llvm-6502/lib/Target/PowerPC/PPCInstrInfo.cpp
2006-10-13 21:21:17 +00:00

258 lines
8.6 KiB
C++

//===- PPCInstrInfo.cpp - PowerPC32 Instruction Information -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "PPCInstrInfo.h"
#include "PPCGenInstrInfo.inc"
#include "PPCTargetMachine.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include <iostream>
using namespace llvm;
PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm)
: TargetInstrInfo(PPCInsts, sizeof(PPCInsts)/sizeof(PPCInsts[0])), TM(tm),
RI(*TM.getSubtargetImpl()) {}
/// getPointerRegClass - Return the register class to use to hold pointers.
/// This is used for addressing modes.
const TargetRegisterClass *PPCInstrInfo::getPointerRegClass() const {
if (TM.getSubtargetImpl()->isPPC64())
return &PPC::G8RCRegClass;
else
return &PPC::GPRCRegClass;
}
bool PPCInstrInfo::isMoveInstr(const MachineInstr& MI,
unsigned& sourceReg,
unsigned& destReg) const {
MachineOpCode oc = MI.getOpcode();
if (oc == PPC::OR || oc == PPC::OR8 || oc == PPC::VOR ||
oc == PPC::OR4To8 || oc == PPC::OR8To4) { // or r1, r2, r2
assert(MI.getNumOperands() == 3 &&
MI.getOperand(0).isRegister() &&
MI.getOperand(1).isRegister() &&
MI.getOperand(2).isRegister() &&
"invalid PPC OR instruction!");
if (MI.getOperand(1).getReg() == MI.getOperand(2).getReg()) {
sourceReg = MI.getOperand(1).getReg();
destReg = MI.getOperand(0).getReg();
return true;
}
} else if (oc == PPC::ADDI) { // addi r1, r2, 0
assert(MI.getNumOperands() == 3 &&
MI.getOperand(0).isRegister() &&
MI.getOperand(2).isImmediate() &&
"invalid PPC ADDI instruction!");
if (MI.getOperand(1).isRegister() && MI.getOperand(2).getImmedValue()==0) {
sourceReg = MI.getOperand(1).getReg();
destReg = MI.getOperand(0).getReg();
return true;
}
} else if (oc == PPC::ORI) { // ori r1, r2, 0
assert(MI.getNumOperands() == 3 &&
MI.getOperand(0).isRegister() &&
MI.getOperand(1).isRegister() &&
MI.getOperand(2).isImmediate() &&
"invalid PPC ORI instruction!");
if (MI.getOperand(2).getImmedValue()==0) {
sourceReg = MI.getOperand(1).getReg();
destReg = MI.getOperand(0).getReg();
return true;
}
} else if (oc == PPC::FMRS || oc == PPC::FMRD ||
oc == PPC::FMRSD) { // fmr r1, r2
assert(MI.getNumOperands() == 2 &&
MI.getOperand(0).isRegister() &&
MI.getOperand(1).isRegister() &&
"invalid PPC FMR instruction");
sourceReg = MI.getOperand(1).getReg();
destReg = MI.getOperand(0).getReg();
return true;
} else if (oc == PPC::MCRF) { // mcrf cr1, cr2
assert(MI.getNumOperands() == 2 &&
MI.getOperand(0).isRegister() &&
MI.getOperand(1).isRegister() &&
"invalid PPC MCRF instruction");
sourceReg = MI.getOperand(1).getReg();
destReg = MI.getOperand(0).getReg();
return true;
}
return false;
}
unsigned PPCInstrInfo::isLoadFromStackSlot(MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case PPC::LD:
case PPC::LWZ:
case PPC::LFS:
case PPC::LFD:
if (MI->getOperand(1).isImmediate() && !MI->getOperand(1).getImmedValue() &&
MI->getOperand(2).isFrameIndex()) {
FrameIndex = MI->getOperand(2).getFrameIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
unsigned PPCInstrInfo::isStoreToStackSlot(MachineInstr *MI,
int &FrameIndex) const {
switch (MI->getOpcode()) {
default: break;
case PPC::STD:
case PPC::STW:
case PPC::STFS:
case PPC::STFD:
if (MI->getOperand(1).isImmediate() && !MI->getOperand(1).getImmedValue() &&
MI->getOperand(2).isFrameIndex()) {
FrameIndex = MI->getOperand(2).getFrameIndex();
return MI->getOperand(0).getReg();
}
break;
}
return 0;
}
// commuteInstruction - We can commute rlwimi instructions, but only if the
// rotate amt is zero. We also have to munge the immediates a bit.
MachineInstr *PPCInstrInfo::commuteInstruction(MachineInstr *MI) const {
// Normal instructions can be commuted the obvious way.
if (MI->getOpcode() != PPC::RLWIMI)
return TargetInstrInfo::commuteInstruction(MI);
// Cannot commute if it has a non-zero rotate count.
if (MI->getOperand(3).getImmedValue() != 0)
return 0;
// If we have a zero rotate count, we have:
// M = mask(MB,ME)
// Op0 = (Op1 & ~M) | (Op2 & M)
// Change this to:
// M = mask((ME+1)&31, (MB-1)&31)
// Op0 = (Op2 & ~M) | (Op1 & M)
// Swap op1/op2
unsigned Reg1 = MI->getOperand(1).getReg();
unsigned Reg2 = MI->getOperand(2).getReg();
MI->getOperand(2).setReg(Reg1);
MI->getOperand(1).setReg(Reg2);
// Swap the mask around.
unsigned MB = MI->getOperand(4).getImmedValue();
unsigned ME = MI->getOperand(5).getImmedValue();
MI->getOperand(4).setImmedValue((ME+1) & 31);
MI->getOperand(5).setImmedValue((MB-1) & 31);
return MI;
}
void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const {
BuildMI(MBB, MI, PPC::NOP, 0);
}
// Branch analysis.
bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
std::vector<MachineOperand> &Cond) const {
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode()))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = I;
// If there is only one terminator instruction, process it.
if (I == MBB.begin() || !isTerminatorInstr((--I)->getOpcode())) {
if (LastInst->getOpcode() == PPC::B) {
TBB = LastInst->getOperand(0).getMachineBasicBlock();
return false;
} else if (LastInst->getOpcode() == PPC::COND_BRANCH) {
// Block ends with fall-through condbranch.
TBB = LastInst->getOperand(2).getMachineBasicBlock();
Cond.push_back(LastInst->getOperand(0));
Cond.push_back(LastInst->getOperand(1));
return true;
}
// Otherwise, don't know what this is.
return true;
}
// Get the instruction before it if it's a terminator.
MachineInstr *SecondLastInst = I;
// If there are three terminators, we don't know what sort of block this is.
if (SecondLastInst && I != MBB.begin() &&
isTerminatorInstr((--I)->getOpcode()))
return true;
// If the block ends with PPC::B and PPC:COND_BRANCH, handle it.
if (SecondLastInst->getOpcode() == PPC::COND_BRANCH &&
LastInst->getOpcode() == PPC::B) {
TBB = SecondLastInst->getOperand(2).getMachineBasicBlock();
Cond.push_back(SecondLastInst->getOperand(0));
Cond.push_back(SecondLastInst->getOperand(1));
FBB = LastInst->getOperand(0).getMachineBasicBlock();
return false;
}
// Otherwise, can't handle this.
return true;
}
void PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin()) return;
--I;
if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::COND_BRANCH)
return;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin()) return;
--I;
if (I->getOpcode() != PPC::COND_BRANCH)
return;
// Remove the branch.
I->eraseFromParent();
}
void PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const std::vector<MachineOperand> &Cond) const {
// Fall through?
if (TBB == 0 && FBB == 0) return;
assert(Cond.size() == 2 && "PPC branch conditions have two components!");
// Conditional branch
BuildMI(&MBB, PPC::COND_BRANCH, 3)
.addReg(Cond[0].getReg()).addImm(Cond[1].getImm()).addMBB(TBB);
if (FBB) // Two-way branch.
BuildMI(&MBB, PPC::B, 1).addMBB(FBB);
}
bool PPCInstrInfo::
ReverseBranchCondition(std::vector<MachineOperand> &Cond) const {
return true;
}