llvm-6502/lib/Target/SystemZ/SystemZISelLowering.cpp
2010-02-15 22:37:53 +00:00

861 lines
32 KiB
C++

//===-- SystemZISelLowering.cpp - SystemZ DAG Lowering Implementation -----==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SystemZTargetLowering class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "systemz-lower"
#include "SystemZISelLowering.h"
#include "SystemZ.h"
#include "SystemZTargetMachine.h"
#include "SystemZSubtarget.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/Intrinsics.h"
#include "llvm/CallingConv.h"
#include "llvm/GlobalVariable.h"
#include "llvm/GlobalAlias.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/VectorExtras.h"
using namespace llvm;
SystemZTargetLowering::SystemZTargetLowering(SystemZTargetMachine &tm) :
TargetLowering(tm, new TargetLoweringObjectFileELF()),
Subtarget(*tm.getSubtargetImpl()), TM(tm) {
RegInfo = TM.getRegisterInfo();
// Set up the register classes.
addRegisterClass(MVT::i32, SystemZ::GR32RegisterClass);
addRegisterClass(MVT::i64, SystemZ::GR64RegisterClass);
addRegisterClass(MVT::v2i32,SystemZ::GR64PRegisterClass);
addRegisterClass(MVT::v2i64,SystemZ::GR128RegisterClass);
if (!UseSoftFloat) {
addRegisterClass(MVT::f32, SystemZ::FP32RegisterClass);
addRegisterClass(MVT::f64, SystemZ::FP64RegisterClass);
}
// Compute derived properties from the register classes
computeRegisterProperties();
// Set shifts properties
setShiftAmountType(MVT::i64);
// Provide all sorts of operation actions
setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::ZEXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::EXTLOAD, MVT::i1, Promote);
setLoadExtAction(ISD::SEXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::f64, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f64, Expand);
setStackPointerRegisterToSaveRestore(SystemZ::R15D);
// TODO: It may be better to default to latency-oriented scheduling, however
// LLVM's current latency-oriented scheduler can't handle physreg definitions
// such as SystemZ has with PSW, so set this to the register-pressure
// scheduler, because it can.
setSchedulingPreference(SchedulingForRegPressure);
setBooleanContents(ZeroOrOneBooleanContent);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRCOND, MVT::Other, Expand);
setOperationAction(ISD::BR_CC, MVT::i32, Custom);
setOperationAction(ISD::BR_CC, MVT::i64, Custom);
setOperationAction(ISD::BR_CC, MVT::f32, Custom);
setOperationAction(ISD::BR_CC, MVT::f64, Custom);
setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
setOperationAction(ISD::JumpTable, MVT::i64, Custom);
setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64, Expand);
setOperationAction(ISD::SDIV, MVT::i32, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::SDIV, MVT::i64, Expand);
setOperationAction(ISD::UDIV, MVT::i64, Expand);
setOperationAction(ISD::SREM, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::SREM, MVT::i64, Expand);
setOperationAction(ISD::UREM, MVT::i64, Expand);
setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
setOperationAction(ISD::CTTZ, MVT::i32, Expand);
setOperationAction(ISD::CTTZ, MVT::i64, Expand);
setOperationAction(ISD::CTLZ, MVT::i32, Promote);
setOperationAction(ISD::CTLZ, MVT::i64, Legal);
// FIXME: Can we lower these 2 efficiently?
setOperationAction(ISD::SETCC, MVT::i32, Expand);
setOperationAction(ISD::SETCC, MVT::i64, Expand);
setOperationAction(ISD::SETCC, MVT::f32, Expand);
setOperationAction(ISD::SETCC, MVT::f64, Expand);
setOperationAction(ISD::SELECT, MVT::i32, Expand);
setOperationAction(ISD::SELECT, MVT::i64, Expand);
setOperationAction(ISD::SELECT, MVT::f32, Expand);
setOperationAction(ISD::SELECT, MVT::f64, Expand);
setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
// FIXME: Can we support these natively?
setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
// Lower some FP stuff
setOperationAction(ISD::FSIN, MVT::f32, Expand);
setOperationAction(ISD::FSIN, MVT::f64, Expand);
setOperationAction(ISD::FCOS, MVT::f32, Expand);
setOperationAction(ISD::FCOS, MVT::f64, Expand);
setOperationAction(ISD::FREM, MVT::f32, Expand);
setOperationAction(ISD::FREM, MVT::f64, Expand);
// We have only 64-bit bitconverts
setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
setTruncStoreAction(MVT::f64, MVT::f32, Expand);
}
SDValue SystemZTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
switch (Op.getOpcode()) {
case ISD::BR_CC: return LowerBR_CC(Op, DAG);
case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
case ISD::JumpTable: return LowerJumpTable(Op, DAG);
case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
default:
llvm_unreachable("Should not custom lower this!");
return SDValue();
}
}
bool SystemZTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
if (UseSoftFloat || (VT != MVT::f32 && VT != MVT::f64))
return false;
// +0.0 lzer
// +0.0f lzdr
// -0.0 lzer + lner
// -0.0f lzdr + lndr
return Imm.isZero() || Imm.isNegZero();
}
//===----------------------------------------------------------------------===//
// SystemZ Inline Assembly Support
//===----------------------------------------------------------------------===//
/// getConstraintType - Given a constraint letter, return the type of
/// constraint it is for this target.
TargetLowering::ConstraintType
SystemZTargetLowering::getConstraintType(const std::string &Constraint) const {
if (Constraint.size() == 1) {
switch (Constraint[0]) {
case 'r':
return C_RegisterClass;
default:
break;
}
}
return TargetLowering::getConstraintType(Constraint);
}
std::pair<unsigned, const TargetRegisterClass*>
SystemZTargetLowering::
getRegForInlineAsmConstraint(const std::string &Constraint,
EVT VT) const {
if (Constraint.size() == 1) {
// GCC Constraint Letters
switch (Constraint[0]) {
default: break;
case 'r': // GENERAL_REGS
if (VT == MVT::i32)
return std::make_pair(0U, SystemZ::GR32RegisterClass);
else if (VT == MVT::i128)
return std::make_pair(0U, SystemZ::GR128RegisterClass);
return std::make_pair(0U, SystemZ::GR64RegisterClass);
}
}
return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
}
//===----------------------------------------------------------------------===//
// Calling Convention Implementation
//===----------------------------------------------------------------------===//
#include "SystemZGenCallingConv.inc"
SDValue
SystemZTargetLowering::LowerFormalArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
switch (CallConv) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::C:
case CallingConv::Fast:
return LowerCCCArguments(Chain, CallConv, isVarArg, Ins, dl, DAG, InVals);
}
}
SDValue
SystemZTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool &isTailCall,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
// SystemZ target does not yet support tail call optimization.
isTailCall = false;
switch (CallConv) {
default:
llvm_unreachable("Unsupported calling convention");
case CallingConv::Fast:
case CallingConv::C:
return LowerCCCCallTo(Chain, Callee, CallConv, isVarArg, isTailCall,
Outs, Ins, dl, DAG, InVals);
}
}
/// LowerCCCArguments - transform physical registers into virtual registers and
/// generate load operations for arguments places on the stack.
// FIXME: struct return stuff
// FIXME: varargs
SDValue
SystemZTargetLowering::LowerCCCArguments(SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl,
SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
MachineRegisterInfo &RegInfo = MF.getRegInfo();
// Assign locations to all of the incoming arguments.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
ArgLocs, *DAG.getContext());
CCInfo.AnalyzeFormalArguments(Ins, CC_SystemZ);
if (isVarArg)
llvm_report_error("Varargs not supported yet");
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
SDValue ArgValue;
CCValAssign &VA = ArgLocs[i];
EVT LocVT = VA.getLocVT();
if (VA.isRegLoc()) {
// Arguments passed in registers
TargetRegisterClass *RC;
switch (LocVT.getSimpleVT().SimpleTy) {
default:
#ifndef NDEBUG
errs() << "LowerFormalArguments Unhandled argument type: "
<< LocVT.getSimpleVT().SimpleTy
<< "\n";
#endif
llvm_unreachable(0);
case MVT::i64:
RC = SystemZ::GR64RegisterClass;
break;
case MVT::f32:
RC = SystemZ::FP32RegisterClass;
break;
case MVT::f64:
RC = SystemZ::FP64RegisterClass;
break;
}
unsigned VReg = RegInfo.createVirtualRegister(RC);
RegInfo.addLiveIn(VA.getLocReg(), VReg);
ArgValue = DAG.getCopyFromReg(Chain, dl, VReg, LocVT);
} else {
// Sanity check
assert(VA.isMemLoc());
// Create the nodes corresponding to a load from this parameter slot.
// Create the frame index object for this incoming parameter...
int FI = MFI->CreateFixedObject(LocVT.getSizeInBits()/8,
VA.getLocMemOffset(), true, false);
// Create the SelectionDAG nodes corresponding to a load
// from this parameter
SDValue FIN = DAG.getFrameIndex(FI, getPointerTy());
ArgValue = DAG.getLoad(LocVT, dl, Chain, FIN,
PseudoSourceValue::getFixedStack(FI), 0,
false, false, 0);
}
// If this is an 8/16/32-bit value, it is really passed promoted to 64
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
ArgValue = DAG.getNode(ISD::AssertSext, dl, LocVT, ArgValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
ArgValue = DAG.getNode(ISD::AssertZext, dl, LocVT, ArgValue,
DAG.getValueType(VA.getValVT()));
if (VA.getLocInfo() != CCValAssign::Full)
ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
InVals.push_back(ArgValue);
}
return Chain;
}
/// LowerCCCCallTo - functions arguments are copied from virtual regs to
/// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
/// TODO: sret.
SDValue
SystemZTargetLowering::LowerCCCCallTo(SDValue Chain, SDValue Callee,
CallingConv::ID CallConv, bool isVarArg,
bool isTailCall,
const SmallVectorImpl<ISD::OutputArg>
&Outs,
const SmallVectorImpl<ISD::InputArg> &Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
MachineFunction &MF = DAG.getMachineFunction();
// Offset to first argument stack slot.
const unsigned FirstArgOffset = 160;
// Analyze operands of the call, assigning locations to each operand.
SmallVector<CCValAssign, 16> ArgLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
ArgLocs, *DAG.getContext());
CCInfo.AnalyzeCallOperands(Outs, CC_SystemZ);
// Get a count of how many bytes are to be pushed on the stack.
unsigned NumBytes = CCInfo.getNextStackOffset();
Chain = DAG.getCALLSEQ_START(Chain ,DAG.getConstant(NumBytes,
getPointerTy(), true));
SmallVector<std::pair<unsigned, SDValue>, 4> RegsToPass;
SmallVector<SDValue, 12> MemOpChains;
SDValue StackPtr;
// Walk the register/memloc assignments, inserting copies/loads.
for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
CCValAssign &VA = ArgLocs[i];
SDValue Arg = Outs[i].Val;
// Promote the value if needed.
switch (VA.getLocInfo()) {
default: assert(0 && "Unknown loc info!");
case CCValAssign::Full: break;
case CCValAssign::SExt:
Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::ZExt:
Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
break;
case CCValAssign::AExt:
Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
break;
}
// Arguments that can be passed on register must be kept at RegsToPass
// vector
if (VA.isRegLoc()) {
RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
} else {
assert(VA.isMemLoc());
if (StackPtr.getNode() == 0)
StackPtr =
DAG.getCopyFromReg(Chain, dl,
(RegInfo->hasFP(MF) ?
SystemZ::R11D : SystemZ::R15D),
getPointerTy());
unsigned Offset = FirstArgOffset + VA.getLocMemOffset();
SDValue PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(),
StackPtr,
DAG.getIntPtrConstant(Offset));
MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
PseudoSourceValue::getStack(), Offset,
false, false, 0));
}
}
// Transform all store nodes into one single node because all store nodes are
// independent of each other.
if (!MemOpChains.empty())
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&MemOpChains[0], MemOpChains.size());
// Build a sequence of copy-to-reg nodes chained together with token chain and
// flag operands which copy the outgoing args into registers. The InFlag in
// necessary since all emited instructions must be stuck together.
SDValue InFlag;
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
RegsToPass[i].second, InFlag);
InFlag = Chain.getValue(1);
}
// If the callee is a GlobalAddress node (quite common, every direct call is)
// turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
// Likewise ExternalSymbol -> TargetExternalSymbol.
if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy());
else if (ExternalSymbolSDNode *E = dyn_cast<ExternalSymbolSDNode>(Callee))
Callee = DAG.getTargetExternalSymbol(E->getSymbol(), getPointerTy());
// Returns a chain & a flag for retval copy to use.
SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Flag);
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
Ops.push_back(Callee);
// Add argument registers to the end of the list so that they are
// known live into the call.
for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
Ops.push_back(DAG.getRegister(RegsToPass[i].first,
RegsToPass[i].second.getValueType()));
if (InFlag.getNode())
Ops.push_back(InFlag);
Chain = DAG.getNode(SystemZISD::CALL, dl, NodeTys, &Ops[0], Ops.size());
InFlag = Chain.getValue(1);
// Create the CALLSEQ_END node.
Chain = DAG.getCALLSEQ_END(Chain,
DAG.getConstant(NumBytes, getPointerTy(), true),
DAG.getConstant(0, getPointerTy(), true),
InFlag);
InFlag = Chain.getValue(1);
// Handle result values, copying them out of physregs into vregs that we
// return.
return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl,
DAG, InVals);
}
/// LowerCallResult - Lower the result values of a call into the
/// appropriate copies out of appropriate physical registers.
///
SDValue
SystemZTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::InputArg>
&Ins,
DebugLoc dl, SelectionDAG &DAG,
SmallVectorImpl<SDValue> &InVals) {
// Assign locations to each value returned by this call.
SmallVector<CCValAssign, 16> RVLocs;
CCState CCInfo(CallConv, isVarArg, getTargetMachine(), RVLocs,
*DAG.getContext());
CCInfo.AnalyzeCallResult(Ins, RetCC_SystemZ);
// Copy all of the result registers out of their specified physreg.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
Chain = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(),
VA.getLocVT(), InFlag).getValue(1);
SDValue RetValue = Chain.getValue(0);
InFlag = Chain.getValue(2);
// If this is an 8/16/32-bit value, it is really passed promoted to 64
// bits. Insert an assert[sz]ext to capture this, then truncate to the
// right size.
if (VA.getLocInfo() == CCValAssign::SExt)
RetValue = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), RetValue,
DAG.getValueType(VA.getValVT()));
else if (VA.getLocInfo() == CCValAssign::ZExt)
RetValue = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), RetValue,
DAG.getValueType(VA.getValVT()));
if (VA.getLocInfo() != CCValAssign::Full)
RetValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), RetValue);
InVals.push_back(RetValue);
}
return Chain;
}
SDValue
SystemZTargetLowering::LowerReturn(SDValue Chain,
CallingConv::ID CallConv, bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
DebugLoc dl, SelectionDAG &DAG) {
// CCValAssign - represent the assignment of the return value to a location
SmallVector<CCValAssign, 16> RVLocs;
// CCState - Info about the registers and stack slot.
CCState CCInfo(CallConv, isVarArg, getTargetMachine(),
RVLocs, *DAG.getContext());
// Analize return values.
CCInfo.AnalyzeReturn(Outs, RetCC_SystemZ);
// If this is the first return lowered for this function, add the regs to the
// liveout set for the function.
if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
for (unsigned i = 0; i != RVLocs.size(); ++i)
if (RVLocs[i].isRegLoc())
DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
}
SDValue Flag;
// Copy the result values into the output registers.
for (unsigned i = 0; i != RVLocs.size(); ++i) {
CCValAssign &VA = RVLocs[i];
SDValue ResValue = Outs[i].Val;
assert(VA.isRegLoc() && "Can only return in registers!");
// If this is an 8/16/32-bit value, it is really should be passed promoted
// to 64 bits.
if (VA.getLocInfo() == CCValAssign::SExt)
ResValue = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), ResValue);
else if (VA.getLocInfo() == CCValAssign::ZExt)
ResValue = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), ResValue);
else if (VA.getLocInfo() == CCValAssign::AExt)
ResValue = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), ResValue);
Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), ResValue, Flag);
// Guarantee that all emitted copies are stuck together,
// avoiding something bad.
Flag = Chain.getValue(1);
}
if (Flag.getNode())
return DAG.getNode(SystemZISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
// Return Void
return DAG.getNode(SystemZISD::RET_FLAG, dl, MVT::Other, Chain);
}
SDValue SystemZTargetLowering::EmitCmp(SDValue LHS, SDValue RHS,
ISD::CondCode CC, SDValue &SystemZCC,
SelectionDAG &DAG) {
// FIXME: Emit a test if RHS is zero
bool isUnsigned = false;
SystemZCC::CondCodes TCC;
switch (CC) {
default:
llvm_unreachable("Invalid integer condition!");
case ISD::SETEQ:
case ISD::SETOEQ:
TCC = SystemZCC::E;
break;
case ISD::SETUEQ:
TCC = SystemZCC::NLH;
break;
case ISD::SETNE:
case ISD::SETONE:
TCC = SystemZCC::NE;
break;
case ISD::SETUNE:
TCC = SystemZCC::LH;
break;
case ISD::SETO:
TCC = SystemZCC::O;
break;
case ISD::SETUO:
TCC = SystemZCC::NO;
break;
case ISD::SETULE:
if (LHS.getValueType().isFloatingPoint()) {
TCC = SystemZCC::NH;
break;
}
isUnsigned = true; // FALLTHROUGH
case ISD::SETLE:
case ISD::SETOLE:
TCC = SystemZCC::LE;
break;
case ISD::SETUGE:
if (LHS.getValueType().isFloatingPoint()) {
TCC = SystemZCC::NL;
break;
}
isUnsigned = true; // FALLTHROUGH
case ISD::SETGE:
case ISD::SETOGE:
TCC = SystemZCC::HE;
break;
case ISD::SETUGT:
if (LHS.getValueType().isFloatingPoint()) {
TCC = SystemZCC::NLE;
break;
}
isUnsigned = true; // FALLTHROUGH
case ISD::SETGT:
case ISD::SETOGT:
TCC = SystemZCC::H;
break;
case ISD::SETULT:
if (LHS.getValueType().isFloatingPoint()) {
TCC = SystemZCC::NHE;
break;
}
isUnsigned = true; // FALLTHROUGH
case ISD::SETLT:
case ISD::SETOLT:
TCC = SystemZCC::L;
break;
}
SystemZCC = DAG.getConstant(TCC, MVT::i32);
DebugLoc dl = LHS.getDebugLoc();
return DAG.getNode((isUnsigned ? SystemZISD::UCMP : SystemZISD::CMP),
dl, MVT::i64, LHS, RHS);
}
SDValue SystemZTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) {
SDValue Chain = Op.getOperand(0);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
SDValue LHS = Op.getOperand(2);
SDValue RHS = Op.getOperand(3);
SDValue Dest = Op.getOperand(4);
DebugLoc dl = Op.getDebugLoc();
SDValue SystemZCC;
SDValue Flag = EmitCmp(LHS, RHS, CC, SystemZCC, DAG);
return DAG.getNode(SystemZISD::BRCOND, dl, Op.getValueType(),
Chain, Dest, SystemZCC, Flag);
}
SDValue SystemZTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) {
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
SDValue TrueV = Op.getOperand(2);
SDValue FalseV = Op.getOperand(3);
ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
DebugLoc dl = Op.getDebugLoc();
SDValue SystemZCC;
SDValue Flag = EmitCmp(LHS, RHS, CC, SystemZCC, DAG);
SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::Flag);
SmallVector<SDValue, 4> Ops;
Ops.push_back(TrueV);
Ops.push_back(FalseV);
Ops.push_back(SystemZCC);
Ops.push_back(Flag);
return DAG.getNode(SystemZISD::SELECT, dl, VTs, &Ops[0], Ops.size());
}
SDValue SystemZTargetLowering::LowerGlobalAddress(SDValue Op,
SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
bool IsPic = getTargetMachine().getRelocationModel() == Reloc::PIC_;
bool ExtraLoadRequired =
Subtarget.GVRequiresExtraLoad(GV, getTargetMachine(), false);
SDValue Result;
if (!IsPic && !ExtraLoadRequired) {
Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), Offset);
Offset = 0;
} else {
unsigned char OpFlags = 0;
if (ExtraLoadRequired)
OpFlags = SystemZII::MO_GOTENT;
Result = DAG.getTargetGlobalAddress(GV, getPointerTy(), 0, OpFlags);
}
Result = DAG.getNode(SystemZISD::PCRelativeWrapper, dl,
getPointerTy(), Result);
if (ExtraLoadRequired)
Result = DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(), Result,
PseudoSourceValue::getGOT(), 0, false, false, 0);
// If there was a non-zero offset that we didn't fold, create an explicit
// addition for it.
if (Offset != 0)
Result = DAG.getNode(ISD::ADD, dl, getPointerTy(), Result,
DAG.getConstant(Offset, getPointerTy()));
return Result;
}
// FIXME: PIC here
SDValue SystemZTargetLowering::LowerJumpTable(SDValue Op,
SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
SDValue Result = DAG.getTargetJumpTable(JT->getIndex(), getPointerTy());
return DAG.getNode(SystemZISD::PCRelativeWrapper, dl, getPointerTy(), Result);
}
// FIXME: PIC here
// FIXME: This is just dirty hack. We need to lower cpool properly
SDValue SystemZTargetLowering::LowerConstantPool(SDValue Op,
SelectionDAG &DAG) {
DebugLoc dl = Op.getDebugLoc();
ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
SDValue Result = DAG.getTargetConstantPool(CP->getConstVal(), getPointerTy(),
CP->getAlignment(),
CP->getOffset());
return DAG.getNode(SystemZISD::PCRelativeWrapper, dl, getPointerTy(), Result);
}
const char *SystemZTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
case SystemZISD::RET_FLAG: return "SystemZISD::RET_FLAG";
case SystemZISD::CALL: return "SystemZISD::CALL";
case SystemZISD::BRCOND: return "SystemZISD::BRCOND";
case SystemZISD::CMP: return "SystemZISD::CMP";
case SystemZISD::UCMP: return "SystemZISD::UCMP";
case SystemZISD::SELECT: return "SystemZISD::SELECT";
case SystemZISD::PCRelativeWrapper: return "SystemZISD::PCRelativeWrapper";
default: return NULL;
}
}
//===----------------------------------------------------------------------===//
// Other Lowering Code
//===----------------------------------------------------------------------===//
MachineBasicBlock*
SystemZTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
MachineBasicBlock *BB,
DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const {
const SystemZInstrInfo &TII = *TM.getInstrInfo();
DebugLoc dl = MI->getDebugLoc();
assert((MI->getOpcode() == SystemZ::Select32 ||
MI->getOpcode() == SystemZ::SelectF32 ||
MI->getOpcode() == SystemZ::Select64 ||
MI->getOpcode() == SystemZ::SelectF64) &&
"Unexpected instr type to insert");
// To "insert" a SELECT instruction, we actually have to insert the diamond
// control-flow pattern. The incoming instruction knows the destination vreg
// to set, the condition code register to branch on, the true/false values to
// select between, and a branch opcode to use.
const BasicBlock *LLVM_BB = BB->getBasicBlock();
MachineFunction::iterator I = BB;
++I;
// thisMBB:
// ...
// TrueVal = ...
// cmpTY ccX, r1, r2
// jCC copy1MBB
// fallthrough --> copy0MBB
MachineBasicBlock *thisMBB = BB;
MachineFunction *F = BB->getParent();
MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
MachineBasicBlock *copy1MBB = F->CreateMachineBasicBlock(LLVM_BB);
SystemZCC::CondCodes CC = (SystemZCC::CondCodes)MI->getOperand(3).getImm();
BuildMI(BB, dl, TII.getBrCond(CC)).addMBB(copy1MBB);
F->insert(I, copy0MBB);
F->insert(I, copy1MBB);
// Inform sdisel of the edge changes.
for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
SE = BB->succ_end(); SI != SE; ++SI)
EM->insert(std::make_pair(*SI, copy1MBB));
// Update machine-CFG edges by transferring all successors of the current
// block to the new block which will contain the Phi node for the select.
copy1MBB->transferSuccessors(BB);
// Next, add the true and fallthrough blocks as its successors.
BB->addSuccessor(copy0MBB);
BB->addSuccessor(copy1MBB);
// copy0MBB:
// %FalseValue = ...
// # fallthrough to copy1MBB
BB = copy0MBB;
// Update machine-CFG edges
BB->addSuccessor(copy1MBB);
// copy1MBB:
// %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
// ...
BB = copy1MBB;
BuildMI(BB, dl, TII.get(SystemZ::PHI),
MI->getOperand(0).getReg())
.addReg(MI->getOperand(2).getReg()).addMBB(copy0MBB)
.addReg(MI->getOperand(1).getReg()).addMBB(thisMBB);
F->DeleteMachineInstr(MI); // The pseudo instruction is gone now.
return BB;
}