llvm-6502/include/llvm/DerivedTypes.h
Chris Lattner 46cbff625e Chris seems fond of #include <vector>. Fix these. Also convert use list in
Value to a vector instead of a list.

Move SchedGraph.h & SchedPriorities.h into lib/CodeGen/InstrScheduling


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@572 91177308-0d34-0410-b5e6-96231b3b80d8
2001-09-14 16:56:32 +00:00

273 lines
9.6 KiB
C++

//===-- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*--=//
//
// This file contains the declarations of classes that represent "derived
// types". These are things like "arrays of x" or "structure of x, y, z" or
// "method returning x taking (y,z) as parameters", etc...
//
// The implementations of these classes live in the Type.cpp file.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_DERIVED_TYPES_H
#define LLVM_DERIVED_TYPES_H
#include "llvm/Type.h"
class DerivedType : public Type {
// AbstractTypeUsers - Implement a list of the users that need to be notified
// if I am a type, and I get resolved into a more concrete type.
//
///// FIXME: kill mutable nonsense when Type's are not const
mutable vector<AbstractTypeUser *> AbstractTypeUsers;
char isRefining; // Used for recursive types
protected:
inline DerivedType(const string &Name, PrimitiveID id) : Type(Name, id) {
isRefining = false;
}
// typeIsRefined - Notify AbstractTypeUsers of this type that the current type
// has been refined a bit. The pointer is still valid and still should be
// used, but the subtypes have changed.
//
void typeIsRefined();
// setDerivedTypeProperties - Based on the subtypes, set the name of this
// type so that it is printed nicely by the type printer. Also calculate
// whether this type is abstract or not. Used by the constructor and when
// the type is refined.
//
void setDerivedTypeProperties();
public:
//===--------------------------------------------------------------------===//
// Abstract Type handling methods - These types have special lifetimes, which
// are managed by (add|remove)AbstractTypeUser. See comments in
// AbstractTypeUser.h for more information.
// addAbstractTypeUser - Notify an abstract type that there is a new user of
// it. This function is called primarily by the PATypeHandle class.
//
void addAbstractTypeUser(AbstractTypeUser *U) const {
assert(isAbstract() && "addAbstractTypeUser: Current type not abstract!");
#if 0
cerr << " addAbstractTypeUser[" << (void*)this << ", " << getDescription()
<< "][" << AbstractTypeUsers.size() << "] User = " << U << endl;
#endif
AbstractTypeUsers.push_back(U);
}
// removeAbstractTypeUser - Notify an abstract type that a user of the class
// no longer has a handle to the type. This function is called primarily by
// the PATypeHandle class. When there are no users of the abstract type, it
// is anihilated, because there is no way to get a reference to it ever again.
//
void removeAbstractTypeUser(AbstractTypeUser *U) const;
// getNumAbstractTypeUsers - Return the number of users registered to the type
inline unsigned getNumAbstractTypeUsers() const {
assert(isAbstract() && "getNumAbstractTypeUsers: Type not abstract!");
return AbstractTypeUsers.size();
}
// refineAbstractTypeTo - This function is used to when it is discovered that
// the 'this' abstract type is actually equivalent to the NewType specified.
// This causes all users of 'this' to switch to reference the more concrete
// type NewType and for 'this' to be deleted.
//
void refineAbstractTypeTo(const Type *NewType);
};
class MethodType : public DerivedType {
public:
typedef vector<PATypeHandle<Type> > ParamTypes;
private:
PATypeHandle<Type> ResultType;
ParamTypes ParamTys;
bool isVarArgs;
MethodType(const MethodType &); // Do not implement
const MethodType &operator=(const MethodType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class MethodType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
MethodType(const Type *Result, const vector<const Type*> &Params,
bool IsVarArgs);
public:
inline bool isVarArg() const { return isVarArgs; }
inline const Type *getReturnType() const { return ResultType; }
inline const ParamTypes &getParamTypes() const { return ParamTys; }
virtual const Type *getContainedType(unsigned i) const {
return i == 0 ? ResultType : (i <= ParamTys.size() ? ParamTys[i-1] : 0);
}
virtual unsigned getNumContainedTypes() const { return ParamTys.size()+1; }
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
static MethodType *get(const Type *Result, const vector<const Type*> &Params);
};
class ArrayType : public DerivedType {
private:
PATypeHandle<Type> ElementType;
int NumElements; // >= 0 for sized array, -1 for unbounded/unknown array
ArrayType(const ArrayType &); // Do not implement
const ArrayType &operator=(const ArrayType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class ArrayType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
ArrayType(const Type *ElType, int NumEl);
public:
inline const Type *getElementType() const { return ElementType; }
inline int getNumElements() const { return NumElements; }
inline bool isSized() const { return NumElements >= 0; }
inline bool isUnsized() const { return NumElements == -1; }
virtual const Type *getContainedType(unsigned i) const {
return i == 0 ? ElementType : 0;
}
virtual unsigned getNumContainedTypes() const { return 1; }
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
static ArrayType *get(const Type *ElementType, int NumElements = -1);
};
class StructType : public DerivedType {
public:
typedef vector<PATypeHandle<Type> > ElementTypes;
private:
ElementTypes ETypes; // Element types of struct
StructType(const StructType &); // Do not implement
const StructType &operator=(const StructType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class StructType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
StructType(const vector<const Type*> &Types);
public:
inline const ElementTypes &getElementTypes() const { return ETypes; }
virtual const Type *getContainedType(unsigned i) const {
return i < ETypes.size() ? ETypes[i] : 0;
}
virtual unsigned getNumContainedTypes() const { return ETypes.size(); }
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
static StructType *get(const vector<const Type*> &Params);
};
class PointerType : public DerivedType {
private:
PATypeHandle<Type> ValueType;
PointerType(const PointerType &); // Do not implement
const PointerType &operator=(const PointerType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class PointerType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
PointerType(const Type *ElType);
public:
inline const Type *getValueType() const { return ValueType; }
virtual const Type *getContainedType(unsigned i) const {
return i == 0 ? ValueType : 0;
}
virtual unsigned getNumContainedTypes() const { return 1; }
static PointerType *get(const Type *ElementType);
// refineAbstractType - Called when a contained type is found to be more
// concrete - this could potentially change us from an abstract type to a
// concrete type.
//
virtual void refineAbstractType(const DerivedType *OldTy, const Type *NewTy);
};
class OpaqueType : public DerivedType {
private:
OpaqueType(const OpaqueType &); // Do not implement
const OpaqueType &operator=(const OpaqueType &); // Do not implement
protected:
// This should really be private, but it squelches a bogus warning
// from GCC to make them protected: warning: `class OpaqueType' only
// defines private constructors and has no friends
// Private ctor - Only can be created by a static member...
OpaqueType();
public:
// get - Static factory method for the OpaqueType class...
static OpaqueType *get() {
return new OpaqueType(); // All opaque types are distinct
}
};
// Define some inline methods for the AbstractTypeUser.h:PATypeHandle class.
// These are defined here because they MUST be inlined, yet are dependant on
// the definition of the Type class. Of course Type derives from Value, which
// contains an AbstractTypeUser instance, so there is no good way to factor out
// the code. Hence this bit of uglyness.
//
template <class TypeSubClass> void PATypeHandle<TypeSubClass>::addUser() {
if (Ty->isAbstract())
Ty->castDerivedTypeAsserting()->addAbstractTypeUser(User);
}
template <class TypeSubClass> void PATypeHandle<TypeSubClass>::removeUser() {
if (Ty->isAbstract())
Ty->castDerivedTypeAsserting()->removeAbstractTypeUser(User);
}
#endif