mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-01 15:11:24 +00:00
2771d21c50
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26810 91177308-0d34-0410-b5e6-96231b3b80d8
632 lines
18 KiB
Plaintext
632 lines
18 KiB
Plaintext
//===---------------------------------------------------------------------===//
|
|
// Random ideas for the X86 backend.
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Add a MUL2U and MUL2S nodes to represent a multiply that returns both the
|
|
Hi and Lo parts (combination of MUL and MULH[SU] into one node). Add this to
|
|
X86, & make the dag combiner produce it when needed. This will eliminate one
|
|
imul from the code generated for:
|
|
|
|
long long test(long long X, long long Y) { return X*Y; }
|
|
|
|
by using the EAX result from the mul. We should add a similar node for
|
|
DIVREM.
|
|
|
|
another case is:
|
|
|
|
long long test(int X, int Y) { return (long long)X*Y; }
|
|
|
|
... which should only be one imul instruction.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This should be one DIV/IDIV instruction, not a libcall:
|
|
|
|
unsigned test(unsigned long long X, unsigned Y) {
|
|
return X/Y;
|
|
}
|
|
|
|
This can be done trivially with a custom legalizer. What about overflow
|
|
though? http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14224
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some targets (e.g. athlons) prefer freep to fstp ST(0):
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-04/msg00659.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This should use fiadd on chips where it is profitable:
|
|
double foo(double P, int *I) { return P+*I; }
|
|
|
|
We have fiadd patterns now but the followings have the same cost and
|
|
complexity. We need a way to specify the later is more profitable.
|
|
|
|
def FpADD32m : FpI<(ops RFP:$dst, RFP:$src1, f32mem:$src2), OneArgFPRW,
|
|
[(set RFP:$dst, (fadd RFP:$src1,
|
|
(extloadf64f32 addr:$src2)))]>;
|
|
// ST(0) = ST(0) + [mem32]
|
|
|
|
def FpIADD32m : FpI<(ops RFP:$dst, RFP:$src1, i32mem:$src2), OneArgFPRW,
|
|
[(set RFP:$dst, (fadd RFP:$src1,
|
|
(X86fild addr:$src2, i32)))]>;
|
|
// ST(0) = ST(0) + [mem32int]
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The FP stackifier needs to be global. Also, it should handle simple permutates
|
|
to reduce number of shuffle instructions, e.g. turning:
|
|
|
|
fld P -> fld Q
|
|
fld Q fld P
|
|
fxch
|
|
|
|
or:
|
|
|
|
fxch -> fucomi
|
|
fucomi jl X
|
|
jg X
|
|
|
|
Ideas:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-11/msg02410.html
|
|
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improvements to the multiply -> shift/add algorithm:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg01590.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Improve code like this (occurs fairly frequently, e.g. in LLVM):
|
|
long long foo(int x) { return 1LL << x; }
|
|
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01109.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01128.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-09/msg01136.html
|
|
|
|
Another useful one would be ~0ULL >> X and ~0ULL << X.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Compile this:
|
|
_Bool f(_Bool a) { return a!=1; }
|
|
|
|
into:
|
|
movzbl %dil, %eax
|
|
xorl $1, %eax
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Some isel ideas:
|
|
|
|
1. Dynamic programming based approach when compile time if not an
|
|
issue.
|
|
2. Code duplication (addressing mode) during isel.
|
|
3. Other ideas from "Register-Sensitive Selection, Duplication, and
|
|
Sequencing of Instructions".
|
|
4. Scheduling for reduced register pressure. E.g. "Minimum Register
|
|
Instruction Sequence Problem: Revisiting Optimal Code Generation for DAGs"
|
|
and other related papers.
|
|
http://citeseer.ist.psu.edu/govindarajan01minimum.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Should we promote i16 to i32 to avoid partial register update stalls?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Leave any_extend as pseudo instruction and hint to register
|
|
allocator. Delay codegen until post register allocation.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Add a target specific hook to DAG combiner to handle SINT_TO_FP and
|
|
FP_TO_SINT when the source operand is already in memory.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Model X86 EFLAGS as a real register to avoid redudant cmp / test. e.g.
|
|
|
|
cmpl $1, %eax
|
|
setg %al
|
|
testb %al, %al # unnecessary
|
|
jne .BB7
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Count leading zeros and count trailing zeros:
|
|
|
|
int clz(int X) { return __builtin_clz(X); }
|
|
int ctz(int X) { return __builtin_ctz(X); }
|
|
|
|
$ gcc t.c -S -o - -O3 -fomit-frame-pointer -masm=intel
|
|
clz:
|
|
bsr %eax, DWORD PTR [%esp+4]
|
|
xor %eax, 31
|
|
ret
|
|
ctz:
|
|
bsf %eax, DWORD PTR [%esp+4]
|
|
ret
|
|
|
|
however, check that these are defined for 0 and 32. Our intrinsics are, GCC's
|
|
aren't.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Use push/pop instructions in prolog/epilog sequences instead of stores off
|
|
ESP (certain code size win, perf win on some [which?] processors).
|
|
Also, it appears icc use push for parameter passing. Need to investigate.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Only use inc/neg/not instructions on processors where they are faster than
|
|
add/sub/xor. They are slower on the P4 due to only updating some processor
|
|
flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Open code rint,floor,ceil,trunc:
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02006.html
|
|
http://gcc.gnu.org/ml/gcc-patches/2004-08/msg02011.html
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
|
|
|
|
Expand these to calls of sin/cos and stores:
|
|
double sincos(double x, double *sin, double *cos);
|
|
float sincosf(float x, float *sin, float *cos);
|
|
long double sincosl(long double x, long double *sin, long double *cos);
|
|
|
|
Doing so could allow SROA of the destination pointers. See also:
|
|
http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The instruction selector sometimes misses folding a load into a compare. The
|
|
pattern is written as (cmp reg, (load p)). Because the compare isn't
|
|
commutative, it is not matched with the load on both sides. The dag combiner
|
|
should be made smart enough to cannonicalize the load into the RHS of a compare
|
|
when it can invert the result of the compare for free.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
LSR should be turned on for the X86 backend and tuned to take advantage of its
|
|
addressing modes.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
When compiled with unsafemath enabled, "main" should enable SSE DAZ mode and
|
|
other fast SSE modes.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Think about doing i64 math in SSE regs.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The DAG Isel doesn't fold the loads into the adds in this testcase. The
|
|
pattern selector does. This is because the chain value of the load gets
|
|
selected first, and the loads aren't checking to see if they are only used by
|
|
and add.
|
|
|
|
.ll:
|
|
|
|
int %test(int* %x, int* %y, int* %z) {
|
|
%X = load int* %x
|
|
%Y = load int* %y
|
|
%Z = load int* %z
|
|
%a = add int %X, %Y
|
|
%b = add int %a, %Z
|
|
ret int %b
|
|
}
|
|
|
|
dag isel:
|
|
|
|
_test:
|
|
movl 4(%esp), %eax
|
|
movl (%eax), %eax
|
|
movl 8(%esp), %ecx
|
|
movl (%ecx), %ecx
|
|
addl %ecx, %eax
|
|
movl 12(%esp), %ecx
|
|
movl (%ecx), %ecx
|
|
addl %ecx, %eax
|
|
ret
|
|
|
|
pattern isel:
|
|
|
|
_test:
|
|
movl 12(%esp), %ecx
|
|
movl 4(%esp), %edx
|
|
movl 8(%esp), %eax
|
|
movl (%eax), %eax
|
|
addl (%edx), %eax
|
|
addl (%ecx), %eax
|
|
ret
|
|
|
|
This is bad for register pressure, though the dag isel is producing a
|
|
better schedule. :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
This testcase should have no SSE instructions in it, and only one load from
|
|
a constant pool:
|
|
|
|
double %test3(bool %B) {
|
|
%C = select bool %B, double 123.412, double 523.01123123
|
|
ret double %C
|
|
}
|
|
|
|
Currently, the select is being lowered, which prevents the dag combiner from
|
|
turning 'select (load CPI1), (load CPI2)' -> 'load (select CPI1, CPI2)'
|
|
|
|
The pattern isel got this one right.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We need to lower switch statements to tablejumps when appropriate instead of
|
|
always into binary branch trees.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE doesn't have [mem] op= reg instructions. If we have an SSE instruction
|
|
like this:
|
|
|
|
X += y
|
|
|
|
and the register allocator decides to spill X, it is cheaper to emit this as:
|
|
|
|
Y += [xslot]
|
|
store Y -> [xslot]
|
|
|
|
than as:
|
|
|
|
tmp = [xslot]
|
|
tmp += y
|
|
store tmp -> [xslot]
|
|
|
|
..and this uses one fewer register (so this should be done at load folding
|
|
time, not at spiller time). *Note* however that this can only be done
|
|
if Y is dead. Here's a testcase:
|
|
|
|
%.str_3 = external global [15 x sbyte] ; <[15 x sbyte]*> [#uses=0]
|
|
implementation ; Functions:
|
|
declare void %printf(int, ...)
|
|
void %main() {
|
|
build_tree.exit:
|
|
br label %no_exit.i7
|
|
no_exit.i7: ; preds = %no_exit.i7, %build_tree.exit
|
|
%tmp.0.1.0.i9 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.34.i18, %no_exit.i7 ] ; <double> [#uses=1]
|
|
%tmp.0.0.0.i10 = phi double [ 0.000000e+00, %build_tree.exit ], [ %tmp.28.i16, %no_exit.i7 ] ; <double> [#uses=1]
|
|
%tmp.28.i16 = add double %tmp.0.0.0.i10, 0.000000e+00
|
|
%tmp.34.i18 = add double %tmp.0.1.0.i9, 0.000000e+00
|
|
br bool false, label %Compute_Tree.exit23, label %no_exit.i7
|
|
Compute_Tree.exit23: ; preds = %no_exit.i7
|
|
tail call void (int, ...)* %printf( int 0 )
|
|
store double %tmp.34.i18, double* null
|
|
ret void
|
|
}
|
|
|
|
We currently emit:
|
|
|
|
.BBmain_1:
|
|
xorpd %XMM1, %XMM1
|
|
addsd %XMM0, %XMM1
|
|
*** movsd %XMM2, QWORD PTR [%ESP + 8]
|
|
*** addsd %XMM2, %XMM1
|
|
*** movsd QWORD PTR [%ESP + 8], %XMM2
|
|
jmp .BBmain_1 # no_exit.i7
|
|
|
|
This is a bugpoint reduced testcase, which is why the testcase doesn't make
|
|
much sense (e.g. its an infinite loop). :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
None of the FPStack instructions are handled in
|
|
X86RegisterInfo::foldMemoryOperand, which prevents the spiller from
|
|
folding spill code into the instructions.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
In many cases, LLVM generates code like this:
|
|
|
|
_test:
|
|
movl 8(%esp), %eax
|
|
cmpl %eax, 4(%esp)
|
|
setl %al
|
|
movzbl %al, %eax
|
|
ret
|
|
|
|
on some processors (which ones?), it is more efficient to do this:
|
|
|
|
_test:
|
|
movl 8(%esp), %ebx
|
|
xor %eax, %eax
|
|
cmpl %ebx, 4(%esp)
|
|
setl %al
|
|
ret
|
|
|
|
Doing this correctly is tricky though, as the xor clobbers the flags.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate 'test' instead of 'cmp' in various cases, e.g.:
|
|
|
|
bool %test(int %X) {
|
|
%Y = shl int %X, ubyte 1
|
|
%C = seteq int %Y, 0
|
|
ret bool %C
|
|
}
|
|
bool %test(int %X) {
|
|
%Y = and int %X, 8
|
|
%C = seteq int %Y, 0
|
|
ret bool %C
|
|
}
|
|
|
|
This may just be a matter of using 'test' to write bigger patterns for X86cmp.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
SSE should implement 'select_cc' using 'emulated conditional moves' that use
|
|
pcmp/pand/pandn/por to do a selection instead of a conditional branch:
|
|
|
|
double %X(double %Y, double %Z, double %A, double %B) {
|
|
%C = setlt double %A, %B
|
|
%z = add double %Z, 0.0 ;; select operand is not a load
|
|
%D = select bool %C, double %Y, double %z
|
|
ret double %D
|
|
}
|
|
|
|
We currently emit:
|
|
|
|
_X:
|
|
subl $12, %esp
|
|
xorpd %xmm0, %xmm0
|
|
addsd 24(%esp), %xmm0
|
|
movsd 32(%esp), %xmm1
|
|
movsd 16(%esp), %xmm2
|
|
ucomisd 40(%esp), %xmm1
|
|
jb LBB_X_2
|
|
LBB_X_1:
|
|
movsd %xmm0, %xmm2
|
|
LBB_X_2:
|
|
movsd %xmm2, (%esp)
|
|
fldl (%esp)
|
|
addl $12, %esp
|
|
ret
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
We should generate bts/btr/etc instructions on targets where they are cheap or
|
|
when codesize is important. e.g., for:
|
|
|
|
void setbit(int *target, int bit) {
|
|
*target |= (1 << bit);
|
|
}
|
|
void clearbit(int *target, int bit) {
|
|
*target &= ~(1 << bit);
|
|
}
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Instead of the following for memset char*, 1, 10:
|
|
|
|
movl $16843009, 4(%edx)
|
|
movl $16843009, (%edx)
|
|
movw $257, 8(%edx)
|
|
|
|
It might be better to generate
|
|
|
|
movl $16843009, %eax
|
|
movl %eax, 4(%edx)
|
|
movl %eax, (%edx)
|
|
movw al, 8(%edx)
|
|
|
|
when we can spare a register. It reduces code size.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
It's not clear whether we should use pxor or xorps / xorpd to clear XMM
|
|
registers. The choice may depend on subtarget information. We should do some
|
|
more experiments on different x86 machines.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Evaluate what the best way to codegen sdiv X, (2^C) is. For X/8, we currently
|
|
get this:
|
|
|
|
int %test1(int %X) {
|
|
%Y = div int %X, 8
|
|
ret int %Y
|
|
}
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
movl %eax, %ecx
|
|
sarl $31, %ecx
|
|
shrl $29, %ecx
|
|
addl %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
GCC knows several different ways to codegen it, one of which is this:
|
|
|
|
_test1:
|
|
movl 4(%esp), %eax
|
|
cmpl $-1, %eax
|
|
leal 7(%eax), %ecx
|
|
cmovle %ecx, %eax
|
|
sarl $3, %eax
|
|
ret
|
|
|
|
which is probably slower, but it's interesting at least :)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Currently the x86 codegen isn't very good at mixing SSE and FPStack
|
|
code:
|
|
|
|
unsigned int foo(double x) { return x; }
|
|
|
|
foo:
|
|
subl $20, %esp
|
|
movsd 24(%esp), %xmm0
|
|
movsd %xmm0, 8(%esp)
|
|
fldl 8(%esp)
|
|
fisttpll (%esp)
|
|
movl (%esp), %eax
|
|
addl $20, %esp
|
|
ret
|
|
|
|
This will be solved when we go to a dynamic programming based isel.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Make use of floating point min / max instructions. Perhaps introduce ISD::FMIN
|
|
and ISD::FMAX node types?
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
The first BB of this code:
|
|
|
|
declare bool %foo()
|
|
int %bar() {
|
|
%V = call bool %foo()
|
|
br bool %V, label %T, label %F
|
|
T:
|
|
ret int 1
|
|
F:
|
|
call bool %foo()
|
|
ret int 12
|
|
}
|
|
|
|
compiles to:
|
|
|
|
_bar:
|
|
subl $12, %esp
|
|
call L_foo$stub
|
|
xorb $1, %al
|
|
testb %al, %al
|
|
jne LBB_bar_2 # F
|
|
|
|
It would be better to emit "cmp %al, 1" than a xor and test.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Enable X86InstrInfo::convertToThreeAddress().
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Investigate whether it is better to codegen the following
|
|
|
|
%tmp.1 = mul int %x, 9
|
|
to
|
|
|
|
movl 4(%esp), %eax
|
|
leal (%eax,%eax,8), %eax
|
|
|
|
as opposed to what llc is currently generating:
|
|
|
|
imull $9, 4(%esp), %eax
|
|
|
|
Currently the load folding imull has a higher complexity than the LEA32 pattern.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Lower memcpy / memset to a series of SSE 128 bit move instructions when it's
|
|
feasible.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Teach the coallescer to commute 2-addr instructions, allowing us to eliminate
|
|
the reg-reg copy in this example:
|
|
|
|
float foo(int *x, float *y, unsigned c) {
|
|
float res = 0.0;
|
|
unsigned i;
|
|
for (i = 0; i < c; i++) {
|
|
float xx = (float)x[i];
|
|
xx = xx * y[i];
|
|
xx += res;
|
|
res = xx;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
LBB_foo_3: # no_exit
|
|
cvtsi2ss %XMM0, DWORD PTR [%EDX + 4*%ESI]
|
|
mulss %XMM0, DWORD PTR [%EAX + 4*%ESI]
|
|
addss %XMM0, %XMM1
|
|
inc %ESI
|
|
cmp %ESI, %ECX
|
|
**** movaps %XMM1, %XMM0
|
|
jb LBB_foo_3 # no_exit
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Codegen:
|
|
if (copysign(1.0, x) == copysign(1.0, y))
|
|
into:
|
|
if (x^y & mask)
|
|
when using SSE.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize this into something reasonable:
|
|
x * copysign(1.0, y) * copysign(1.0, z)
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
Optimize copysign(x, *y) to use an integer load from y.
|
|
|
|
//===---------------------------------------------------------------------===//
|
|
|
|
%X = weak global int 0
|
|
|
|
void %foo(int %N) {
|
|
%N = cast int %N to uint
|
|
%tmp.24 = setgt int %N, 0
|
|
br bool %tmp.24, label %no_exit, label %return
|
|
|
|
no_exit:
|
|
%indvar = phi uint [ 0, %entry ], [ %indvar.next, %no_exit ]
|
|
%i.0.0 = cast uint %indvar to int
|
|
volatile store int %i.0.0, int* %X
|
|
%indvar.next = add uint %indvar, 1
|
|
%exitcond = seteq uint %indvar.next, %N
|
|
br bool %exitcond, label %return, label %no_exit
|
|
|
|
return:
|
|
ret void
|
|
}
|
|
|
|
compiles into:
|
|
|
|
.text
|
|
.align 4
|
|
.globl _foo
|
|
_foo:
|
|
movl 4(%esp), %eax
|
|
cmpl $1, %eax
|
|
jl LBB_foo_4 # return
|
|
LBB_foo_1: # no_exit.preheader
|
|
xorl %ecx, %ecx
|
|
LBB_foo_2: # no_exit
|
|
movl L_X$non_lazy_ptr, %edx
|
|
movl %ecx, (%edx)
|
|
incl %ecx
|
|
cmpl %eax, %ecx
|
|
jne LBB_foo_2 # no_exit
|
|
LBB_foo_3: # return.loopexit
|
|
LBB_foo_4: # return
|
|
ret
|
|
|
|
We should hoist "movl L_X$non_lazy_ptr, %edx" out of the loop after
|
|
remateralization is implemented. This can be accomplished with 1) a target
|
|
dependent LICM pass or 2) makeing SelectDAG represent the whole function.
|
|
|
|
//===---------------------------------------------------------------------===//
|