llvm-6502/lib/Target/X86/X86SelectionDAGInfo.cpp
Chandler Carruth 0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00

263 lines
9.9 KiB
C++

//===-- X86SelectionDAGInfo.cpp - X86 SelectionDAG Info -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86SelectionDAGInfo class.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "x86-selectiondag-info"
#include "X86TargetMachine.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/IR/DerivedTypes.h"
using namespace llvm;
X86SelectionDAGInfo::X86SelectionDAGInfo(const X86TargetMachine &TM) :
TargetSelectionDAGInfo(TM),
Subtarget(&TM.getSubtarget<X86Subtarget>()),
TLI(*TM.getTargetLowering()) {
}
X86SelectionDAGInfo::~X86SelectionDAGInfo() {
}
SDValue
X86SelectionDAGInfo::EmitTargetCodeForMemset(SelectionDAG &DAG, DebugLoc dl,
SDValue Chain,
SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile,
MachinePointerInfo DstPtrInfo) const {
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256)
return SDValue();
// If not DWORD aligned or size is more than the threshold, call the library.
// The libc version is likely to be faster for these cases. It can use the
// address value and run time information about the CPU.
if ((Align & 3) != 0 ||
!ConstantSize ||
ConstantSize->getZExtValue() >
Subtarget->getMaxInlineSizeThreshold()) {
SDValue InFlag(0, 0);
// Check to see if there is a specialized entry-point for memory zeroing.
ConstantSDNode *V = dyn_cast<ConstantSDNode>(Src);
if (const char *bzeroEntry = V &&
V->isNullValue() ? Subtarget->getBZeroEntry() : 0) {
EVT IntPtr = TLI.getPointerTy();
Type *IntPtrTy = getDataLayout()->getIntPtrType(*DAG.getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst;
Entry.Ty = IntPtrTy;
Args.push_back(Entry);
Entry.Node = Size;
Args.push_back(Entry);
TargetLowering::
CallLoweringInfo CLI(Chain, Type::getVoidTy(*DAG.getContext()),
false, false, false, false,
0, CallingConv::C, /*isTailCall=*/false,
/*doesNotRet=*/false, /*isReturnValueUsed=*/false,
DAG.getExternalSymbol(bzeroEntry, IntPtr), Args,
DAG, dl);
std::pair<SDValue,SDValue> CallResult =
TLI.LowerCallTo(CLI);
return CallResult.second;
}
// Otherwise have the target-independent code call memset.
return SDValue();
}
uint64_t SizeVal = ConstantSize->getZExtValue();
SDValue InFlag(0, 0);
EVT AVT;
SDValue Count;
ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Src);
unsigned BytesLeft = 0;
bool TwoRepStos = false;
if (ValC) {
unsigned ValReg;
uint64_t Val = ValC->getZExtValue() & 255;
// If the value is a constant, then we can potentially use larger sets.
switch (Align & 3) {
case 2: // WORD aligned
AVT = MVT::i16;
ValReg = X86::AX;
Val = (Val << 8) | Val;
break;
case 0: // DWORD aligned
AVT = MVT::i32;
ValReg = X86::EAX;
Val = (Val << 8) | Val;
Val = (Val << 16) | Val;
if (Subtarget->is64Bit() && ((Align & 0x7) == 0)) { // QWORD aligned
AVT = MVT::i64;
ValReg = X86::RAX;
Val = (Val << 32) | Val;
}
break;
default: // Byte aligned
AVT = MVT::i8;
ValReg = X86::AL;
Count = DAG.getIntPtrConstant(SizeVal);
break;
}
if (AVT.bitsGT(MVT::i8)) {
unsigned UBytes = AVT.getSizeInBits() / 8;
Count = DAG.getIntPtrConstant(SizeVal / UBytes);
BytesLeft = SizeVal % UBytes;
}
Chain = DAG.getCopyToReg(Chain, dl, ValReg, DAG.getConstant(Val, AVT),
InFlag);
InFlag = Chain.getValue(1);
} else {
AVT = MVT::i8;
Count = DAG.getIntPtrConstant(SizeVal);
Chain = DAG.getCopyToReg(Chain, dl, X86::AL, Src, InFlag);
InFlag = Chain.getValue(1);
}
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
if (TwoRepStos) {
InFlag = Chain.getValue(1);
Count = Size;
EVT CVT = Count.getValueType();
SDValue Left = DAG.getNode(ISD::AND, dl, CVT, Count,
DAG.getConstant((AVT == MVT::i64) ? 7 : 3, CVT));
Chain = DAG.getCopyToReg(Chain, dl, (CVT == MVT::i64) ? X86::RCX :
X86::ECX,
Left, InFlag);
InFlag = Chain.getValue(1);
Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(MVT::i8), InFlag };
Chain = DAG.getNode(X86ISD::REP_STOS, dl, Tys, Ops, array_lengthof(Ops));
} else if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT AddrVT = Dst.getValueType();
EVT SizeVT = Size.getValueType();
Chain = DAG.getMemset(Chain, dl,
DAG.getNode(ISD::ADD, dl, AddrVT, Dst,
DAG.getConstant(Offset, AddrVT)),
Src,
DAG.getConstant(BytesLeft, SizeVT),
Align, isVolatile, DstPtrInfo.getWithOffset(Offset));
}
// TODO: Use a Tokenfactor, as in memcpy, instead of a single chain.
return Chain;
}
SDValue
X86SelectionDAGInfo::EmitTargetCodeForMemcpy(SelectionDAG &DAG, DebugLoc dl,
SDValue Chain, SDValue Dst, SDValue Src,
SDValue Size, unsigned Align,
bool isVolatile, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) const {
// This requires the copy size to be a constant, preferably
// within a subtarget-specific limit.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (!ConstantSize)
return SDValue();
uint64_t SizeVal = ConstantSize->getZExtValue();
if (!AlwaysInline && SizeVal > Subtarget->getMaxInlineSizeThreshold())
return SDValue();
/// If not DWORD aligned, it is more efficient to call the library. However
/// if calling the library is not allowed (AlwaysInline), then soldier on as
/// the code generated here is better than the long load-store sequence we
/// would otherwise get.
if (!AlwaysInline && (Align & 3) != 0)
return SDValue();
// If to a segment-relative address space, use the default lowering.
if (DstPtrInfo.getAddrSpace() >= 256 ||
SrcPtrInfo.getAddrSpace() >= 256)
return SDValue();
MVT AVT;
if (Align & 1)
AVT = MVT::i8;
else if (Align & 2)
AVT = MVT::i16;
else if (Align & 4)
// DWORD aligned
AVT = MVT::i32;
else
// QWORD aligned
AVT = Subtarget->is64Bit() ? MVT::i64 : MVT::i32;
unsigned UBytes = AVT.getSizeInBits() / 8;
unsigned CountVal = SizeVal / UBytes;
SDValue Count = DAG.getIntPtrConstant(CountVal);
unsigned BytesLeft = SizeVal % UBytes;
SDValue InFlag(0, 0);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RCX :
X86::ECX,
Count, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RDI :
X86::EDI,
Dst, InFlag);
InFlag = Chain.getValue(1);
Chain = DAG.getCopyToReg(Chain, dl, Subtarget->is64Bit() ? X86::RSI :
X86::ESI,
Src, InFlag);
InFlag = Chain.getValue(1);
SDVTList Tys = DAG.getVTList(MVT::Other, MVT::Glue);
SDValue Ops[] = { Chain, DAG.getValueType(AVT), InFlag };
SDValue RepMovs = DAG.getNode(X86ISD::REP_MOVS, dl, Tys, Ops,
array_lengthof(Ops));
SmallVector<SDValue, 4> Results;
Results.push_back(RepMovs);
if (BytesLeft) {
// Handle the last 1 - 7 bytes.
unsigned Offset = SizeVal - BytesLeft;
EVT DstVT = Dst.getValueType();
EVT SrcVT = Src.getValueType();
EVT SizeVT = Size.getValueType();
Results.push_back(DAG.getMemcpy(Chain, dl,
DAG.getNode(ISD::ADD, dl, DstVT, Dst,
DAG.getConstant(Offset, DstVT)),
DAG.getNode(ISD::ADD, dl, SrcVT, Src,
DAG.getConstant(Offset, SrcVT)),
DAG.getConstant(BytesLeft, SizeVT),
Align, isVolatile, AlwaysInline,
DstPtrInfo.getWithOffset(Offset),
SrcPtrInfo.getWithOffset(Offset)));
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&Results[0], Results.size());
}