llvm-6502/utils/TableGen/CodeGenTarget.cpp
Dan Gohman f8c7394781 Add a new TargetInstrInfo MachineInstr opcode, COPY_TO_SUBCLASS.
This will be used to replace things like X86's MOV32to32_.

Enhance ScheduleDAGSDNodesEmit to be more flexible and robust
in the presense of subregister superclasses and subclasses. It
can now cope with the definition of a virtual register being in
a subclass of a use.

Re-introduce the code for recording register superreg classes and
subreg classes. This is needed because when subreg extracts and
inserts get coalesced away, the virtual registers are left in
the correct subclass.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@68961 91177308-0d34-0410-b5e6-96231b3b80d8
2009-04-13 15:38:05 +00:00

567 lines
21 KiB
C++

//===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class wraps target description classes used by the various code
// generation TableGen backends. This makes it easier to access the data and
// provides a single place that needs to check it for validity. All of these
// classes throw exceptions on error conditions.
//
//===----------------------------------------------------------------------===//
#include "CodeGenTarget.h"
#include "CodeGenIntrinsics.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
using namespace llvm;
static cl::opt<unsigned>
AsmWriterNum("asmwriternum", cl::init(0),
cl::desc("Make -gen-asm-writer emit assembly writer #N"));
/// getValueType - Return the MVT::SimpleValueType that the specified TableGen
/// record corresponds to.
MVT::SimpleValueType llvm::getValueType(Record *Rec) {
return (MVT::SimpleValueType)Rec->getValueAsInt("Value");
}
std::string llvm::getName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "UNKNOWN";
case MVT::i1: return "MVT::i1";
case MVT::i8: return "MVT::i8";
case MVT::i16: return "MVT::i16";
case MVT::i32: return "MVT::i32";
case MVT::i64: return "MVT::i64";
case MVT::i128: return "MVT::i128";
case MVT::iAny: return "MVT::iAny";
case MVT::fAny: return "MVT::fAny";
case MVT::f32: return "MVT::f32";
case MVT::f64: return "MVT::f64";
case MVT::f80: return "MVT::f80";
case MVT::f128: return "MVT::f128";
case MVT::ppcf128: return "MVT::ppcf128";
case MVT::Flag: return "MVT::Flag";
case MVT::isVoid:return "MVT::isVoid";
case MVT::v2i8: return "MVT::v2i8";
case MVT::v4i8: return "MVT::v4i8";
case MVT::v2i16: return "MVT::v2i16";
case MVT::v8i8: return "MVT::v8i8";
case MVT::v4i16: return "MVT::v4i16";
case MVT::v2i32: return "MVT::v2i32";
case MVT::v1i64: return "MVT::v1i64";
case MVT::v16i8: return "MVT::v16i8";
case MVT::v8i16: return "MVT::v8i16";
case MVT::v4i32: return "MVT::v4i32";
case MVT::v2i64: return "MVT::v2i64";
case MVT::v2f32: return "MVT::v2f32";
case MVT::v4f32: return "MVT::v4f32";
case MVT::v2f64: return "MVT::v2f64";
case MVT::v3i32: return "MVT::v3i32";
case MVT::v3f32: return "MVT::v3f32";
case MVT::iPTR: return "TLI.getPointerTy()";
case MVT::iPTRAny: return "TLI.getPointerTy()";
default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
}
}
std::string llvm::getEnumName(MVT::SimpleValueType T) {
switch (T) {
case MVT::Other: return "MVT::Other";
case MVT::i1: return "MVT::i1";
case MVT::i8: return "MVT::i8";
case MVT::i16: return "MVT::i16";
case MVT::i32: return "MVT::i32";
case MVT::i64: return "MVT::i64";
case MVT::i128: return "MVT::i128";
case MVT::iAny: return "MVT::iAny";
case MVT::fAny: return "MVT::fAny";
case MVT::f32: return "MVT::f32";
case MVT::f64: return "MVT::f64";
case MVT::f80: return "MVT::f80";
case MVT::f128: return "MVT::f128";
case MVT::ppcf128: return "MVT::ppcf128";
case MVT::Flag: return "MVT::Flag";
case MVT::isVoid:return "MVT::isVoid";
case MVT::v2i8: return "MVT::v2i8";
case MVT::v4i8: return "MVT::v4i8";
case MVT::v2i16: return "MVT::v2i16";
case MVT::v8i8: return "MVT::v8i8";
case MVT::v4i16: return "MVT::v4i16";
case MVT::v2i32: return "MVT::v2i32";
case MVT::v1i64: return "MVT::v1i64";
case MVT::v16i8: return "MVT::v16i8";
case MVT::v8i16: return "MVT::v8i16";
case MVT::v4i32: return "MVT::v4i32";
case MVT::v2i64: return "MVT::v2i64";
case MVT::v2f32: return "MVT::v2f32";
case MVT::v4f32: return "MVT::v4f32";
case MVT::v2f64: return "MVT::v2f64";
case MVT::v3i32: return "MVT::v3i32";
case MVT::v3f32: return "MVT::v3f32";
case MVT::iPTR: return "MVT::iPTR";
case MVT::iPTRAny: return "MVT::iPTRAny";
default: assert(0 && "ILLEGAL VALUE TYPE!"); return "";
}
}
/// getQualifiedName - Return the name of the specified record, with a
/// namespace qualifier if the record contains one.
///
std::string llvm::getQualifiedName(const Record *R) {
std::string Namespace = R->getValueAsString("Namespace");
if (Namespace.empty()) return R->getName();
return Namespace + "::" + R->getName();
}
/// getTarget - Return the current instance of the Target class.
///
CodeGenTarget::CodeGenTarget() {
std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target");
if (Targets.size() == 0)
throw std::string("ERROR: No 'Target' subclasses defined!");
if (Targets.size() != 1)
throw std::string("ERROR: Multiple subclasses of Target defined!");
TargetRec = Targets[0];
}
const std::string &CodeGenTarget::getName() const {
return TargetRec->getName();
}
std::string CodeGenTarget::getInstNamespace() const {
std::string InstNS;
for (inst_iterator i = inst_begin(), e = inst_end(); i != e; ++i) {
InstNS = i->second.Namespace;
// Make sure not to pick up "TargetInstrInfo" by accidentally getting
// the namespace off the PHI instruction or something.
if (InstNS != "TargetInstrInfo")
break;
}
return InstNS;
}
Record *CodeGenTarget::getInstructionSet() const {
return TargetRec->getValueAsDef("InstructionSet");
}
/// getAsmWriter - Return the AssemblyWriter definition for this target.
///
Record *CodeGenTarget::getAsmWriter() const {
std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters");
if (AsmWriterNum >= LI.size())
throw "Target does not have an AsmWriter #" + utostr(AsmWriterNum) + "!";
return LI[AsmWriterNum];
}
void CodeGenTarget::ReadRegisters() const {
std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register");
if (Regs.empty())
throw std::string("No 'Register' subclasses defined!");
Registers.reserve(Regs.size());
Registers.assign(Regs.begin(), Regs.end());
}
CodeGenRegister::CodeGenRegister(Record *R) : TheDef(R) {
DeclaredSpillSize = R->getValueAsInt("SpillSize");
DeclaredSpillAlignment = R->getValueAsInt("SpillAlignment");
}
const std::string &CodeGenRegister::getName() const {
return TheDef->getName();
}
void CodeGenTarget::ReadRegisterClasses() const {
std::vector<Record*> RegClasses =
Records.getAllDerivedDefinitions("RegisterClass");
if (RegClasses.empty())
throw std::string("No 'RegisterClass' subclasses defined!");
RegisterClasses.reserve(RegClasses.size());
RegisterClasses.assign(RegClasses.begin(), RegClasses.end());
}
std::vector<unsigned char> CodeGenTarget::getRegisterVTs(Record *R) const {
std::vector<unsigned char> Result;
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i) {
const CodeGenRegisterClass &RC = RegisterClasses[i];
for (unsigned ei = 0, ee = RC.Elements.size(); ei != ee; ++ei) {
if (R == RC.Elements[ei]) {
const std::vector<MVT::SimpleValueType> &InVTs = RC.getValueTypes();
for (unsigned i = 0, e = InVTs.size(); i != e; ++i)
Result.push_back(InVTs[i]);
}
}
}
return Result;
}
CodeGenRegisterClass::CodeGenRegisterClass(Record *R) : TheDef(R) {
// Rename anonymous register classes.
if (R->getName().size() > 9 && R->getName()[9] == '.') {
static unsigned AnonCounter = 0;
R->setName("AnonRegClass_"+utostr(AnonCounter++));
}
std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes");
for (unsigned i = 0, e = TypeList.size(); i != e; ++i) {
Record *Type = TypeList[i];
if (!Type->isSubClassOf("ValueType"))
throw "RegTypes list member '" + Type->getName() +
"' does not derive from the ValueType class!";
VTs.push_back(getValueType(Type));
}
assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!");
std::vector<Record*> RegList = R->getValueAsListOfDefs("MemberList");
for (unsigned i = 0, e = RegList.size(); i != e; ++i) {
Record *Reg = RegList[i];
if (!Reg->isSubClassOf("Register"))
throw "Register Class member '" + Reg->getName() +
"' does not derive from the Register class!";
Elements.push_back(Reg);
}
std::vector<Record*> SubRegClassList =
R->getValueAsListOfDefs("SubRegClassList");
for (unsigned i = 0, e = SubRegClassList.size(); i != e; ++i) {
Record *SubRegClass = SubRegClassList[i];
if (!SubRegClass->isSubClassOf("RegisterClass"))
throw "Register Class member '" + SubRegClass->getName() +
"' does not derive from the RegisterClass class!";
SubRegClasses.push_back(SubRegClass);
}
// Allow targets to override the size in bits of the RegisterClass.
unsigned Size = R->getValueAsInt("Size");
Namespace = R->getValueAsString("Namespace");
SpillSize = Size ? Size : MVT(VTs[0]).getSizeInBits();
SpillAlignment = R->getValueAsInt("Alignment");
CopyCost = R->getValueAsInt("CopyCost");
MethodBodies = R->getValueAsCode("MethodBodies");
MethodProtos = R->getValueAsCode("MethodProtos");
}
const std::string &CodeGenRegisterClass::getName() const {
return TheDef->getName();
}
void CodeGenTarget::ReadLegalValueTypes() const {
const std::vector<CodeGenRegisterClass> &RCs = getRegisterClasses();
for (unsigned i = 0, e = RCs.size(); i != e; ++i)
for (unsigned ri = 0, re = RCs[i].VTs.size(); ri != re; ++ri)
LegalValueTypes.push_back(RCs[i].VTs[ri]);
// Remove duplicates.
std::sort(LegalValueTypes.begin(), LegalValueTypes.end());
LegalValueTypes.erase(std::unique(LegalValueTypes.begin(),
LegalValueTypes.end()),
LegalValueTypes.end());
}
void CodeGenTarget::ReadInstructions() const {
std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction");
if (Insts.size() <= 2)
throw std::string("No 'Instruction' subclasses defined!");
// Parse the instructions defined in the .td file.
std::string InstFormatName =
getAsmWriter()->getValueAsString("InstFormatName");
for (unsigned i = 0, e = Insts.size(); i != e; ++i) {
std::string AsmStr = Insts[i]->getValueAsString(InstFormatName);
Instructions.insert(std::make_pair(Insts[i]->getName(),
CodeGenInstruction(Insts[i], AsmStr)));
}
}
/// getInstructionsByEnumValue - Return all of the instructions defined by the
/// target, ordered by their enum value.
void CodeGenTarget::
getInstructionsByEnumValue(std::vector<const CodeGenInstruction*>
&NumberedInstructions) {
std::map<std::string, CodeGenInstruction>::const_iterator I;
I = getInstructions().find("PHI");
if (I == Instructions.end()) throw "Could not find 'PHI' instruction!";
const CodeGenInstruction *PHI = &I->second;
I = getInstructions().find("INLINEASM");
if (I == Instructions.end()) throw "Could not find 'INLINEASM' instruction!";
const CodeGenInstruction *INLINEASM = &I->second;
I = getInstructions().find("DBG_LABEL");
if (I == Instructions.end()) throw "Could not find 'DBG_LABEL' instruction!";
const CodeGenInstruction *DBG_LABEL = &I->second;
I = getInstructions().find("EH_LABEL");
if (I == Instructions.end()) throw "Could not find 'EH_LABEL' instruction!";
const CodeGenInstruction *EH_LABEL = &I->second;
I = getInstructions().find("GC_LABEL");
if (I == Instructions.end()) throw "Could not find 'GC_LABEL' instruction!";
const CodeGenInstruction *GC_LABEL = &I->second;
I = getInstructions().find("DECLARE");
if (I == Instructions.end()) throw "Could not find 'DECLARE' instruction!";
const CodeGenInstruction *DECLARE = &I->second;
I = getInstructions().find("EXTRACT_SUBREG");
if (I == Instructions.end())
throw "Could not find 'EXTRACT_SUBREG' instruction!";
const CodeGenInstruction *EXTRACT_SUBREG = &I->second;
I = getInstructions().find("INSERT_SUBREG");
if (I == Instructions.end())
throw "Could not find 'INSERT_SUBREG' instruction!";
const CodeGenInstruction *INSERT_SUBREG = &I->second;
I = getInstructions().find("IMPLICIT_DEF");
if (I == Instructions.end())
throw "Could not find 'IMPLICIT_DEF' instruction!";
const CodeGenInstruction *IMPLICIT_DEF = &I->second;
I = getInstructions().find("SUBREG_TO_REG");
if (I == Instructions.end())
throw "Could not find 'SUBREG_TO_REG' instruction!";
const CodeGenInstruction *SUBREG_TO_REG = &I->second;
I = getInstructions().find("COPY_TO_SUBCLASS");
if (I == Instructions.end())
throw "Could not find 'COPY_TO_SUBCLASS' instruction!";
const CodeGenInstruction *COPY_TO_SUBCLASS = &I->second;
// Print out the rest of the instructions now.
NumberedInstructions.push_back(PHI);
NumberedInstructions.push_back(INLINEASM);
NumberedInstructions.push_back(DBG_LABEL);
NumberedInstructions.push_back(EH_LABEL);
NumberedInstructions.push_back(GC_LABEL);
NumberedInstructions.push_back(DECLARE);
NumberedInstructions.push_back(EXTRACT_SUBREG);
NumberedInstructions.push_back(INSERT_SUBREG);
NumberedInstructions.push_back(IMPLICIT_DEF);
NumberedInstructions.push_back(SUBREG_TO_REG);
NumberedInstructions.push_back(COPY_TO_SUBCLASS);
for (inst_iterator II = inst_begin(), E = inst_end(); II != E; ++II)
if (&II->second != PHI &&
&II->second != INLINEASM &&
&II->second != DBG_LABEL &&
&II->second != EH_LABEL &&
&II->second != GC_LABEL &&
&II->second != DECLARE &&
&II->second != EXTRACT_SUBREG &&
&II->second != INSERT_SUBREG &&
&II->second != IMPLICIT_DEF &&
&II->second != SUBREG_TO_REG &&
&II->second != COPY_TO_SUBCLASS)
NumberedInstructions.push_back(&II->second);
}
/// isLittleEndianEncoding - Return whether this target encodes its instruction
/// in little-endian format, i.e. bits laid out in the order [0..n]
///
bool CodeGenTarget::isLittleEndianEncoding() const {
return getInstructionSet()->getValueAsBit("isLittleEndianEncoding");
}
//===----------------------------------------------------------------------===//
// ComplexPattern implementation
//
ComplexPattern::ComplexPattern(Record *R) {
Ty = ::getValueType(R->getValueAsDef("Ty"));
NumOperands = R->getValueAsInt("NumOperands");
SelectFunc = R->getValueAsString("SelectFunc");
RootNodes = R->getValueAsListOfDefs("RootNodes");
// Parse the properties.
Properties = 0;
std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties");
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
if (PropList[i]->getName() == "SDNPHasChain") {
Properties |= 1 << SDNPHasChain;
} else if (PropList[i]->getName() == "SDNPOptInFlag") {
Properties |= 1 << SDNPOptInFlag;
} else if (PropList[i]->getName() == "SDNPMayStore") {
Properties |= 1 << SDNPMayStore;
} else if (PropList[i]->getName() == "SDNPMayLoad") {
Properties |= 1 << SDNPMayLoad;
} else if (PropList[i]->getName() == "SDNPSideEffect") {
Properties |= 1 << SDNPSideEffect;
} else if (PropList[i]->getName() == "SDNPMemOperand") {
Properties |= 1 << SDNPMemOperand;
} else {
cerr << "Unsupported SD Node property '" << PropList[i]->getName()
<< "' on ComplexPattern '" << R->getName() << "'!\n";
exit(1);
}
// Parse the attributes.
Attributes = 0;
PropList = R->getValueAsListOfDefs("Attributes");
for (unsigned i = 0, e = PropList.size(); i != e; ++i)
if (PropList[i]->getName() == "CPAttrParentAsRoot") {
Attributes |= 1 << CPAttrParentAsRoot;
} else {
cerr << "Unsupported pattern attribute '" << PropList[i]->getName()
<< "' on ComplexPattern '" << R->getName() << "'!\n";
exit(1);
}
}
//===----------------------------------------------------------------------===//
// CodeGenIntrinsic Implementation
//===----------------------------------------------------------------------===//
std::vector<CodeGenIntrinsic> llvm::LoadIntrinsics(const RecordKeeper &RC,
bool TargetOnly) {
std::vector<Record*> I = RC.getAllDerivedDefinitions("Intrinsic");
std::vector<CodeGenIntrinsic> Result;
for (unsigned i = 0, e = I.size(); i != e; ++i) {
bool isTarget = I[i]->getValueAsBit("isTarget");
if (isTarget == TargetOnly)
Result.push_back(CodeGenIntrinsic(I[i]));
}
return Result;
}
CodeGenIntrinsic::CodeGenIntrinsic(Record *R) {
TheDef = R;
std::string DefName = R->getName();
ModRef = WriteMem;
isOverloaded = false;
isCommutative = false;
if (DefName.size() <= 4 ||
std::string(DefName.begin(), DefName.begin() + 4) != "int_")
throw "Intrinsic '" + DefName + "' does not start with 'int_'!";
EnumName = std::string(DefName.begin()+4, DefName.end());
if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field.
GCCBuiltinName = R->getValueAsString("GCCBuiltinName");
TargetPrefix = R->getValueAsString("TargetPrefix");
Name = R->getValueAsString("LLVMName");
if (Name == "") {
// If an explicit name isn't specified, derive one from the DefName.
Name = "llvm.";
for (unsigned i = 0, e = EnumName.size(); i != e; ++i)
Name += (EnumName[i] == '_') ? '.' : EnumName[i];
} else {
// Verify it starts with "llvm.".
if (Name.size() <= 5 ||
std::string(Name.begin(), Name.begin() + 5) != "llvm.")
throw "Intrinsic '" + DefName + "'s name does not start with 'llvm.'!";
}
// If TargetPrefix is specified, make sure that Name starts with
// "llvm.<targetprefix>.".
if (!TargetPrefix.empty()) {
if (Name.size() < 6+TargetPrefix.size() ||
std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size())
!= (TargetPrefix + "."))
throw "Intrinsic '" + DefName + "' does not start with 'llvm." +
TargetPrefix + ".'!";
}
// Parse the list of return types.
ListInit *TypeList = R->getValueAsListInit("RetTypes");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
VT = IS.RetVTs[TyEl->getValueAsInt("Number")];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
!TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
VT == MVT::iAny) && "Expected iAny type");
} else
VT = getValueType(TyEl->getValueAsDef("VT"));
isOverloaded |= VT == MVT::iAny || VT == MVT::fAny || VT == MVT::iPTRAny;
IS.RetVTs.push_back(VT);
IS.RetTypeDefs.push_back(TyEl);
}
if (IS.RetVTs.size() == 0)
throw "Intrinsic '"+DefName+"' needs at least a type for the ret value!";
// Parse the list of parameter types.
TypeList = R->getValueAsListInit("ParamTypes");
for (unsigned i = 0, e = TypeList->getSize(); i != e; ++i) {
Record *TyEl = TypeList->getElementAsRecord(i);
assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!");
MVT::SimpleValueType VT;
if (TyEl->isSubClassOf("LLVMMatchType")) {
unsigned MatchTy = TyEl->getValueAsInt("Number");
if (MatchTy < IS.RetVTs.size())
VT = IS.RetVTs[MatchTy];
else
VT = IS.ParamVTs[MatchTy - IS.RetVTs.size()];
// It only makes sense to use the extended and truncated vector element
// variants with iAny types; otherwise, if the intrinsic is not
// overloaded, all the types can be specified directly.
assert(((!TyEl->isSubClassOf("LLVMExtendedElementVectorType") &&
!TyEl->isSubClassOf("LLVMTruncatedElementVectorType")) ||
VT == MVT::iAny) && "Expected iAny type");
} else
VT = getValueType(TyEl->getValueAsDef("VT"));
isOverloaded |= VT == MVT::iAny || VT == MVT::fAny || VT == MVT::iPTRAny;
IS.ParamVTs.push_back(VT);
IS.ParamTypeDefs.push_back(TyEl);
}
// Parse the intrinsic properties.
ListInit *PropList = R->getValueAsListInit("Properties");
for (unsigned i = 0, e = PropList->getSize(); i != e; ++i) {
Record *Property = PropList->getElementAsRecord(i);
assert(Property->isSubClassOf("IntrinsicProperty") &&
"Expected a property!");
if (Property->getName() == "IntrNoMem")
ModRef = NoMem;
else if (Property->getName() == "IntrReadArgMem")
ModRef = ReadArgMem;
else if (Property->getName() == "IntrReadMem")
ModRef = ReadMem;
else if (Property->getName() == "IntrWriteArgMem")
ModRef = WriteArgMem;
else if (Property->getName() == "IntrWriteMem")
ModRef = WriteMem;
else if (Property->getName() == "Commutative")
isCommutative = true;
else if (Property->isSubClassOf("NoCapture")) {
unsigned ArgNo = Property->getValueAsInt("ArgNo");
ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture));
} else
assert(0 && "Unknown property!");
}
}