG {
|
|
private:
|
|
/// isBottomUp - This is true if the scheduling problem is bottom-up, false if
|
|
/// it is top-down.
|
|
bool isBottomUp;
|
|
|
|
/// Fast - True if we are performing fast scheduling.
|
|
///
|
|
bool Fast;
|
|
|
|
/// AvailableQueue - The priority queue to use for the available SUnits.
|
|
SchedulingPriorityQueue *AvailableQueue;
|
|
|
|
/// LiveRegDefs - A set of physical registers and their definition
|
|
/// that are "live". These nodes must be scheduled before any other nodes that
|
|
/// modifies the registers can be scheduled.
|
|
unsigned NumLiveRegs;
|
|
std::vector<SUnit*> LiveRegDefs;
|
|
std::vector<unsigned> LiveRegCycles;
|
|
|
|
public:
|
|
ScheduleDAGRRList(SelectionDAG &dag, MachineBasicBlock *bb,
|
|
const TargetMachine &tm, bool isbottomup, bool f,
|
|
SchedulingPriorityQueue *availqueue)
|
|
: ScheduleDAG(dag, bb, tm), isBottomUp(isbottomup), Fast(f),
|
|
AvailableQueue(availqueue) {
|
|
}
|
|
|
|
~ScheduleDAGRRList() {
|
|
delete AvailableQueue;
|
|
}
|
|
|
|
void Schedule();
|
|
|
|
/// IsReachable - Checks if SU is reachable from TargetSU.
|
|
bool IsReachable(const SUnit *SU, const SUnit *TargetSU);
|
|
|
|
/// willCreateCycle - Returns true if adding an edge from SU to TargetSU will
|
|
/// create a cycle.
|
|
bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);
|
|
|
|
/// AddPred - This adds the specified node X as a predecessor of
|
|
/// the current node Y if not already.
|
|
/// This returns true if this is a new predecessor.
|
|
/// Updates the topological ordering if required.
|
|
bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
|
|
unsigned PhyReg = 0, int Cost = 1);
|
|
|
|
/// RemovePred - This removes the specified node N from the predecessors of
|
|
/// the current node M. Updates the topological ordering if required.
|
|
bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isSpecial);
|
|
|
|
private:
|
|
void ReleasePred(SUnit*, bool, unsigned);
|
|
void ReleaseSucc(SUnit*, bool isChain, unsigned);
|
|
void CapturePred(SUnit*, SUnit*, bool);
|
|
void ScheduleNodeBottomUp(SUnit*, unsigned);
|
|
void ScheduleNodeTopDown(SUnit*, unsigned);
|
|
void UnscheduleNodeBottomUp(SUnit*);
|
|
void BacktrackBottomUp(SUnit*, unsigned, unsigned&);
|
|
SUnit *CopyAndMoveSuccessors(SUnit*);
|
|
void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
|
|
const TargetRegisterClass*,
|
|
const TargetRegisterClass*,
|
|
SmallVector<SUnit*, 2>&);
|
|
bool DelayForLiveRegsBottomUp(SUnit*, SmallVector<unsigned, 4>&);
|
|
void ListScheduleTopDown();
|
|
void ListScheduleBottomUp();
|
|
void CommuteNodesToReducePressure();
|
|
|
|
|
|
/// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
|
|
/// Updates the topological ordering if required.
|
|
SUnit *CreateNewSUnit(SDNode *N) {
|
|
SUnit *NewNode = NewSUnit(N);
|
|
// Update the topological ordering.
|
|
if (NewNode->NodeNum >= Node2Index.size())
|
|
InitDAGTopologicalSorting();
|
|
return NewNode;
|
|
}
|
|
|
|
/// CreateClone - Creates a new SUnit from an existing one.
|
|
/// Updates the topological ordering if required.
|
|
SUnit *CreateClone(SUnit *N) {
|
|
SUnit *NewNode = Clone(N);
|
|
// Update the topological ordering.
|
|
if (NewNode->NodeNum >= Node2Index.size())
|
|
InitDAGTopologicalSorting();
|
|
return NewNode;
|
|
}
|
|
|
|
/// Functions for preserving the topological ordering
|
|
/// even after dynamic insertions of new edges.
|
|
/// This allows a very fast implementation of IsReachable.
|
|
|
|
/// InitDAGTopologicalSorting - create the initial topological
|
|
/// ordering from the DAG to be scheduled.
|
|
void InitDAGTopologicalSorting();
|
|
|
|
/// DFS - make a DFS traversal and mark all nodes affected by the
|
|
/// edge insertion. These nodes will later get new topological indexes
|
|
/// by means of the Shift method.
|
|
void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);
|
|
|
|
/// Shift - reassign topological indexes for the nodes in the DAG
|
|
/// to preserve the topological ordering.
|
|
void Shift(BitVector& Visited, int LowerBound, int UpperBound);
|
|
|
|
/// Allocate - assign the topological index to the node n.
|
|
void Allocate(int n, int index);
|
|
|
|
/// Index2Node - Maps topological index to the node number.
|
|
std::vector<int> Index2Node;
|
|
/// Node2Index - Maps the node number to its topological index.
|
|
std::vector<int> Node2Index;
|
|
/// Visited - a set of nodes visited during a DFS traversal.
|
|
BitVector Visited;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
|
|
/// Schedule - Schedule the DAG using list scheduling.
|
|
void ScheduleDAGRRList::Schedule() {
|
|
DOUT << "********** List Scheduling **********\n";
|
|
|
|
NumLiveRegs = 0;
|
|
LiveRegDefs.resize(TRI->getNumRegs(), NULL);
|
|
LiveRegCycles.resize(TRI->getNumRegs(), 0);
|
|
|
|
// Build scheduling units.
|
|
BuildSchedUnits();
|
|
|
|
DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
|
|
SUnits[su].dumpAll(&DAG));
|
|
if (!Fast) {
|
|
CalculateDepths();
|
|
CalculateHeights();
|
|
}
|
|
InitDAGTopologicalSorting();
|
|
|
|
AvailableQueue->initNodes(SUnits);
|
|
|
|
// Execute the actual scheduling loop Top-Down or Bottom-Up as appropriate.
|
|
if (isBottomUp)
|
|
ListScheduleBottomUp();
|
|
else
|
|
ListScheduleTopDown();
|
|
|
|
AvailableQueue->releaseState();
|
|
|
|
if (!Fast)
|
|
CommuteNodesToReducePressure();
|
|
}
|
|
|
|
/// CommuteNodesToReducePressure - If a node is two-address and commutable, and
|
|
/// it is not the last use of its first operand, add it to the CommuteSet if
|
|
/// possible. It will be commuted when it is translated to a MI.
|
|
void ScheduleDAGRRList::CommuteNodesToReducePressure() {
|
|
SmallPtrSet<SUnit*, 4> OperandSeen;
|
|
for (unsigned i = Sequence.size(); i != 0; ) {
|
|
--i;
|
|
SUnit *SU = Sequence[i];
|
|
if (!SU || !SU->Node) continue;
|
|
if (SU->isCommutable) {
|
|
unsigned Opc = SU->Node->getMachineOpcode();
|
|
const TargetInstrDesc &TID = TII->get(Opc);
|
|
unsigned NumRes = TID.getNumDefs();
|
|
unsigned NumOps = TID.getNumOperands() - NumRes;
|
|
for (unsigned j = 0; j != NumOps; ++j) {
|
|
if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) == -1)
|
|
continue;
|
|
|
|
SDNode *OpN = SU->Node->getOperand(j).getNode();
|
|
SUnit *OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
|
|
if (OpSU && OperandSeen.count(OpSU) == 1) {
|
|
// Ok, so SU is not the last use of OpSU, but SU is two-address so
|
|
// it will clobber OpSU. Try to commute SU if no other source operands
|
|
// are live below.
|
|
bool DoCommute = true;
|
|
for (unsigned k = 0; k < NumOps; ++k) {
|
|
if (k != j) {
|
|
OpN = SU->Node->getOperand(k).getNode();
|
|
OpSU = isPassiveNode(OpN) ? NULL : &SUnits[OpN->getNodeId()];
|
|
if (OpSU && OperandSeen.count(OpSU) == 1) {
|
|
DoCommute = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (DoCommute)
|
|
CommuteSet.insert(SU->Node);
|
|
}
|
|
|
|
// Only look at the first use&def node for now.
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (!I->isCtrl)
|
|
OperandSeen.insert(I->Dep->OrigNode);
|
|
}
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Bottom-Up Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
|
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
|
|
void ScheduleDAGRRList::ReleasePred(SUnit *PredSU, bool isChain,
|
|
unsigned CurCycle) {
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
// latency. For example, the reader can very well read the register written
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
// interrupt model (drain vs. freeze).
|
|
PredSU->CycleBound = std::max(PredSU->CycleBound, CurCycle + PredSU->Latency);
|
|
|
|
--PredSU->NumSuccsLeft;
|
|
|
|
#ifndef NDEBUG
|
|
if (PredSU->NumSuccsLeft < 0) {
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
PredSU->dump(&DAG);
|
|
cerr << " has been released too many times!\n";
|
|
assert(0);
|
|
}
|
|
#endif
|
|
|
|
if (PredSU->NumSuccsLeft == 0) {
|
|
PredSU->isAvailable = true;
|
|
AvailableQueue->push(PredSU);
|
|
}
|
|
}
|
|
|
|
/// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
|
|
/// count of its predecessors. If a predecessor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
|
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
|
DEBUG(SU->dump(&DAG));
|
|
SU->Cycle = CurCycle;
|
|
|
|
AvailableQueue->ScheduledNode(SU);
|
|
|
|
// Bottom up: release predecessors
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
ReleasePred(I->Dep, I->isCtrl, CurCycle);
|
|
if (I->Cost < 0) {
|
|
// This is a physical register dependency and it's impossible or
|
|
// expensive to copy the register. Make sure nothing that can
|
|
// clobber the register is scheduled between the predecessor and
|
|
// this node.
|
|
if (!LiveRegDefs[I->Reg]) {
|
|
++NumLiveRegs;
|
|
LiveRegDefs[I->Reg] = I->Dep;
|
|
LiveRegCycles[I->Reg] = CurCycle;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Release all the implicit physical register defs that are live.
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->Cost < 0) {
|
|
if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
|
|
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
|
|
assert(LiveRegDefs[I->Reg] == SU &&
|
|
"Physical register dependency violated?");
|
|
--NumLiveRegs;
|
|
LiveRegDefs[I->Reg] = NULL;
|
|
LiveRegCycles[I->Reg] = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
SU->isScheduled = true;
|
|
}
|
|
|
|
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
|
|
/// unscheduled, incrcease the succ left count of its predecessors. Remove
|
|
/// them from AvailableQueue if necessary.
|
|
void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
|
|
unsigned CycleBound = 0;
|
|
for (SUnit::succ_iterator I = PredSU->Succs.begin(), E = PredSU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->Dep == SU)
|
|
continue;
|
|
CycleBound = std::max(CycleBound,
|
|
I->Dep->Cycle + PredSU->Latency);
|
|
}
|
|
|
|
if (PredSU->isAvailable) {
|
|
PredSU->isAvailable = false;
|
|
if (!PredSU->isPending)
|
|
AvailableQueue->remove(PredSU);
|
|
}
|
|
|
|
PredSU->CycleBound = CycleBound;
|
|
++PredSU->NumSuccsLeft;
|
|
}
|
|
|
|
/// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
|
|
/// its predecessor states to reflect the change.
|
|
void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
|
|
DOUT << "*** Unscheduling [" << SU->Cycle << "]: ";
|
|
DEBUG(SU->dump(&DAG));
|
|
|
|
AvailableQueue->UnscheduledNode(SU);
|
|
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
CapturePred(I->Dep, SU, I->isCtrl);
|
|
if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg]) {
|
|
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
|
|
assert(LiveRegDefs[I->Reg] == I->Dep &&
|
|
"Physical register dependency violated?");
|
|
--NumLiveRegs;
|
|
LiveRegDefs[I->Reg] = NULL;
|
|
LiveRegCycles[I->Reg] = 0;
|
|
}
|
|
}
|
|
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->Cost < 0) {
|
|
if (!LiveRegDefs[I->Reg]) {
|
|
LiveRegDefs[I->Reg] = SU;
|
|
++NumLiveRegs;
|
|
}
|
|
if (I->Dep->Cycle < LiveRegCycles[I->Reg])
|
|
LiveRegCycles[I->Reg] = I->Dep->Cycle;
|
|
}
|
|
}
|
|
|
|
SU->Cycle = 0;
|
|
SU->isScheduled = false;
|
|
SU->isAvailable = true;
|
|
AvailableQueue->push(SU);
|
|
}
|
|
|
|
/// IsReachable - Checks if SU is reachable from TargetSU.
|
|
bool ScheduleDAGRRList::IsReachable(const SUnit *SU, const SUnit *TargetSU) {
|
|
// If insertion of the edge SU->TargetSU would create a cycle
|
|
// then there is a path from TargetSU to SU.
|
|
int UpperBound, LowerBound;
|
|
LowerBound = Node2Index[TargetSU->NodeNum];
|
|
UpperBound = Node2Index[SU->NodeNum];
|
|
bool HasLoop = false;
|
|
// Is Ord(TargetSU) < Ord(SU) ?
|
|
if (LowerBound < UpperBound) {
|
|
Visited.reset();
|
|
// There may be a path from TargetSU to SU. Check for it.
|
|
DFS(TargetSU, UpperBound, HasLoop);
|
|
}
|
|
return HasLoop;
|
|
}
|
|
|
|
/// Allocate - assign the topological index to the node n.
|
|
inline void ScheduleDAGRRList::Allocate(int n, int index) {
|
|
Node2Index[n] = index;
|
|
Index2Node[index] = n;
|
|
}
|
|
|
|
/// InitDAGTopologicalSorting - create the initial topological
|
|
/// ordering from the DAG to be scheduled.
|
|
|
|
/// The idea of the algorithm is taken from
|
|
/// "Online algorithms for managing the topological order of
|
|
/// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
|
|
/// This is the MNR algorithm, which was first introduced by
|
|
/// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
|
|
/// "Maintaining a topological order under edge insertions".
|
|
///
|
|
/// Short description of the algorithm:
|
|
///
|
|
/// Topological ordering, ord, of a DAG maps each node to a topological
|
|
/// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
|
|
///
|
|
/// This means that if there is a path from the node X to the node Z,
|
|
/// then ord(X) < ord(Z).
|
|
///
|
|
/// This property can be used to check for reachability of nodes:
|
|
/// if Z is reachable from X, then an insertion of the edge Z->X would
|
|
/// create a cycle.
|
|
///
|
|
/// The algorithm first computes a topological ordering for the DAG by
|
|
/// initializing the Index2Node and Node2Index arrays and then tries to keep
|
|
/// the ordering up-to-date after edge insertions by reordering the DAG.
|
|
///
|
|
/// On insertion of the edge X->Y, the algorithm first marks by calling DFS
|
|
/// the nodes reachable from Y, and then shifts them using Shift to lie
|
|
/// immediately after X in Index2Node.
|
|
void ScheduleDAGRRList::InitDAGTopologicalSorting() {
|
|
unsigned DAGSize = SUnits.size();
|
|
std::vector<SUnit*> WorkList;
|
|
WorkList.reserve(DAGSize);
|
|
|
|
Index2Node.resize(DAGSize);
|
|
Node2Index.resize(DAGSize);
|
|
|
|
// Initialize the data structures.
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &SUnits[i];
|
|
int NodeNum = SU->NodeNum;
|
|
unsigned Degree = SU->Succs.size();
|
|
// Temporarily use the Node2Index array as scratch space for degree counts.
|
|
Node2Index[NodeNum] = Degree;
|
|
|
|
// Is it a node without dependencies?
|
|
if (Degree == 0) {
|
|
assert(SU->Succs.empty() && "SUnit should have no successors");
|
|
// Collect leaf nodes.
|
|
WorkList.push_back(SU);
|
|
}
|
|
}
|
|
|
|
int Id = DAGSize;
|
|
while (!WorkList.empty()) {
|
|
SUnit *SU = WorkList.back();
|
|
WorkList.pop_back();
|
|
Allocate(SU->NodeNum, --Id);
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
SUnit *SU = I->Dep;
|
|
if (!--Node2Index[SU->NodeNum])
|
|
// If all dependencies of the node are processed already,
|
|
// then the node can be computed now.
|
|
WorkList.push_back(SU);
|
|
}
|
|
}
|
|
|
|
Visited.resize(DAGSize);
|
|
|
|
#ifndef NDEBUG
|
|
// Check correctness of the ordering
|
|
for (unsigned i = 0, e = DAGSize; i != e; ++i) {
|
|
SUnit *SU = &SUnits[i];
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
|
|
"Wrong topological sorting");
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// AddPred - adds an edge from SUnit X to SUnit Y.
|
|
/// Updates the topological ordering if required.
|
|
bool ScheduleDAGRRList::AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isSpecial,
|
|
unsigned PhyReg, int Cost) {
|
|
int UpperBound, LowerBound;
|
|
LowerBound = Node2Index[Y->NodeNum];
|
|
UpperBound = Node2Index[X->NodeNum];
|
|
bool HasLoop = false;
|
|
// Is Ord(X) < Ord(Y) ?
|
|
if (LowerBound < UpperBound) {
|
|
// Update the topological order.
|
|
Visited.reset();
|
|
DFS(Y, UpperBound, HasLoop);
|
|
assert(!HasLoop && "Inserted edge creates a loop!");
|
|
// Recompute topological indexes.
|
|
Shift(Visited, LowerBound, UpperBound);
|
|
}
|
|
// Now really insert the edge.
|
|
return Y->addPred(X, isCtrl, isSpecial, PhyReg, Cost);
|
|
}
|
|
|
|
/// RemovePred - This removes the specified node N from the predecessors of
|
|
/// the current node M. Updates the topological ordering if required.
|
|
bool ScheduleDAGRRList::RemovePred(SUnit *M, SUnit *N,
|
|
bool isCtrl, bool isSpecial) {
|
|
// InitDAGTopologicalSorting();
|
|
return M->removePred(N, isCtrl, isSpecial);
|
|
}
|
|
|
|
/// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
|
|
/// all nodes affected by the edge insertion. These nodes will later get new
|
|
/// topological indexes by means of the Shift method.
|
|
void ScheduleDAGRRList::DFS(const SUnit *SU, int UpperBound, bool& HasLoop) {
|
|
std::vector<const SUnit*> WorkList;
|
|
WorkList.reserve(SUnits.size());
|
|
|
|
WorkList.push_back(SU);
|
|
while (!WorkList.empty()) {
|
|
SU = WorkList.back();
|
|
WorkList.pop_back();
|
|
Visited.set(SU->NodeNum);
|
|
for (int I = SU->Succs.size()-1; I >= 0; --I) {
|
|
int s = SU->Succs[I].Dep->NodeNum;
|
|
if (Node2Index[s] == UpperBound) {
|
|
HasLoop = true;
|
|
return;
|
|
}
|
|
// Visit successors if not already and in affected region.
|
|
if (!Visited.test(s) && Node2Index[s] < UpperBound) {
|
|
WorkList.push_back(SU->Succs[I].Dep);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Shift - Renumber the nodes so that the topological ordering is
|
|
/// preserved.
|
|
void ScheduleDAGRRList::Shift(BitVector& Visited, int LowerBound,
|
|
int UpperBound) {
|
|
std::vector<int> L;
|
|
int shift = 0;
|
|
int i;
|
|
|
|
for (i = LowerBound; i <= UpperBound; ++i) {
|
|
// w is node at topological index i.
|
|
int w = Index2Node[i];
|
|
if (Visited.test(w)) {
|
|
// Unmark.
|
|
Visited.reset(w);
|
|
L.push_back(w);
|
|
shift = shift + 1;
|
|
} else {
|
|
Allocate(w, i - shift);
|
|
}
|
|
}
|
|
|
|
for (unsigned j = 0; j < L.size(); ++j) {
|
|
Allocate(L[j], i - shift);
|
|
i = i + 1;
|
|
}
|
|
}
|
|
|
|
|
|
/// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
|
|
/// create a cycle.
|
|
bool ScheduleDAGRRList::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
|
|
if (IsReachable(TargetSU, SU))
|
|
return true;
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I)
|
|
if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
|
|
/// BTCycle in order to schedule a specific node. Returns the last unscheduled
|
|
/// SUnit. Also returns if a successor is unscheduled in the process.
|
|
void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, unsigned BtCycle,
|
|
unsigned &CurCycle) {
|
|
SUnit *OldSU = NULL;
|
|
while (CurCycle > BtCycle) {
|
|
OldSU = Sequence.back();
|
|
Sequence.pop_back();
|
|
if (SU->isSucc(OldSU))
|
|
// Don't try to remove SU from AvailableQueue.
|
|
SU->isAvailable = false;
|
|
UnscheduleNodeBottomUp(OldSU);
|
|
--CurCycle;
|
|
}
|
|
|
|
|
|
if (SU->isSucc(OldSU)) {
|
|
assert(false && "Something is wrong!");
|
|
abort();
|
|
}
|
|
|
|
++NumBacktracks;
|
|
}
|
|
|
|
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
|
|
/// successors to the newly created node.
|
|
SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
|
|
if (SU->FlaggedNodes.size())
|
|
return NULL;
|
|
|
|
SDNode *N = SU->Node;
|
|
if (!N)
|
|
return NULL;
|
|
|
|
SUnit *NewSU;
|
|
bool TryUnfold = false;
|
|
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
|
|
MVT VT = N->getValueType(i);
|
|
if (VT == MVT::Flag)
|
|
return NULL;
|
|
else if (VT == MVT::Other)
|
|
TryUnfold = true;
|
|
}
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
|
|
const SDValue &Op = N->getOperand(i);
|
|
MVT VT = Op.getNode()->getValueType(Op.getResNo());
|
|
if (VT == MVT::Flag)
|
|
return NULL;
|
|
}
|
|
|
|
if (TryUnfold) {
|
|
SmallVector<SDNode*, 2> NewNodes;
|
|
if (!TII->unfoldMemoryOperand(DAG, N, NewNodes))
|
|
return NULL;
|
|
|
|
DOUT << "Unfolding SU # " << SU->NodeNum << "\n";
|
|
assert(NewNodes.size() == 2 && "Expected a load folding node!");
|
|
|
|
N = NewNodes[1];
|
|
SDNode *LoadNode = NewNodes[0];
|
|
unsigned NumVals = N->getNumValues();
|
|
unsigned OldNumVals = SU->Node->getNumValues();
|
|
for (unsigned i = 0; i != NumVals; ++i)
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(SU->Node, i), SDValue(N, i));
|
|
DAG.ReplaceAllUsesOfValueWith(SDValue(SU->Node, OldNumVals-1),
|
|
SDValue(LoadNode, 1));
|
|
|
|
SUnit *NewSU = CreateNewSUnit(N);
|
|
assert(N->getNodeId() == -1 && "Node already inserted!");
|
|
N->setNodeId(NewSU->NodeNum);
|
|
|
|
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
|
|
for (unsigned i = 0; i != TID.getNumOperands(); ++i) {
|
|
if (TID.getOperandConstraint(i, TOI::TIED_TO) != -1) {
|
|
NewSU->isTwoAddress = true;
|
|
break;
|
|
}
|
|
}
|
|
if (TID.isCommutable())
|
|
NewSU->isCommutable = true;
|
|
// FIXME: Calculate height / depth and propagate the changes?
|
|
NewSU->Depth = SU->Depth;
|
|
NewSU->Height = SU->Height;
|
|
ComputeLatency(NewSU);
|
|
|
|
// LoadNode may already exist. This can happen when there is another
|
|
// load from the same location and producing the same type of value
|
|
// but it has different alignment or volatileness.
|
|
bool isNewLoad = true;
|
|
SUnit *LoadSU;
|
|
if (LoadNode->getNodeId() != -1) {
|
|
LoadSU = &SUnits[LoadNode->getNodeId()];
|
|
isNewLoad = false;
|
|
} else {
|
|
LoadSU = CreateNewSUnit(LoadNode);
|
|
LoadNode->setNodeId(LoadSU->NodeNum);
|
|
|
|
LoadSU->Depth = SU->Depth;
|
|
LoadSU->Height = SU->Height;
|
|
ComputeLatency(LoadSU);
|
|
}
|
|
|
|
SUnit *ChainPred = NULL;
|
|
SmallVector<SDep, 4> ChainSuccs;
|
|
SmallVector<SDep, 4> LoadPreds;
|
|
SmallVector<SDep, 4> NodePreds;
|
|
SmallVector<SDep, 4> NodeSuccs;
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl)
|
|
ChainPred = I->Dep;
|
|
else if (I->Dep->Node && I->Dep->Node->isOperandOf(LoadNode))
|
|
LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
|
|
else
|
|
NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false));
|
|
}
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl)
|
|
ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
|
|
I->isCtrl, I->isSpecial));
|
|
else
|
|
NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
|
|
I->isCtrl, I->isSpecial));
|
|
}
|
|
|
|
if (ChainPred) {
|
|
RemovePred(SU, ChainPred, true, false);
|
|
if (isNewLoad)
|
|
AddPred(LoadSU, ChainPred, true, false);
|
|
}
|
|
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
|
|
SDep *Pred = &LoadPreds[i];
|
|
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
|
|
if (isNewLoad) {
|
|
AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
|
|
Pred->Reg, Pred->Cost);
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
|
|
SDep *Pred = &NodePreds[i];
|
|
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isSpecial);
|
|
AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isSpecial,
|
|
Pred->Reg, Pred->Cost);
|
|
}
|
|
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
|
|
SDep *Succ = &NodeSuccs[i];
|
|
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
|
|
AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isSpecial,
|
|
Succ->Reg, Succ->Cost);
|
|
}
|
|
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
|
|
SDep *Succ = &ChainSuccs[i];
|
|
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isSpecial);
|
|
if (isNewLoad) {
|
|
AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isSpecial,
|
|
Succ->Reg, Succ->Cost);
|
|
}
|
|
}
|
|
if (isNewLoad) {
|
|
AddPred(NewSU, LoadSU, false, false);
|
|
}
|
|
|
|
if (isNewLoad)
|
|
AvailableQueue->addNode(LoadSU);
|
|
AvailableQueue->addNode(NewSU);
|
|
|
|
++NumUnfolds;
|
|
|
|
if (NewSU->NumSuccsLeft == 0) {
|
|
NewSU->isAvailable = true;
|
|
return NewSU;
|
|
}
|
|
SU = NewSU;
|
|
}
|
|
|
|
DOUT << "Duplicating SU # " << SU->NodeNum << "\n";
|
|
NewSU = CreateClone(SU);
|
|
|
|
// New SUnit has the exact same predecessors.
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I)
|
|
if (!I->isSpecial) {
|
|
AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
|
|
NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
|
|
}
|
|
|
|
// Only copy scheduled successors. Cut them from old node's successor
|
|
// list and move them over.
|
|
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isSpecial)
|
|
continue;
|
|
if (I->Dep->isScheduled) {
|
|
NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
|
|
AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
|
|
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
|
SUnit *Succ = DelDeps[i].first;
|
|
bool isCtrl = DelDeps[i].second;
|
|
RemovePred(Succ, SU, isCtrl, false);
|
|
}
|
|
|
|
AvailableQueue->updateNode(SU);
|
|
AvailableQueue->addNode(NewSU);
|
|
|
|
++NumDups;
|
|
return NewSU;
|
|
}
|
|
|
|
/// InsertCCCopiesAndMoveSuccs - Insert expensive cross register class copies
|
|
/// and move all scheduled successors of the given SUnit to the last copy.
|
|
void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
|
|
const TargetRegisterClass *DestRC,
|
|
const TargetRegisterClass *SrcRC,
|
|
SmallVector<SUnit*, 2> &Copies) {
|
|
SUnit *CopyFromSU = CreateNewSUnit(NULL);
|
|
CopyFromSU->CopySrcRC = SrcRC;
|
|
CopyFromSU->CopyDstRC = DestRC;
|
|
CopyFromSU->Depth = SU->Depth;
|
|
CopyFromSU->Height = SU->Height;
|
|
|
|
SUnit *CopyToSU = CreateNewSUnit(NULL);
|
|
CopyToSU->CopySrcRC = DestRC;
|
|
CopyToSU->CopyDstRC = SrcRC;
|
|
|
|
// Only copy scheduled successors. Cut them from old node's successor
|
|
// list and move them over.
|
|
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isSpecial)
|
|
continue;
|
|
if (I->Dep->isScheduled) {
|
|
CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
|
|
AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
|
|
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
|
SUnit *Succ = DelDeps[i].first;
|
|
bool isCtrl = DelDeps[i].second;
|
|
RemovePred(Succ, SU, isCtrl, false);
|
|
}
|
|
|
|
AddPred(CopyFromSU, SU, false, false, Reg, -1);
|
|
AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
|
|
|
|
AvailableQueue->updateNode(SU);
|
|
AvailableQueue->addNode(CopyFromSU);
|
|
AvailableQueue->addNode(CopyToSU);
|
|
Copies.push_back(CopyFromSU);
|
|
Copies.push_back(CopyToSU);
|
|
|
|
++NumCCCopies;
|
|
}
|
|
|
|
/// getPhysicalRegisterVT - Returns the ValueType of the physical register
|
|
/// definition of the specified node.
|
|
/// FIXME: Move to SelectionDAG?
|
|
static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
|
|
const TargetInstrInfo *TII) {
|
|
const TargetInstrDesc &TID = TII->get(N->getMachineOpcode());
|
|
assert(TID.ImplicitDefs && "Physical reg def must be in implicit def list!");
|
|
unsigned NumRes = TID.getNumDefs();
|
|
for (const unsigned *ImpDef = TID.getImplicitDefs(); *ImpDef; ++ImpDef) {
|
|
if (Reg == *ImpDef)
|
|
break;
|
|
++NumRes;
|
|
}
|
|
return N->getValueType(NumRes);
|
|
}
|
|
|
|
/// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
|
|
/// scheduling of the given node to satisfy live physical register dependencies.
|
|
/// If the specific node is the last one that's available to schedule, do
|
|
/// whatever is necessary (i.e. backtracking or cloning) to make it possible.
|
|
bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
|
|
SmallVector<unsigned, 4> &LRegs){
|
|
if (NumLiveRegs == 0)
|
|
return false;
|
|
|
|
SmallSet<unsigned, 4> RegAdded;
|
|
// If this node would clobber any "live" register, then it's not ready.
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->Cost < 0) {
|
|
unsigned Reg = I->Reg;
|
|
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->Dep) {
|
|
if (RegAdded.insert(Reg))
|
|
LRegs.push_back(Reg);
|
|
}
|
|
for (const unsigned *Alias = TRI->getAliasSet(Reg);
|
|
*Alias; ++Alias)
|
|
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->Dep) {
|
|
if (RegAdded.insert(*Alias))
|
|
LRegs.push_back(*Alias);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0, e = SU->FlaggedNodes.size()+1; i != e; ++i) {
|
|
SDNode *Node = (i == 0) ? SU->Node : SU->FlaggedNodes[i-1];
|
|
if (!Node || !Node->isMachineOpcode())
|
|
continue;
|
|
const TargetInstrDesc &TID = TII->get(Node->getMachineOpcode());
|
|
if (!TID.ImplicitDefs)
|
|
continue;
|
|
for (const unsigned *Reg = TID.ImplicitDefs; *Reg; ++Reg) {
|
|
if (LiveRegDefs[*Reg] && LiveRegDefs[*Reg] != SU) {
|
|
if (RegAdded.insert(*Reg))
|
|
LRegs.push_back(*Reg);
|
|
}
|
|
for (const unsigned *Alias = TRI->getAliasSet(*Reg);
|
|
*Alias; ++Alias)
|
|
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != SU) {
|
|
if (RegAdded.insert(*Alias))
|
|
LRegs.push_back(*Alias);
|
|
}
|
|
}
|
|
}
|
|
return !LRegs.empty();
|
|
}
|
|
|
|
|
|
/// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
|
|
/// schedulers.
|
|
void ScheduleDAGRRList::ListScheduleBottomUp() {
|
|
unsigned CurCycle = 0;
|
|
// Add root to Available queue.
|
|
if (!SUnits.empty()) {
|
|
SUnit *RootSU = &SUnits[DAG.getRoot().getNode()->getNodeId()];
|
|
assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
|
|
RootSU->isAvailable = true;
|
|
AvailableQueue->push(RootSU);
|
|
}
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
SmallVector<SUnit*, 4> NotReady;
|
|
DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
|
|
Sequence.reserve(SUnits.size());
|
|
while (!AvailableQueue->empty()) {
|
|
bool Delayed = false;
|
|
LRegsMap.clear();
|
|
SUnit *CurSU = AvailableQueue->pop();
|
|
while (CurSU) {
|
|
if (CurSU->CycleBound <= CurCycle) {
|
|
SmallVector<unsigned, 4> LRegs;
|
|
if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
|
|
break;
|
|
Delayed = true;
|
|
LRegsMap.insert(std::make_pair(CurSU, LRegs));
|
|
}
|
|
|
|
CurSU->isPending = true; // This SU is not in AvailableQueue right now.
|
|
NotReady.push_back(CurSU);
|
|
CurSU = AvailableQueue->pop();
|
|
}
|
|
|
|
// All candidates are delayed due to live physical reg dependencies.
|
|
// Try backtracking, code duplication, or inserting cross class copies
|
|
// to resolve it.
|
|
if (Delayed && !CurSU) {
|
|
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
|
|
SUnit *TrySU = NotReady[i];
|
|
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
|
|
|
|
// Try unscheduling up to the point where it's safe to schedule
|
|
// this node.
|
|
unsigned LiveCycle = CurCycle;
|
|
for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
|
|
unsigned Reg = LRegs[j];
|
|
unsigned LCycle = LiveRegCycles[Reg];
|
|
LiveCycle = std::min(LiveCycle, LCycle);
|
|
}
|
|
SUnit *OldSU = Sequence[LiveCycle];
|
|
if (!WillCreateCycle(TrySU, OldSU)) {
|
|
BacktrackBottomUp(TrySU, LiveCycle, CurCycle);
|
|
// Force the current node to be scheduled before the node that
|
|
// requires the physical reg dep.
|
|
if (OldSU->isAvailable) {
|
|
OldSU->isAvailable = false;
|
|
AvailableQueue->remove(OldSU);
|
|
}
|
|
AddPred(TrySU, OldSU, true, true);
|
|
// If one or more successors has been unscheduled, then the current
|
|
// node is no longer avaialable. Schedule a successor that's now
|
|
// available instead.
|
|
if (!TrySU->isAvailable)
|
|
CurSU = AvailableQueue->pop();
|
|
else {
|
|
CurSU = TrySU;
|
|
TrySU->isPending = false;
|
|
NotReady.erase(NotReady.begin()+i);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!CurSU) {
|
|
// Can't backtrack. Try duplicating the nodes that produces these
|
|
// "expensive to copy" values to break the dependency. In case even
|
|
// that doesn't work, insert cross class copies.
|
|
SUnit *TrySU = NotReady[0];
|
|
SmallVector<unsigned, 4> &LRegs = LRegsMap[TrySU];
|
|
assert(LRegs.size() == 1 && "Can't handle this yet!");
|
|
unsigned Reg = LRegs[0];
|
|
SUnit *LRDef = LiveRegDefs[Reg];
|
|
SUnit *NewDef = CopyAndMoveSuccessors(LRDef);
|
|
if (!NewDef) {
|
|
// Issue expensive cross register class copies.
|
|
MVT VT = getPhysicalRegisterVT(LRDef->Node, Reg, TII);
|
|
const TargetRegisterClass *RC =
|
|
TRI->getPhysicalRegisterRegClass(Reg, VT);
|
|
const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
|
|
if (!DestRC) {
|
|
assert(false && "Don't know how to copy this physical register!");
|
|
abort();
|
|
}
|
|
SmallVector<SUnit*, 2> Copies;
|
|
InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
|
|
DOUT << "Adding an edge from SU # " << TrySU->NodeNum
|
|
<< " to SU #" << Copies.front()->NodeNum << "\n";
|
|
AddPred(TrySU, Copies.front(), true, true);
|
|
NewDef = Copies.back();
|
|
}
|
|
|
|
DOUT << "Adding an edge from SU # " << NewDef->NodeNum
|
|
<< " to SU #" << TrySU->NodeNum << "\n";
|
|
LiveRegDefs[Reg] = NewDef;
|
|
AddPred(NewDef, TrySU, true, true);
|
|
TrySU->isAvailable = false;
|
|
CurSU = NewDef;
|
|
}
|
|
|
|
if (!CurSU) {
|
|
assert(false && "Unable to resolve live physical register dependencies!");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
|
|
NotReady[i]->isPending = false;
|
|
// May no longer be available due to backtracking.
|
|
if (NotReady[i]->isAvailable)
|
|
AvailableQueue->push(NotReady[i]);
|
|
}
|
|
NotReady.clear();
|
|
|
|
if (!CurSU)
|
|
Sequence.push_back(0);
|
|
else {
|
|
ScheduleNodeBottomUp(CurSU, CurCycle);
|
|
Sequence.push_back(CurSU);
|
|
}
|
|
++CurCycle;
|
|
}
|
|
|
|
// Reverse the order if it is bottom up.
|
|
std::reverse(Sequence.begin(), Sequence.end());
|
|
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all SUnits were scheduled.
|
|
bool AnyNotSched = false;
|
|
unsigned DeadNodes = 0;
|
|
unsigned Noops = 0;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
if (!SUnits[i].isScheduled) {
|
|
if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
|
|
++DeadNodes;
|
|
continue;
|
|
}
|
|
if (!AnyNotSched)
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
cerr << "has not been scheduled!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
if (SUnits[i].NumSuccsLeft != 0) {
|
|
if (!AnyNotSched)
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
cerr << "has successors left!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
|
|
if (!Sequence[i])
|
|
++Noops;
|
|
assert(!AnyNotSched);
|
|
assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
|
|
"The number of nodes scheduled doesn't match the expected number!");
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Top-Down Scheduling
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
|
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
|
|
void ScheduleDAGRRList::ReleaseSucc(SUnit *SuccSU, bool isChain,
|
|
unsigned CurCycle) {
|
|
// FIXME: the distance between two nodes is not always == the predecessor's
|
|
// latency. For example, the reader can very well read the register written
|
|
// by the predecessor later than the issue cycle. It also depends on the
|
|
// interrupt model (drain vs. freeze).
|
|
SuccSU->CycleBound = std::max(SuccSU->CycleBound, CurCycle + SuccSU->Latency);
|
|
|
|
--SuccSU->NumPredsLeft;
|
|
|
|
#ifndef NDEBUG
|
|
if (SuccSU->NumPredsLeft < 0) {
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
SuccSU->dump(&DAG);
|
|
cerr << " has been released too many times!\n";
|
|
assert(0);
|
|
}
|
|
#endif
|
|
|
|
if (SuccSU->NumPredsLeft == 0) {
|
|
SuccSU->isAvailable = true;
|
|
AvailableQueue->push(SuccSU);
|
|
}
|
|
}
|
|
|
|
|
|
/// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
|
|
/// count of its successors. If a successor pending count is zero, add it to
|
|
/// the Available queue.
|
|
void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
|
DOUT << "*** Scheduling [" << CurCycle << "]: ";
|
|
DEBUG(SU->dump(&DAG));
|
|
SU->Cycle = CurCycle;
|
|
|
|
AvailableQueue->ScheduledNode(SU);
|
|
|
|
// Top down: release successors
|
|
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
ReleaseSucc(I->Dep, I->isCtrl, CurCycle);
|
|
SU->isScheduled = true;
|
|
}
|
|
|
|
/// ListScheduleTopDown - The main loop of list scheduling for top-down
|
|
/// schedulers.
|
|
void ScheduleDAGRRList::ListScheduleTopDown() {
|
|
unsigned CurCycle = 0;
|
|
|
|
// All leaves to Available queue.
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
// It is available if it has no predecessors.
|
|
if (SUnits[i].Preds.empty()) {
|
|
AvailableQueue->push(&SUnits[i]);
|
|
SUnits[i].isAvailable = true;
|
|
}
|
|
}
|
|
|
|
// While Available queue is not empty, grab the node with the highest
|
|
// priority. If it is not ready put it back. Schedule the node.
|
|
std::vector<SUnit*> NotReady;
|
|
Sequence.reserve(SUnits.size());
|
|
while (!AvailableQueue->empty()) {
|
|
SUnit *CurSU = AvailableQueue->pop();
|
|
while (CurSU && CurSU->CycleBound > CurCycle) {
|
|
NotReady.push_back(CurSU);
|
|
CurSU = AvailableQueue->pop();
|
|
}
|
|
|
|
// Add the nodes that aren't ready back onto the available list.
|
|
AvailableQueue->push_all(NotReady);
|
|
NotReady.clear();
|
|
|
|
if (!CurSU)
|
|
Sequence.push_back(0);
|
|
else {
|
|
ScheduleNodeTopDown(CurSU, CurCycle);
|
|
Sequence.push_back(CurSU);
|
|
}
|
|
++CurCycle;
|
|
}
|
|
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all SUnits were scheduled.
|
|
bool AnyNotSched = false;
|
|
unsigned DeadNodes = 0;
|
|
unsigned Noops = 0;
|
|
for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
|
|
if (!SUnits[i].isScheduled) {
|
|
if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
|
|
++DeadNodes;
|
|
continue;
|
|
}
|
|
if (!AnyNotSched)
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
cerr << "has not been scheduled!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
if (SUnits[i].NumPredsLeft != 0) {
|
|
if (!AnyNotSched)
|
|
cerr << "*** List scheduling failed! ***\n";
|
|
SUnits[i].dump(&DAG);
|
|
cerr << "has predecessors left!\n";
|
|
AnyNotSched = true;
|
|
}
|
|
}
|
|
for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
|
|
if (!Sequence[i])
|
|
++Noops;
|
|
assert(!AnyNotSched);
|
|
assert(Sequence.size() + DeadNodes - Noops == SUnits.size() &&
|
|
"The number of nodes scheduled doesn't match the expected number!");
|
|
#endif
|
|
}
|
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RegReductionPriorityQueue Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
|
|
// to reduce register pressure.
|
|
//
|
|
namespace {
|
|
template<class SF>
|
|
class RegReductionPriorityQueue;
|
|
|
|
/// Sorting functions for the Available queue.
|
|
struct bu_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
|
RegReductionPriorityQueue<bu_ls_rr_sort> *SPQ;
|
|
bu_ls_rr_sort(RegReductionPriorityQueue<bu_ls_rr_sort> *spq) : SPQ(spq) {}
|
|
bu_ls_rr_sort(const bu_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
};
|
|
|
|
struct bu_ls_rr_fast_sort : public std::binary_function<SUnit*, SUnit*, bool>{
|
|
RegReductionPriorityQueue<bu_ls_rr_fast_sort> *SPQ;
|
|
bu_ls_rr_fast_sort(RegReductionPriorityQueue<bu_ls_rr_fast_sort> *spq)
|
|
: SPQ(spq) {}
|
|
bu_ls_rr_fast_sort(const bu_ls_rr_fast_sort &RHS) : SPQ(RHS.SPQ) {}
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
};
|
|
|
|
struct td_ls_rr_sort : public std::binary_function<SUnit*, SUnit*, bool> {
|
|
RegReductionPriorityQueue<td_ls_rr_sort> *SPQ;
|
|
td_ls_rr_sort(RegReductionPriorityQueue<td_ls_rr_sort> *spq) : SPQ(spq) {}
|
|
td_ls_rr_sort(const td_ls_rr_sort &RHS) : SPQ(RHS.SPQ) {}
|
|
|
|
bool operator()(const SUnit* left, const SUnit* right) const;
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static inline bool isCopyFromLiveIn(const SUnit *SU) {
|
|
SDNode *N = SU->Node;
|
|
return N && N->getOpcode() == ISD::CopyFromReg &&
|
|
N->getOperand(N->getNumOperands()-1).getValueType() != MVT::Flag;
|
|
}
|
|
|
|
/// CalcNodeBUSethiUllmanNumber - Compute Sethi Ullman number for bottom up
|
|
/// scheduling. Smaller number is the higher priority.
|
|
static unsigned
|
|
CalcNodeBUSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
|
|
unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
|
|
if (SethiUllmanNumber != 0)
|
|
return SethiUllmanNumber;
|
|
|
|
unsigned Extra = 0;
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl) continue; // ignore chain preds
|
|
SUnit *PredSU = I->Dep;
|
|
unsigned PredSethiUllman = CalcNodeBUSethiUllmanNumber(PredSU, SUNumbers);
|
|
if (PredSethiUllman > SethiUllmanNumber) {
|
|
SethiUllmanNumber = PredSethiUllman;
|
|
Extra = 0;
|
|
} else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
|
|
++Extra;
|
|
}
|
|
|
|
SethiUllmanNumber += Extra;
|
|
|
|
if (SethiUllmanNumber == 0)
|
|
SethiUllmanNumber = 1;
|
|
|
|
return SethiUllmanNumber;
|
|
}
|
|
|
|
/// CalcNodeTDSethiUllmanNumber - Compute Sethi Ullman number for top down
|
|
/// scheduling. Smaller number is the higher priority.
|
|
static unsigned
|
|
CalcNodeTDSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
|
|
unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
|
|
if (SethiUllmanNumber != 0)
|
|
return SethiUllmanNumber;
|
|
|
|
unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
|
|
if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
|
|
SethiUllmanNumber = 0xffff;
|
|
else if (SU->NumSuccsLeft == 0)
|
|
// If SU does not have a use, i.e. it doesn't produce a value that would
|
|
// be consumed (e.g. store), then it terminates a chain of computation.
|
|
// Give it a small SethiUllman number so it will be scheduled right before
|
|
// its predecessors that it doesn't lengthen their live ranges.
|
|
SethiUllmanNumber = 0;
|
|
else if (SU->NumPredsLeft == 0 &&
|
|
(Opc != ISD::CopyFromReg || isCopyFromLiveIn(SU)))
|
|
SethiUllmanNumber = 0xffff;
|
|
else {
|
|
int Extra = 0;
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl) continue; // ignore chain preds
|
|
SUnit *PredSU = I->Dep;
|
|
unsigned PredSethiUllman = CalcNodeTDSethiUllmanNumber(PredSU, SUNumbers);
|
|
if (PredSethiUllman > SethiUllmanNumber) {
|
|
SethiUllmanNumber = PredSethiUllman;
|
|
Extra = 0;
|
|
} else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
|
|
++Extra;
|
|
}
|
|
|
|
SethiUllmanNumber += Extra;
|
|
}
|
|
|
|
return SethiUllmanNumber;
|
|
}
|
|
|
|
|
|
namespace {
|
|
template<class SF>
|
|
class VISIBILITY_HIDDEN RegReductionPriorityQueue
|
|
: public SchedulingPriorityQueue {
|
|
PriorityQueue<SUnit*, std::vector<SUnit*>, SF> Queue;
|
|
unsigned currentQueueId;
|
|
|
|
public:
|
|
RegReductionPriorityQueue() :
|
|
Queue(SF(this)), currentQueueId(0) {}
|
|
|
|
virtual void initNodes(std::vector<SUnit> &sunits) {}
|
|
|
|
virtual void addNode(const SUnit *SU) {}
|
|
|
|
virtual void updateNode(const SUnit *SU) {}
|
|
|
|
virtual void releaseState() {}
|
|
|
|
virtual unsigned getNodePriority(const SUnit *SU) const {
|
|
return 0;
|
|
}
|
|
|
|
unsigned size() const { return Queue.size(); }
|
|
|
|
bool empty() const { return Queue.empty(); }
|
|
|
|
void push(SUnit *U) {
|
|
assert(!U->NodeQueueId && "Node in the queue already");
|
|
U->NodeQueueId = ++currentQueueId;
|
|
Queue.push(U);
|
|
}
|
|
|
|
void push_all(const std::vector<SUnit *> &Nodes) {
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i)
|
|
push(Nodes[i]);
|
|
}
|
|
|
|
SUnit *pop() {
|
|
if (empty()) return NULL;
|
|
SUnit *V = Queue.top();
|
|
Queue.pop();
|
|
V->NodeQueueId = 0;
|
|
return V;
|
|
}
|
|
|
|
void remove(SUnit *SU) {
|
|
assert(!Queue.empty() && "Queue is empty!");
|
|
assert(SU->NodeQueueId != 0 && "Not in queue!");
|
|
Queue.erase_one(SU);
|
|
SU->NodeQueueId = 0;
|
|
}
|
|
};
|
|
|
|
class VISIBILITY_HIDDEN BURegReductionPriorityQueue
|
|
: public RegReductionPriorityQueue<bu_ls_rr_sort> {
|
|
// SUnits - The SUnits for the current graph.
|
|
std::vector<SUnit> *SUnits;
|
|
|
|
// SethiUllmanNumbers - The SethiUllman number for each node.
|
|
std::vector<unsigned> SethiUllmanNumbers;
|
|
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
ScheduleDAGRRList *scheduleDAG;
|
|
|
|
public:
|
|
explicit BURegReductionPriorityQueue(const TargetInstrInfo *tii,
|
|
const TargetRegisterInfo *tri)
|
|
: TII(tii), TRI(tri), scheduleDAG(NULL) {}
|
|
|
|
void initNodes(std::vector<SUnit> &sunits) {
|
|
SUnits = &sunits;
|
|
// Add pseudo dependency edges for two-address nodes.
|
|
AddPseudoTwoAddrDeps();
|
|
// Calculate node priorities.
|
|
CalculateSethiUllmanNumbers();
|
|
}
|
|
|
|
void addNode(const SUnit *SU) {
|
|
unsigned SUSize = SethiUllmanNumbers.size();
|
|
if (SUnits->size() > SUSize)
|
|
SethiUllmanNumbers.resize(SUSize*2, 0);
|
|
CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
|
|
}
|
|
|
|
void updateNode(const SUnit *SU) {
|
|
SethiUllmanNumbers[SU->NodeNum] = 0;
|
|
CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
|
|
}
|
|
|
|
void releaseState() {
|
|
SUnits = 0;
|
|
SethiUllmanNumbers.clear();
|
|
}
|
|
|
|
unsigned getNodePriority(const SUnit *SU) const {
|
|
assert(SU->NodeNum < SethiUllmanNumbers.size());
|
|
unsigned Opc = SU->Node ? SU->Node->getOpcode() : 0;
|
|
if (Opc == ISD::CopyFromReg && !isCopyFromLiveIn(SU))
|
|
// CopyFromReg should be close to its def because it restricts
|
|
// allocation choices. But if it is a livein then perhaps we want it
|
|
// closer to its uses so it can be coalesced.
|
|
return 0xffff;
|
|
else if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
|
|
// CopyToReg should be close to its uses to facilitate coalescing and
|
|
// avoid spilling.
|
|
return 0;
|
|
else if (Opc == TargetInstrInfo::EXTRACT_SUBREG ||
|
|
Opc == TargetInstrInfo::INSERT_SUBREG)
|
|
// EXTRACT_SUBREG / INSERT_SUBREG should be close to its use to
|
|
// facilitate coalescing.
|
|
return 0;
|
|
else if (SU->NumSuccs == 0)
|
|
// If SU does not have a use, i.e. it doesn't produce a value that would
|
|
// be consumed (e.g. store), then it terminates a chain of computation.
|
|
// Give it a large SethiUllman number so it will be scheduled right
|
|
// before its predecessors that it doesn't lengthen their live ranges.
|
|
return 0xffff;
|
|
else if (SU->NumPreds == 0)
|
|
// If SU does not have a def, schedule it close to its uses because it
|
|
// does not lengthen any live ranges.
|
|
return 0;
|
|
else
|
|
return SethiUllmanNumbers[SU->NodeNum];
|
|
}
|
|
|
|
void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
|
|
scheduleDAG = scheduleDag;
|
|
}
|
|
|
|
private:
|
|
bool canClobber(const SUnit *SU, const SUnit *Op);
|
|
void AddPseudoTwoAddrDeps();
|
|
void CalculateSethiUllmanNumbers();
|
|
};
|
|
|
|
|
|
class VISIBILITY_HIDDEN BURegReductionFastPriorityQueue
|
|
: public RegReductionPriorityQueue<bu_ls_rr_fast_sort> {
|
|
// SUnits - The SUnits for the current graph.
|
|
const std::vector<SUnit> *SUnits;
|
|
|
|
// SethiUllmanNumbers - The SethiUllman number for each node.
|
|
std::vector<unsigned> SethiUllmanNumbers;
|
|
public:
|
|
explicit BURegReductionFastPriorityQueue() {}
|
|
|
|
void initNodes(std::vector<SUnit> &sunits) {
|
|
SUnits = &sunits;
|
|
// Calculate node priorities.
|
|
CalculateSethiUllmanNumbers();
|
|
}
|
|
|
|
void addNode(const SUnit *SU) {
|
|
unsigned SUSize = SethiUllmanNumbers.size();
|
|
if (SUnits->size() > SUSize)
|
|
SethiUllmanNumbers.resize(SUSize*2, 0);
|
|
CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
|
|
}
|
|
|
|
void updateNode(const SUnit *SU) {
|
|
SethiUllmanNumbers[SU->NodeNum] = 0;
|
|
CalcNodeBUSethiUllmanNumber(SU, SethiUllmanNumbers);
|
|
}
|
|
|
|
void releaseState() {
|
|
SUnits = 0;
|
|
SethiUllmanNumbers.clear();
|
|
}
|
|
|
|
unsigned getNodePriority(const SUnit *SU) const {
|
|
return SethiUllmanNumbers[SU->NodeNum];
|
|
}
|
|
|
|
private:
|
|
void CalculateSethiUllmanNumbers();
|
|
};
|
|
|
|
|
|
class VISIBILITY_HIDDEN TDRegReductionPriorityQueue
|
|
: public RegReductionPriorityQueue<td_ls_rr_sort> {
|
|
// SUnits - The SUnits for the current graph.
|
|
const std::vector<SUnit> *SUnits;
|
|
|
|
// SethiUllmanNumbers - The SethiUllman number for each node.
|
|
std::vector<unsigned> SethiUllmanNumbers;
|
|
|
|
public:
|
|
TDRegReductionPriorityQueue() {}
|
|
|
|
void initNodes(std::vector<SUnit> &sunits) {
|
|
SUnits = &sunits;
|
|
// Calculate node priorities.
|
|
CalculateSethiUllmanNumbers();
|
|
}
|
|
|
|
void addNode(const SUnit *SU) {
|
|
unsigned SUSize = SethiUllmanNumbers.size();
|
|
if (SUnits->size() > SUSize)
|
|
SethiUllmanNumbers.resize(SUSize*2, 0);
|
|
CalcNodeTDSethiUllmanNumber(SU, SethiUllmanNumbers);
|
|
}
|
|
|
|
void updateNode(const SUnit *SU) {
|
|
SethiUllmanNumbers[SU->NodeNum] = 0;
|
|
CalcNodeTDSethiUllmanNumber(SU, SethiUllmanNumbers);
|
|
}
|
|
|
|
void releaseState() {
|
|
SUnits = 0;
|
|
SethiUllmanNumbers.clear();
|
|
}
|
|
|
|
unsigned getNodePriority(const SUnit *SU) const {
|
|
assert(SU->NodeNum < SethiUllmanNumbers.size());
|
|
return SethiUllmanNumbers[SU->NodeNum];
|
|
}
|
|
|
|
private:
|
|
void CalculateSethiUllmanNumbers();
|
|
};
|
|
}
|
|
|
|
/// closestSucc - Returns the scheduled cycle of the successor which is
|
|
/// closet to the current cycle.
|
|
static unsigned closestSucc(const SUnit *SU) {
|
|
unsigned MaxCycle = 0;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
unsigned Cycle = I->Dep->Cycle;
|
|
// If there are bunch of CopyToRegs stacked up, they should be considered
|
|
// to be at the same position.
|
|
if (I->Dep->Node && I->Dep->Node->getOpcode() == ISD::CopyToReg)
|
|
Cycle = closestSucc(I->Dep)+1;
|
|
if (Cycle > MaxCycle)
|
|
MaxCycle = Cycle;
|
|
}
|
|
return MaxCycle;
|
|
}
|
|
|
|
/// calcMaxScratches - Returns an cost estimate of the worse case requirement
|
|
/// for scratch registers. Live-in operands and live-out results don't count
|
|
/// since they are "fixed".
|
|
static unsigned calcMaxScratches(const SUnit *SU) {
|
|
unsigned Scratches = 0;
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl) continue; // ignore chain preds
|
|
if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyFromReg)
|
|
Scratches++;
|
|
}
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl) continue; // ignore chain succs
|
|
if (!I->Dep->Node || I->Dep->Node->getOpcode() != ISD::CopyToReg)
|
|
Scratches += 10;
|
|
}
|
|
return Scratches;
|
|
}
|
|
|
|
// Bottom up
|
|
bool bu_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
|
|
unsigned LPriority = SPQ->getNodePriority(left);
|
|
unsigned RPriority = SPQ->getNodePriority(right);
|
|
if (LPriority != RPriority)
|
|
return LPriority > RPriority;
|
|
|
|
// Try schedule def + use closer when Sethi-Ullman numbers are the same.
|
|
// e.g.
|
|
// t1 = op t2, c1
|
|
// t3 = op t4, c2
|
|
//
|
|
// and the following instructions are both ready.
|
|
// t2 = op c3
|
|
// t4 = op c4
|
|
//
|
|
// Then schedule t2 = op first.
|
|
// i.e.
|
|
// t4 = op c4
|
|
// t2 = op c3
|
|
// t1 = op t2, c1
|
|
// t3 = op t4, c2
|
|
//
|
|
// This creates more short live intervals.
|
|
unsigned LDist = closestSucc(left);
|
|
unsigned RDist = closestSucc(right);
|
|
if (LDist != RDist)
|
|
return LDist < RDist;
|
|
|
|
// Intuitively, it's good to push down instructions whose results are
|
|
// liveout so their long live ranges won't conflict with other values
|
|
// which are needed inside the BB. Further prioritize liveout instructions
|
|
// by the number of operands which are calculated within the BB.
|
|
unsigned LScratch = calcMaxScratches(left);
|
|
unsigned RScratch = calcMaxScratches(right);
|
|
if (LScratch != RScratch)
|
|
return LScratch > RScratch;
|
|
|
|
if (left->Height != right->Height)
|
|
return left->Height > right->Height;
|
|
|
|
if (left->Depth != right->Depth)
|
|
return left->Depth < right->Depth;
|
|
|
|
if (left->CycleBound != right->CycleBound)
|
|
return left->CycleBound > right->CycleBound;
|
|
|
|
assert(left->NodeQueueId && right->NodeQueueId &&
|
|
"NodeQueueId cannot be zero");
|
|
return (left->NodeQueueId > right->NodeQueueId);
|
|
}
|
|
|
|
bool
|
|
bu_ls_rr_fast_sort::operator()(const SUnit *left, const SUnit *right) const {
|
|
unsigned LPriority = SPQ->getNodePriority(left);
|
|
unsigned RPriority = SPQ->getNodePriority(right);
|
|
if (LPriority != RPriority)
|
|
return LPriority > RPriority;
|
|
assert(left->NodeQueueId && right->NodeQueueId &&
|
|
"NodeQueueId cannot be zero");
|
|
return (left->NodeQueueId > right->NodeQueueId);
|
|
}
|
|
|
|
bool
|
|
BURegReductionPriorityQueue::canClobber(const SUnit *SU, const SUnit *Op) {
|
|
if (SU->isTwoAddress) {
|
|
unsigned Opc = SU->Node->getMachineOpcode();
|
|
const TargetInstrDesc &TID = TII->get(Opc);
|
|
unsigned NumRes = TID.getNumDefs();
|
|
unsigned NumOps = TID.getNumOperands() - NumRes;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
if (TID.getOperandConstraint(i+NumRes, TOI::TIED_TO) != -1) {
|
|
SDNode *DU = SU->Node->getOperand(i).getNode();
|
|
if (DU->getNodeId() != -1 &&
|
|
Op->OrigNode == &(*SUnits)[DU->getNodeId()])
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/// hasCopyToRegUse - Return true if SU has a value successor that is a
|
|
/// CopyToReg node.
|
|
static bool hasCopyToRegUse(const SUnit *SU) {
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl) continue;
|
|
const SUnit *SuccSU = I->Dep;
|
|
if (SuccSU->Node && SuccSU->Node->getOpcode() == ISD::CopyToReg)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
|
|
/// physical register defs.
|
|
static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
|
|
const TargetInstrInfo *TII,
|
|
const TargetRegisterInfo *TRI) {
|
|
SDNode *N = SuccSU->Node;
|
|
unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
|
|
const unsigned *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
|
|
assert(ImpDefs && "Caller should check hasPhysRegDefs");
|
|
const unsigned *SUImpDefs =
|
|
TII->get(SU->Node->getMachineOpcode()).getImplicitDefs();
|
|
if (!SUImpDefs)
|
|
return false;
|
|
for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
|
|
MVT VT = N->getValueType(i);
|
|
if (VT == MVT::Flag || VT == MVT::Other)
|
|
continue;
|
|
if (!N->hasAnyUseOfValue(i))
|
|
continue;
|
|
unsigned Reg = ImpDefs[i - NumDefs];
|
|
for (;*SUImpDefs; ++SUImpDefs) {
|
|
unsigned SUReg = *SUImpDefs;
|
|
if (TRI->regsOverlap(Reg, SUReg))
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
|
|
/// it as a def&use operand. Add a pseudo control edge from it to the other
|
|
/// node (if it won't create a cycle) so the two-address one will be scheduled
|
|
/// first (lower in the schedule). If both nodes are two-address, favor the
|
|
/// one that has a CopyToReg use (more likely to be a loop induction update).
|
|
/// If both are two-address, but one is commutable while the other is not
|
|
/// commutable, favor the one that's not commutable.
|
|
void BURegReductionPriorityQueue::AddPseudoTwoAddrDeps() {
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
|
|
SUnit *SU = &(*SUnits)[i];
|
|
if (!SU->isTwoAddress)
|
|
continue;
|
|
|
|
SDNode *Node = SU->Node;
|
|
if (!Node || !Node->isMachineOpcode() || SU->FlaggedNodes.size() > 0)
|
|
continue;
|
|
|
|
unsigned Opc = Node->getMachineOpcode();
|
|
const TargetInstrDesc &TID = TII->get(Opc);
|
|
unsigned NumRes = TID.getNumDefs();
|
|
unsigned NumOps = TID.getNumOperands() - NumRes;
|
|
for (unsigned j = 0; j != NumOps; ++j) {
|
|
if (TID.getOperandConstraint(j+NumRes, TOI::TIED_TO) != -1) {
|
|
SDNode *DU = SU->Node->getOperand(j).getNode();
|
|
if (DU->getNodeId() == -1)
|
|
continue;
|
|
const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
|
|
if (!DUSU) continue;
|
|
for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
|
|
E = DUSU->Succs.end(); I != E; ++I) {
|
|
if (I->isCtrl) continue;
|
|
SUnit *SuccSU = I->Dep;
|
|
if (SuccSU == SU)
|
|
continue;
|
|
// Be conservative. Ignore if nodes aren't at roughly the same
|
|
// depth and height.
|
|
if (SuccSU->Height < SU->Height && (SU->Height - SuccSU->Height) > 1)
|
|
continue;
|
|
if (!SuccSU->Node || !SuccSU->Node->isMachineOpcode())
|
|
continue;
|
|
// Don't constrain nodes with physical register defs if the
|
|
// predecessor can clobber them.
|
|
if (SuccSU->hasPhysRegDefs) {
|
|
if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
|
|
continue;
|
|
}
|
|
// Don't constraint extract_subreg / insert_subreg these may be
|
|
// coalesced away. We don't them close to their uses.
|
|
unsigned SuccOpc = SuccSU->Node->getMachineOpcode();
|
|
if (SuccOpc == TargetInstrInfo::EXTRACT_SUBREG ||
|
|
SuccOpc == TargetInstrInfo::INSERT_SUBREG)
|
|
continue;
|
|
if ((!canClobber(SuccSU, DUSU) ||
|
|
(hasCopyToRegUse(SU) && !hasCopyToRegUse(SuccSU)) ||
|
|
(!SU->isCommutable && SuccSU->isCommutable)) &&
|
|
!scheduleDAG->IsReachable(SuccSU, SU)) {
|
|
DOUT << "Adding an edge from SU # " << SU->NodeNum
|
|
<< " to SU #" << SuccSU->NodeNum << "\n";
|
|
scheduleDAG->AddPred(SU, SuccSU, true, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
|
|
/// scheduling units.
|
|
void BURegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
|
|
SethiUllmanNumbers.assign(SUnits->size(), 0);
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
CalcNodeBUSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
|
|
}
|
|
void BURegReductionFastPriorityQueue::CalculateSethiUllmanNumbers() {
|
|
SethiUllmanNumbers.assign(SUnits->size(), 0);
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
CalcNodeBUSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
|
|
}
|
|
|
|
/// LimitedSumOfUnscheduledPredsOfSuccs - Compute the sum of the unscheduled
|
|
/// predecessors of the successors of the SUnit SU. Stop when the provided
|
|
/// limit is exceeded.
|
|
static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
|
|
unsigned Limit) {
|
|
unsigned Sum = 0;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
const SUnit *SuccSU = I->Dep;
|
|
for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
|
|
EE = SuccSU->Preds.end(); II != EE; ++II) {
|
|
SUnit *PredSU = II->Dep;
|
|
if (!PredSU->isScheduled)
|
|
if (++Sum > Limit)
|
|
return Sum;
|
|
}
|
|
}
|
|
return Sum;
|
|
}
|
|
|
|
|
|
// Top down
|
|
bool td_ls_rr_sort::operator()(const SUnit *left, const SUnit *right) const {
|
|
unsigned LPriority = SPQ->getNodePriority(left);
|
|
unsigned RPriority = SPQ->getNodePriority(right);
|
|
bool LIsTarget = left->Node && left->Node->isMachineOpcode();
|
|
bool RIsTarget = right->Node && right->Node->isMachineOpcode();
|
|
bool LIsFloater = LIsTarget && left->NumPreds == 0;
|
|
bool RIsFloater = RIsTarget && right->NumPreds == 0;
|
|
unsigned LBonus = (LimitedSumOfUnscheduledPredsOfSuccs(left,1) == 1) ? 2 : 0;
|
|
unsigned RBonus = (LimitedSumOfUnscheduledPredsOfSuccs(right,1) == 1) ? 2 : 0;
|
|
|
|
if (left->NumSuccs == 0 && right->NumSuccs != 0)
|
|
return false;
|
|
else if (left->NumSuccs != 0 && right->NumSuccs == 0)
|
|
return true;
|
|
|
|
if (LIsFloater)
|
|
LBonus -= 2;
|
|
if (RIsFloater)
|
|
RBonus -= 2;
|
|
if (left->NumSuccs == 1)
|
|
LBonus += 2;
|
|
if (right->NumSuccs == 1)
|
|
RBonus += 2;
|
|
|
|
if (LPriority+LBonus != RPriority+RBonus)
|
|
return LPriority+LBonus < RPriority+RBonus;
|
|
|
|
if (left->Depth != right->Depth)
|
|
return left->Depth < right->Depth;
|
|
|
|
if (left->NumSuccsLeft != right->NumSuccsLeft)
|
|
return left->NumSuccsLeft > right->NumSuccsLeft;
|
|
|
|
if (left->CycleBound != right->CycleBound)
|
|
return left->CycleBound > right->CycleBound;
|
|
|
|
assert(left->NodeQueueId && right->NodeQueueId &&
|
|
"NodeQueueId cannot be zero");
|
|
return (left->NodeQueueId > right->NodeQueueId);
|
|
}
|
|
|
|
/// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
|
|
/// scheduling units.
|
|
void TDRegReductionPriorityQueue::CalculateSethiUllmanNumbers() {
|
|
SethiUllmanNumbers.assign(SUnits->size(), 0);
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
|
|
CalcNodeTDSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Public Constructor Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
llvm::ScheduleDAG* llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB,
|
|
bool Fast) {
|
|
if (Fast)
|
|
return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), true, true,
|
|
new BURegReductionFastPriorityQueue());
|
|
|
|
const TargetInstrInfo *TII = DAG->getTarget().getInstrInfo();
|
|
const TargetRegisterInfo *TRI = DAG->getTarget().getRegisterInfo();
|
|
|
|
BURegReductionPriorityQueue *PQ = new BURegReductionPriorityQueue(TII, TRI);
|
|
|
|
ScheduleDAGRRList *SD =
|
|
new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(),true,false, PQ);
|
|
PQ->setScheduleDAG(SD);
|
|
return SD;
|
|
}
|
|
|
|
llvm::ScheduleDAG* llvm::createTDRRListDAGScheduler(SelectionDAGISel *IS,
|
|
SelectionDAG *DAG,
|
|
MachineBasicBlock *BB,
|
|
bool Fast) {
|
|
return new ScheduleDAGRRList(*DAG, BB, DAG->getTarget(), false, Fast,
|
|
new TDRegReductionPriorityQueue());
|
|
}
|